ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3...

19
1 Thermoelectric power generation-materials T ZT ρλ α 2 = what makes a good thermoelectric: α Seebeck coefficient - large ρ resistivity - small λthermal conductivity - small - development of novel materials - material tailoring – crystal chemistry - composites–microstructure,nanostructure up-to-date best bulk thermoelectrics: - Bi 2 Te 3 /Sb 2 Te 3 , PbTe, Si-Ge NEW BULK MATERIALS: Skutterudites, Heussler alloys, complex chalcogenides, oxides Figure of Merit ZT conflicting requirements

Transcript of ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3...

Page 1: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

1

Thermoelectric power generation-materials

TZTρλα 2

=what makes a good thermoelectric:

α – Seebeck coefficient - large

ρ – resistivity - small

λ– thermal conductivity - small

- development of novel materials

- material tailoring – crystal chemistry

- composites–microstructure,nanostructure

up-to-date best bulk thermoelectrics: - Bi 2Te3/Sb2Te3, PbTe, Si-Ge

NEW BULK MATERIALS:Skutterudites, Heussler alloys, complex chalcogeni des, oxides

Figure of Merit

ZT

conflicting requirements

Page 2: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

2

Classical guidelines for thermoelectric materials :- semiconductors, but which???

TZTlatticeelectron )(

2

λλρα

+=

EF should be at the edge of the band, sharp variation ofDOS,�α ~ ± 200 µV/K

23* )(m

latticeλµ highest as possible

Semiconductors with a high mobility (µ), high effective mass (m*) and lowthermal conductivity of the lattice (λlattice)

B.C.

B.V.

EF

EF

EG

� Boltzman Equation of transport

�Kubo formalism…

To ajust Fermi level EF (optimal doping,…)

Electronic structure, scattering mechanism, phonon spectrum,…

Two approaches:

α, ρ , λ

Increase of ZT

Page 3: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

3

For almost all typical thermoelectric materials, namely low gap semiconductorslow gap semiconductors , if doping is increased, the electrical conductivity increases but the Seebeck coefficient is reduced.

S

S2σσσσ

ρα 2

=fP

Which materials are interesting ???– semiconductors –

Optimizing power factor highly doped semiconductors

Page 4: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

4Best compromise still highly doped semiconductors (λ = λe + λr)

Insulator Semi-conductor Métal

λe

λr

λα

ρ

Concentration de porteurs (cm 3)

αρλZ

Z

1014 102010181016 1022

(Electronic thermal conductivity

(Lattice thermal conductivity

Ideal material : α ↑, ρ ↓, λ↓ but α ↑ ρ ↑ et ρ ↓ λ↑⇔ ⇔

T = 300 K

The Thermoelectric Figure of Merit (ZT)

ρλα 2

=ZTZTρλα 2

=Optimizing Figure of merit ZT

minimize the thermal conductivity

conflicting requirements

Page 5: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

5

1930 - 1995 : Classical materials…Limits in ZT (~ 1) …Limits in temperature (T< 250 oC)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200

np

ZT

Temperature (K)

β-FeSi2

(Pb,Sn)(Te,Se)

TAGS(Bi,Sb)

2(Te,Se)

3BiSb

Si-Ge

0.2 T

TAGS : (AgSbTe2)1-x(GeTe)x

• SC low gap + heavy elements• ZT optimized only for narrow temperature window• At T ~ 300 K used solutions based on Te, namely (Bi2Te3)• ZT ~ 1 standard

61 - 75

76 - 06

Page 6: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

6

Since 1995 - … : New orientations

Environmental problems (Kyoto…), energy, waste heat, etc � New interest in thermoelectricity (USA, Japon, Europe is still on the tail….) Proposal of new concepts to target new matrials, need systems with ZT>1

Identification of new bulk materials….

