Zone Plate Microscopy - Peopleattwood/sxr2009/...Fresnel Zone Plate Lens for Diffractive Focusing of...

60
Zone Plate Microscopy David Attwood University of California, Berkeley (http://www.coe.berkeley.edu/AST/srms) Zone Plate Microscopy and Applications, EE290F, 12 April 2007

Transcript of Zone Plate Microscopy - Peopleattwood/sxr2009/...Fresnel Zone Plate Lens for Diffractive Focusing of...

  • Zone Plate Microscopy

    David Attwood

    University of California, Berkeley

    (http://www.coe.berkeley.edu/AST/srms)

    Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • ∆r

    λ

    θf

    f +

    D = 2rN

    rn

    r2r1 nλ

    2

    Zone Plate lens

    Sample

    Soft X-ray CCD

    λ

    Zone Plate Lens

    Soft X-Ray Microscope

    Zone Plate Formulae

    r2 = nλf +

    λ = 2.5 nm,∆r = 25 nmN = 618

    0.63 mm

    0.05 µm

    1 µm

    1/700

    1.22∆r = 30 nm

    0.8∆r = 19 nm

    63 µmD = 4N∆r

    NA =

    f =

    nn2λ2

    4

    4N(∆r)2λ

    λ2∆r

    ≤1N

    ∆λλ

    Res. = k1 = 2k1∆rλ

    NA

    DOF = ± λ

    (NA)212

    (9.9)

    (9.13)

    (9.14)

    (9.15)

    (9.50)

    (9.52)

    k1 = 0.61(σ = 0)

    k1 = 0.4(σ = 0.45)

    Ch09_F00modif_Oct04.ai

    Zone Plates for Soft X-Ray Image Formation

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F21modif_Nov05.ai

    Two Common Soft X-Ray Microscopes

    Aperture(OSA)

    Detector

    Samplescanning

    stage

    Zone Plate lens

    Sample

    Soft X-ray CCD

    λ

    λ

    Full-FieldMicroscope

    ScanningMicroscope

    • Best spatial resolution• Modest spectral resolution• Shortest exposure time• Bending magnet radiation• Higher radiation dose• Flexible sample environment (wet, cryo, labeled magnetic fields, electric fields, cement, ...)

    • Least radiation dose• Next best spatial resolution• Best spectral resolution• Requires spatially coherent radiation• Long exposure time• Flexible sample environment• Photoemission (restricted magnetic fields), fluorescence imaging

    Zone Plate lens

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F01VG.ai

    A Fresnel Zone Plate Lensfor X-Ray Microscopy

    E. Anderson, LBNL

    Zone Plate Microscopy and Applications, EE290F, 12 April 2007Professor David AttwoodUniv. California, Berkeley

  • Ch09_F03VGrevApril04.ai

    Diffraction from a Transmission Grating

    d

    d

    (+1)

    (–1)

    (0)

    θθ

    λ

    λ

    θ

    ;

    (50% absorbed)

    (9.2)

    (9.24)

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F05VG.ai

    A Fresnel Zone Plate Lens

    ∆r

    λ

    θf

    f +

    f2 + r2 = f + 2

    D = 2rN

    rn

    r2r1

    nλ2

    nλ2n

    nr2 = nλf + n

    2λ2

    4

    (9.9)

    (9.10)

    (9.8)

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch9_F05_Nov05.ai

    A Fresnel Zone Plate Lens

    (9.13)

    (9.14)

    Define the outer zone width for n → N,

    (9.15)

    =

    and from (9.12) above

    D2f

    (9.16)

    (9.11)

    (9.12)

    (from 9.10)but λ f =

    ∆r

    λ

    θf

    f +

    D = 2rN

    rn

    r2r1

    nλ2

    2

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F02_modif_VG.ai

    A Fresnel Zone Plate Lens Used as aDiffractive Lens for Point to Point Imaging

    ∆r

    D

    S

    P

    p

    pn

    q

    qn

    (9.17)

    (9.18)