Thermoelectrics based on lowered

dimensionality,nanostructuring,…

3

2

1

01940 1960 1980 2000

ZT

?1 2

Page 7: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

7

Motivation for Nanotechnology in Thermoelectricity

ZTS T=

2σκ

Seebeck Coefficient ConductivityTemperature

ThermalConductivity

ZT ~ 3 for desired goal

Difficulties in increasing ZT in bulk materials:

S ↑ ⇐⇒ σ ↓

σ ↑ ⇐⇒ S ↓ and κ↑

⇒ A limit to Z is rapidly obtained in conventional materials

⇒ So far, best bulk material (Bi0.5Sb1.5Te3)has ZT ~ 1 at 300 K

Low dimensional physics gives additional control:• Enhanced density of states due to quantum confinement effects

⇒ Increase S without reducing σ• Boundary scattering at interfaces can reduce κ more than σ• Possibility of materials engineering to further improve ZT

(2D quantum wells, 1D nanowires, 0D quantum dots)1

Page 8: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

8

Low dimensionality- impact on thermopower, thermal conductivity

3 D 2 D 1 D 0 D

- (D.O.S.) more favourable (stronger dependence of DOS on E)

� increase of α without increasing ρ- additional degree of freedom (size) for tailoring of the transport

- possibility to explore the anisotropy of transport properties

- chance to decrese λlattice due to phonon scattering on interfaces

- ZT0D > ZT1D > ZT2D > ZT3D

D.O

.S.

D.O

.S.

D.O

.S.

D.O

.S.

E E E E

30 nm

1

Page 9: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

9

Plots de PbSeTe dans des couches de PbTe

Transport in the ab-plane

• Type n : ZT ~ 1,5 à 300 K ( compared to 0,45 pour PbTe bulk), • ZT ~ 3,5 à 570 K• Type p : ZT ~ 1,1 à 300 K.

DUE TO:DUE TO:- Confinement of charge carriers in 2D- Decrease of lattice thermal conductivity due to scattering

-EXAMPLE (laboratory):

• Cooling: junction cooled 44 K below RT (31 K pour Bi2Te3) • Power generation : 2,2 W/cm2 for ∆T = 220 K

(Harman et al., J. Electron. Mater., 29, L1, 2005)

Theoretical predictions – decrease of the dimensionality

Heterostructures PbSeTe/PbTe (MBE)

~ 100 µm

(Harman et al., Science., 297, 2002)

(Harman et al., APL., 88, 243504, 2006)

Type n

0.0

1.0

2.0

3.0

4.0

250 300 350 400 450 500 550 600

ZT

T (K)

PbTe massif

1

Page 10: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

10

Superstructures based on (Bi,Sb,Te,Se) - MOCVD

Transport perpendiculaire Bi2Te3

Sb2Te3

Type p Type n

Bi2Te3-xSex

Bi2Te3

~ 20 - 180 Å

Negligible confinement of charge carriers BUTBUT

Interfaces block short wavelength phonons!

(Venkatasubramanian et al., PRB, 60, 3091, 2000, Nature, 413, 2001)

Thermoelectric Thermoelectric performanceperformance

Type n : ZT ~ 1,4 à 300 KType p : ZT ~ 1,7 - 2,4 à 300 K

1.5

2.0

2.5

3.0

3.5

300 320 340 360 380 400

ZT

T (K)

Type p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200

λ R (

W/m

K)

Superlattice period (Å)

Type p

(BiSb)Te3

Bi2Te3, Sb2Te3

0,4 – 0,7 µm

(www.nextremethermal.com)

SPIN off SPIN off technologytechnology

1

Page 11: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

11

Bulk Materials tailoring – decrease of thermal conductivity

k [W

/m-K

]

A B

Alloy Limit

Impurity and alloy atoms scatter only short - λ phonons

that are absent at low T!

TZTρλα 2

=Alloy Limit of Thermal Conductivity

1

Page 12: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

12

NANOSTRUCTURING- decrease of thermal conductivity: Phonon Scattering with Imbedded Nanostructures

Frequency, ω ωmax

eb

v

Atoms/Alloys

Nanostructures

Phonon Scattering

Long-wavelength or low-frequency phonons are scattered by imbedded nanostructures!