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Zone Plate Diffractive Focusing for Higher Orders

    ZP

    (–5)(–3)

    (m = –1)

    (m = –5) (–3)

    (–1)OSA

    λ f5

    5nλ2

    +

    f3

    3nλ2

    +

    nλ2

    f +

    f

    f5 f

    3

    (9.19)

    (9.24)

    1m

    rN2

    Nλfm =

    1mfm = f1

    Ch09_F08_Nov05.aiProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F11VG.ai

    Diffraction from a Fresnel Zone Plate

    (9.45)

    (9.46)

    λ

    ξ

    θ

    D

    y

    P(x,y)

    R

    z

    xr

    η

    ρ2 = ξ2 + η2∆r

    S(ξ,η)

    00 5 10

    kaθ

    N2

    N2

    N2

    2

    kaθ = 3.832

    Foc

    al p

    lane

    inte

    nsity

    , I(θ

    )/I o

    2J1(kaθ)(kaθ)

    2

    Airy pattern

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F14_April04.ai

    Resolving Two Point Sources

    r

    ΙRayleigh

    (b)(a)

    rnull = 0.61λ/NArnull = 0.61λ/NA rnull

    ∆∆

    • Point sources are spatially coherent• Mutually incoherent• Intensities add• Rayleigh criterion (26.5% dip)

    Conclusion: With spatially coherent illumination, objects are “just resolvable” when

    Res|coh = = 1.22 ∆r0.61 λ

    NA

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Opaquezones

    Coherent illumination(σ = 0)

    Spatialresolution:

    1.2 ∆r

    ∆r

    λx

    Fresnel Zone Plate Lens for Diffractive Focusing of Spatially Coherent X-rays

    Ch09_FresnelZP_Apr07.ai

    Rescoh =

    NA =

    ∴ Rescoh = 1.22 ∆r

    (σ = 0, see first slide)

    0.61 λNAλ

    2∆r

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F19_Nov05.ai

    Partially Coherent Illumination Permits ImprovedSpatial Resolution by a Factor Approaching Two

    d2

    2πd

    2π(d/2)

    d2

    d

    (a)

    (b)

    (c)

    ksks

    ks

    ki

    ki

    ki

    ki

    θ

    θ

    σ = (for n = 1)NAillum.NAobj.

    sinθillum.sinθobj.

    θobj.θillum.

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F10.2_Nov05.ai

    Optical Transfer Properties with VaryingDegrees of Partially Coherent Illumination

    0 1 2

    0.5

    1.0

    App

    aren

    t tra

    nsfe

    r fu

    nctio

    n

    Spatial frequency (NA/λ)

    σ = ∞ (incoherent)

    σ = 0.6

    σ = 0.3

    σ = 0 (coherent)

    σ = (for n = 1)NAillum.NAobj.

    sinθillum.sinθobj.

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_10.3.ai

    Intensity Versus Position for a Sharp Edge ObservedWith Coherent and Partially Coherent Radiation

    –2 –1 0(edge)

    1

    Distance (λ/2NA)

    Inte

    nsity

    2 3

    σ = ∞σ = 1.5σ = 1.0σ = 0.9σ = 0.8σ = 0.6σ = 0.2

    1.3

    1.0

    0.5

    0

    Courtesy of M. O’Toole and A. Neureuther (UC Berkeley).Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_F18_Nov05.ai

    Depth of Focus and Spectral Bandwidth

    (9.50)

    (9.51)

    (9.52)∆r

    λ

    z = f

    z

    focal plane, z = f

    two depths of focus away, z = f –

    four depths of focus away, z = f –

    λ2(NA)2

    λ(NA)2

    2λ(NA)2

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_WhyDOFscale.ai

    Why does DOF Scale as /NA2?