Spectral distribution of phonon energy ( eb) & group velocity (v) @ 300 K

Fre

quen

cy,ω

Wave vector, K0 π/a

LATA

LO

TO

Fre

quen

cy,ω

Wave vector, K0 π/a

LATA

LO

TO

TZTρλα 2

=

1

Page 13: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

13

NANOSTRUCTURING- decrease of thermal conductivity: Phonon Scattering on nanostructure interface

electron

conductorinsulator

d < λdBe

phonond > lmfp

ph

1

Page 14: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

14

Complex material science and advanced synthesis technology:-Open structures and very complex crystal structures with many atoms withdifferent mass in unit cell can� identify materials with a weak link between thermal and electric properties� concept of «Phonon Glass Electron Crystal (called PGEC)», G. Slack, 1994.

ADVANCED BULK MATERIALS

� � � � �

� � � � �

� � � � �

--

--

-

-

« Phonon Glass » � lphonon very low λr very low

« Electron crystal » � lelectron highµ also high

&

2

Page 15: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

15

Materials with open crystallographic positions which can serve as efficient “host” for inserted atoms , only weakly bonded with basic structural frame �can vibrate around central position (« rattlers ») � heat carrying phonons experience thus important damping from these local Einstein modes….

Open crystal structures : materials with «cages »

Interesting materials…

PhononDiffusion

Skutterudites(Co4Sb12)

Clathrates(Ba8Ga16Ge30)

2

Page 16: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

16

TZTρλα 2

=

Phonon

Scattering

RATTLING ATOMS

Clathrates(Ba8Ga16Ge30)

Skutterudites(Co4Sb12)

Decrease of thermal conductivity via phonon –phonon scattering 2

Page 17: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

17

Partially filled skutterudites based on Co4Sb12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

200 300 400 500 600 700 800 900

ZT

T (K)

n-Ba0.05

Yb0.09

Co4Sb

12

Co4Sb

12

p-Ce0.85

Co0.5

Fe3.5

Sb12

Rich class of compounds, voids, rattling, filling, doping,…

Materials n et p with ZT > 1 can be obtained…

2

Page 18: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

18

High Temperature High Temperature Oxide Oxide ThermoelectricsThermoelectrics

• Layered cobaltites- Ca3Co4O9

- (Bi,Pb) 2Sr2Co1.82Oy- NaxCoO2

• 3D - cobaltites• 2D - cuprates

• 3D - Manganites- Ca0.95La0.05MnO3

• 3D - Titanates- Sr0.95La0.05TiO3

• Spinels

αααα > 0

αααα < 0

2New class of compound, metallic oxides, stable chemically at high temperatures, studied are cobaltites and manganites, then chromites,..

OCaCo, Mn

Page 19: ZT - Fyzikální Ústav Akademie Věd České Republikyknizek/pdf/ThermoelectricMaterials.pdf · 3 For almost all typical thermoelectric materials, namely low gap semiconductors ,

19

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1950 1960 1970 1980 1990 2000 2010Time

n-BiSb

p-CsBi4Te

6

Bi alloysp-Bi

2Te

3& Bi

n, p-Bi2Te

3

(Bi,Sb)2Te

3& Bi

2(Te,Se)

3

optimized alloys

p-Bi2Te

3/Sb

2Te

3SL

p-ZnSb

n, p-PbTen, p-SiGe

p-TAGSp-Zn

4Sb

3

Skutterudites

n-PbSeTe/PbTe SL

n-Bi2Te

3/Bi

2(Te,Se)

3SL

n,p-PbEuTe/PbTe SL

AgPb10

SbTe12

ZT

superstructures

bulk

Temperatures >> 300 KTemperatures ~ 300 K

Temperatures < 300 K

Gradual increase of ZT during last 60 years…