    High NA

    Low NA

    θ

    λ

    0.6λ/NADOF/2

    DOF/2

    tanθ =

    tanθ ~ sinθ = NA

    ∴ DOF

    DOF = ±

    for small θ

    in the text, eq. 9.50:

    0.6λNA

    0.6λNA

    1.2λ/NAtanθDOF =

    DOF

    1.2λNA2

    12

    λ(NA)2

    θ

    θλ

    DOF

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_TestPattrn.ai

    Test Pattern for NanometerSoft X-ray Imaging

    E. Anderson, D. Olynick, B. Harteneck, E. Veklerov, LBNL

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    The XM-1 Soft X-Ray Microscopeat the Advanced Light Source (ALS)

    E = 250 - 1.8 keVλ = 0.7 nm - 5 nm

    • High spatial resolution (20 nm)• Modest spectral resolution (E/ΔE ~700)• Thick, hydrated samples (10 µm)• Short exposure time (~1 second)• Well engineered, pre-focused• Mutually indexed visible and x-ray microscopes• High throughput (hundreds of samples per day)• Large image fields by tiling• Easy access, user friendly• Cryotomography

    13

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    High Resolution Zone-Plate Microscope XM-1at the ALS

    • Well engineered• Sample indexing• Tiling for larger field

    of view• Pre-focused• High sample throughput• Illumination important• Phase contrast

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Bending Magnet Photon Flux at the ALS

    Professor David AttwoodAST 210/EECS 213Univ. California, Berkeley

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Micro Zone PlatesΔr = 25 nm (15 nm), Δt = 70 nm (5%) (170 nm). N = 618, D = 63 µm, f = 650 µm, NA = 0.05 at 2.4 nm. Δr = 35 nm, Δt = 85 nm (8%).Condenser Zone PlateΔr = 55 nm (40 nm), Δt = 200 nm (22%). N = 41,000, D = 9 mm, f = 207 mm,NA = 0.022 @ 2.4 nm. σ = 0.45 with Δr = 25 nm micro zone plate.

    MagnificationM = 2400 to 3100; 24 µm CCD pixel 8 nm at sample.Spectral Bandpassλ/Δλ = 700, per pixel, 2 µmD field.λ/Δλ = 500 with shaker, 10 µmD field.CCD CameraBack thinned, soft x-ray sensitive. 1024 x 1024 (2048 x 2048), 24 µm square pixels. 60 -70% efficient.Exposure Time1-5 seconds, 103 photons/pixel, 8 µm diameter at sample (2.5 sec @ 400 mA, 2 x 2 binning,Δr = 25 nm)

    XM-1 Parameters

  • ZP microscopy Apps1.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    New Overlay Nanofabrication Techniquefor Narrower Outer Zones

    Δr = 15 nmΔt = 90 nmOverlay ~ 2 nm accuracy–

    Courtesy of J.A. Liddle, E.H. Anderson, B. Harteneck and W. Chao, LBNL

  • ZP microscopy Apps1.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Multilayer Mirror Coatings Can Be Thinnedand Used As Sub-20 nm Test Patterns

    High quality test patterns can be fabricatedwith sections as thin as 5 nm.

    SEM Micrographof Cr/Si test pattern

    ΔtCourtesy of W. Chao, UC Berkeley and CXRO/LBNL.

  • ZP microscopy Apps1.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Near Diffraction Limited Soft X-Ray Microscopy:20 nm Spatial Resolution at 2.07 nm Wavelength

    15 nm linesnot resolved,no modulation

    (barely “resolved”)

    W. Chao et al.,Opt. Lett. 28, 2019 (Nov 2003)

  • ZP microscopy Apps1.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    New Results Using Overlay Nanofabrication:Outer Zone Width of 15 nm

    • Zone plate lenses made using a new, e-beam based nanofabrication techniquehave extended outer zones from 25 nm to 15 nm.

    • The new lenses work as expected, resolving fine patterns not seen previously• Shorter depth of focus (λ/NA2) opens the opportunity for soft x-ray “optical

    sectioning” of biological material.

    15 20 25 30 35 40 45 50 550.0

    0.2

    0.4

    0.6

    0.8

    1.0

    15

    1/period (um-1)

    half-period (nm) 25 20 12.5 10

    Norm

    aliz

    ed Im

    age M

    odula

    tion

    !rMZP

    =25nm

    " =0.21 to 0.42 Calculated Measured

    !rMZP

    =15nm

    " =0.19 to 0.38 Calculated Measured

    100 nm

    Soft x-ray image of15 nm Cr/Si lines & spaces

    W. Chao, B. Harteneck, J.A. Liddle, E. Anderson and D. Attwood “Soft X-Ray Microscopy at a Spatial Resolution Better than 15 nm”, Nature 435, 1210 (30 June 2005).

    New zone plate lens with15 nm outer zone width

  • Zone Plate Parameters for ∆r = 15 nm,λ = 2.5 nm and λ = 1.5 nm

    λ = 2.5 nm 1.5 nm∆r = 15 nmN = 500D = 30 µmf = 180 µm 300 µmNA = 0.083 0.05 18 nm (σ = 0) 12 nm (σ = 0.4)DOF = ± 180 nm ±300 nm∆λ/λ = 1/500

    Res =

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Fe L3 @ 707.5 eV

    1 µm Nucleus

    Cell border

    NucleoliNucleoli

    Cellborder

    Cryo X-Ray Microscopyof 3T3 Fibroblast Cells

    100 nmlines &spaces

    Protein LabeledMicrotubule Network

    FeTbCo Multilayerwith Al Capping Layer

    Magnetic RecordingMaterials

    Cryo Microscopy for the LifeSciences

    Courtesy of P. Fischer (Max Planck)and G. Denbeaux (CXRO/LBNL)

    Courtesy of C. Larabell (UCSF)and W. Meyer-Ilse (CXRO/LBNL)

    Applications of Soft X-Ray Microscopy

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    The Water Window forBiological X-Ray Microscopy

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Helium passes through LN, is cooled,and directed onto sample windows

    W. Meyer-Ilse, G. Denbeaux, L. Johnson, A. Pearson (CXRO-LBNL)

    -150

    -100

    -50

    0

    50

    -10 0 10 20 30 40 50 60 70 80 90 100

    Time (milliseconds)

    Tem

    pera

    ture

    (Cel

    sius

    )50°c

    16 msΔTΔt

    = –

    Fast Freeze

    Fast Freeze Cryo Fixation Strongly MitigatesRadiation Dose Effects

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Cell border

    Nucleus

    NucleoliNucleus

    Cell border

    Nucleoli

    Cell border

    C. Larabell, D. Yager, D. Hamamoto, M. Bissell, T. Shin (LBNL Life Sciences Division)W. Meyer-Ilse, G. Denbeaux, L. Johnson, A. Pearson (CXRO-LBNL)

    ER?Filopodia

    Cryo x-ray microscopy of 3T3 fibroblast cells

    Organelle Details Imaged with CryogenicPreservation and High Spatial Resolution

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Bending Magnet Radiation Used With a Soft X-RayMicroscope to Form a High Resolution Image of a

    Whole, Hydrated Mouse Epithelial Cell

    hw = 520 eV

    32 µm x 32 µm

    Ag enhanced Au labelingof the microtubule network,color coded blue.

    Cell nucleus and nucleoli,moderately absorbing,coded orange.

    Less absorbing aqueousregions coded black.

    W. Meyer-Ilse et al.J. Microsc. 201, 395 (2001)

    Courtesy of C. Larabell and W. Meyer-Ilse (LBNL)

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    XM-2: A New, Upgraded MicroscopeDedicated to Soft X-Ray Biotomography

    Dedicated to life sciences research Cryotomography without apparatus interruption Interchangeable objective lenses

    (tradeoff resolution, depth of focus, working distance) Improved resolution, lens efficiency, image contrast

    and uniformity Improved cryo transport Improved computational image reconstruction

    and analysis More flexible use of phase contrast

    National Center for X-ray Tomography

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    • High spatial resolution in transmission• Bulk sensitive (thin films)• Complements surface sensitive PEEM• Good elemental sensitivity• Good spin-orbit sensitivity• Allows applied magnetic field• Insensitive to capping layers• In-plane and out-of-plane measurements

    Magnetic X-Ray Microscopy

    Courtesy of P. Fischer, Wuerzberg and G.Denbeaux, CXRO/LBNL

    Magnetic X-Ray Microscopy Using X-RayMagnetic Circular Dichroism (XMCD)

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    1 µm

    SiN(70 nm)/Tb25(Fe75Co25)75(50 nm)/SiN(20 nm)/Al(30 nm)/SiN(20 nm)

    MFM-image

    P. Fischer et al., Wuerzburg; N. Takagi et al., Sanyo; G. Denbeaux et al., CXRO/LBNL

    100 nm lines & spaces

    Imaging of ThermomagneticallyWritten Bits in MO Media

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Magnetic Domains Imaged atDifferent Photons Energies

    P. Fischer, T. Eimueller, M. Koehler (U. Wuerzberg)S. Tsunashima (U. Nagoya) and N. Tagaki (Sanyo)G. Denbeaux, L. Johnson, A. Pearson (CXRO-LBNL)

    FeGd MultilayerContrastreversal

    1 µm

    hω = 720.5eV

    Fe L2-edge

    hω = 707.5eV

    Fe L3-edge

    hω = 704 eVbelow Fe L-edges

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Nanoscale Local Hysteresis

    200nm

    5 6

    -3

    0

    Inte

    nsity (

    A.

    U.)

    Field (A. U.)

    Hext

    D.-H. Kim et al., J. Appl. Phys. (2005) accepted

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Electromigration in Latest TechnologyComputer Chips with Cu vias Connecting

    Multilevel Metallization Layers

    G. Denbeaux, E. Anderson, A. Pearson and B. Bates (CXRO)M. Meyer and E. Zschech (AMD Saxony Manufacturing GmbH) / E. Stach (NCEM / LBNL)

    SEM micrograph X-ray micrograph imaged at 1.8 keV

    X-rays

    High current density

    Cu interconnect

    Cu via

    Wafer

    1 µm

    HVTEM (0.8 MeV electrons)TXM (1.8 keV photons)

    Courtesy of Gerd Schneider (BESSY)

  • Ch09_F08.modifVG.ai

    Using Phase Effects to AchieveHigher Diffraction Efficiency

    ZP

    λ

    f∆t

    For a π-phase shift

    a factor of four can be gained in diffraction efficiency. For soft x-rays and EUV all materials are partially absorbing

    Optimization is a function of δ/β, asdiscussed by J. Kirz, J. Opt. Soc. Am. 64, 301 (1974) and by G.R. Morrison, Ch. 8 in A. Michette and C. Buckley, X-Ray Science and Technology (IOP, Bristol, 1993).

    (3.29)

    (3.12)

    (9.25)

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • HardXRzoneplateMicros.ai

    Hard X-Ray Zone Plate Microscopy

    Professor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Images courtesy of the Synchrotron Radiation Research Center(SRRC), Taiwan Gung-Chian Yin Mau-Tsu Tangand Xradia, Concord, CA Wenbing Yun Michael Feser

  • Zone plate optical systemZone plate optical system Condenser TubeCondenser Tube

    Monochromatic X-raysMonochromatic X-rays

    The Transmission X-ray MicroscopeThe Transmission X-ray Microscope

    10 cm

    Ion ChamberIon Chamber

    Phase RingPhase Ring

    Sample mount and sampleSample mount and samplemanipulation systemmanipulation system

    condenser

    Zoneplateobjective

    Image

  • The resolution reaches 30 nm. APL v89,221122,2006

    3 µm

    1 µm(a)

    1 µm1 µm

    3 µm (b)

    (c) (d)

  • TXM with Zernike’s phase contrast method

    HeLa cell with Nicole stained

    1 µm

    Plastic zoneplate of 1 µm thick

  • APL. Vol 88, 241115,2006The tomography close 60 nm.

  • 3/20/2007 Berkeley CXRO 8

    Nature: Aug Nature: Aug 20062006

  • 3/20/2007 Berkeley CXRO 25

    Application: Advanced IC DeviceFailure analysis and R&D of advanced IC devices

  • 3/20/2007 Berkeley CXRO 52

    SSRL nanoXCT installation• Installed Dec 2006 in 1 day• 1s exposure time at 8keV Zernike phase contrast•

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    The Scanning Soft X-Ray Microscope

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    An Undulator Beamline forScanning X-Ray Microscopy

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Coherent Power for an EPU at the ALS

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Spectromicroscopy: High Spatial and High SpectralResolution Studies of Surfaces and Thin Films

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    RESULTS•Ni, Fe, Mn, Ca, K, O, C elemental map,( there was no sign of Cr.)•Different oxidation states for Fe and Ni

    Protein (gray), Ca, K 700 705 710 715 720 725

    OD

    1.5

    1.0

    0.5

    0

    1 µm

    Different oxidation states (minerals) found for Fe & Ni

    Fe 2p

    5 µm

    Tohru Araki, Adam Hitchcock (McMaster University)Tolek Tyliszczak, LBNLSample from: John Lawrence, George Swerhone (NWRI-Saskatoon), Gary Leppard (NWRI-CCIW)

    Biofilm from Saskatoon RiverALS-MES 11.0.2

  • ZP microscopy Apps2.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Map chemical spectra taken of pure samplesOnto a sample containing both components

    M.K. Gilles, R. Planques, S.R. Leone LBNL

    Samples from B. Hinsberg, F. Huele IBM Almaden

    Exposure to UV light results in loss of carbonyl peak

    280 eV 290 eV

    Courtesy of Mary Gilles, LBNL

    Patterned Polymer PhotoresistsALS-MES 11.0.2

  • Ch09_F43VG.ai

    The Nanowriter: High Resolution Electron Beam Writing With High Placement Accuracy

    High brightness thermal field emission source and extraction electrodes

    Condenser lens, beam definingaperture and transfer lens

    Blanking plates and aperture

    50-100 keV electron beam focused to 3-10 nm spot size

    Deflection coils

    Final electron focusing lens

    Deflectionelectronics Pattern

    generator System controlcomputer

    Thin resist recording layeron a multilevel wafer

    Wafer stage (stationaryduring exposure)

    Courtesy of E. Anderson, LBNLProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • Ch09_Nanowriter_Apr04.ai

    LBNL Nanowriter: Unique Ultra-high Resolution, High Accuracy Electron Beam Lithography Tool

    Parameter

    Beam size

    Beam placement

    Stitching

    Beam voltage

    Beam current

    Speed

    Deflection field

    Interferometer

    Wafer size

    Real time detectionand feedback

    Nanowriter

    5.0 nm2.5 nm (New C3 lens)

    2.5 nm (65 µm field)20 nm (512 µm field)

    20 nm (1 cm field)

    20-100 kV

    1 nA at 10 nm1.0-0.2 nA at 2.5 nm (new C3 lens)

    25 MHz

    16 bit

    λ/1024

    8"

    Backscattered, transmitted and secondary electrons;digital image processing

    Key Specifications

    Courtesy of E. Anderson, LBNLProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

  • ZP microscopy Apps1.pptProfessor David AttwoodUniv. California, Berkeley Zone Plate Microscopy and Applications, EE290F, 12 April 2007

    Nanofabrication is Critical for High Fidelity,High Aspect Ratio Zone Plates

    Courtesy of E. Anderson, A. Liddle, W. Chao, D. Olynick, and B. Harteneck (LBNL)

    Etch resistantplating base

    1. Expose

    Si

    Cross-linked polymerSi3N4

    HSQ resist

    6. Strip Si3N4 and Cr/Au Plating Base

    Si

    2. Develop

    Si

    Cross-linked polymerSi3N4

    3. Cryogenic ICP Etch

    Si

    Si3N4

    4. Plate

    Si

    Si3N4

    5. Strip Resist

    Si

    Si3N4