zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function...

19
zMobius DelDef AMA zMobius and other recent developments on Domain Wall Fermions Tom Blum, Taku Izubuchi, Chulwoo Jung, Christoph Lehner, Sergey Syritsyn July 14, 2015 Lattice 2015 Kobe International Conference Center, Kobe, Japan

Transcript of zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function...

Page 1: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

zMobius and other recent developments onDomain Wall Fermions

Tom Blum, Taku Izubuchi, Chulwoo Jung, Christoph Lehner,Sergey Syritsyn

July 14, 2015Lattice 2015

Kobe International Conference Center, Kobe, Japan

Page 2: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

zMobius: Motivation

Mobius fermion(Brower, Neff, Orginos) (b5 + c5 = α, b5 − c5 = 1) has beensuccessfully used for various DWF projects by RBC/UKQCD collaborations, It allowsminimal, well bound change from Shamir fermions while allowing for most optimalrange of DWF approximation of the step function (1/Ls � (b + c)x � Ls) matches

the eigenvalue bounds of γ5DW

2+DW. (b + c) between 2 and 4 is typically used.

Recent algorithmic developments(AMA, Greg’s talk) made it possible to use cheaperapproximation of fermion actions efficiently for both evolution and measurement.

Smaller Ls allows for more eigenvector generation, more improvement incondition number

Use in AMA → cheaper approximation of the original action

Eigenvectors with smaller Ls can be used with MADWF(Mawhinney, Yin) toimprove on exact solves. The PV inversion necessary for MADWF has been alsoimproved by FFT (Izubuchi,Blum)

Now we are using Mobius as the sea quark action. Can we go beyond Mobius? → Wecan get rational approximations of the Mobius action, which turn out to have complexpoles (zMobius).

Page 3: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Example: zMobius(Ls=8) for Mobius(Ls = 24, b + c = 2, |x | <1.4)

εzM,8(x) =376043x7 + 329277x5 + 19977.3x3 + 95.8779x

104760x8 + 507484x6 + 110975x4 + 1927.57x2 + 2

=

∏Ls−1s=0 (1 + αsx)−

∏Ls−1s=0 (1− αsx)∏Ls−1

s=0 (1 + αsx) +∏Ls−1

s=0 (1− αsx)

→b0−7 = {0.87405859026591415, 1.0190035946640621,

1.3658219772391325, 2.0514624685283716,

3.3661546566870935, 5.7994094935966318,

6.7467786395784248− 3.5543607236727506i ,

6.7467786395784248 + 3.5543607236727506i}

Ls Max. deviation6 0.01244358 0.00127216

10 1.09868× 10−4

12 8.05035× 10−6

Page 4: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

0 1 21e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1zMobius(32,14)-Mobius(32,b+c=2)zMobius(24,10)-Mobius(24,b+c=2)zMobius(24,8)-Mobius(24,b+c=2)

zMobius

Page 5: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

zMobius+AMA example: Static Heavy QuarkT. Ishikawa, 5/16 08:30

0 5 10 15 20t

-15

-14

-13

-12

-11

-10

-9C

(t)

exact (2 src, 20 conf)AMA (108 src, 20 conf)approx only (108 src, 20 conf)

48c, MDWF24(1e-8) - ZMDWF10(~1e-4), 3pt(SP), HYP1, heavy-strange

0 5 10 15 20t

0.48

0.49

0.5

0.51

0.52

0.53

Eef

f(t)

exact (2 src, 20 conf)AMA (108 src, 20 conf)approx only (108 src, 20 conf)

48c, MDWF24(1e-8) - ZMDWF10(~1e-4), 2pt(local), HYP2, heavy-strange

AMA on strange quark propagator.Sloppy: zMobius Ls=10, Niter = 350, |r | = 5 ∼ 10× 10−5, no deflation.

Exact: Mobius Ls=24, Niter =∼ 1000, |r | = 10−8

Page 6: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Preconditioning

In CPS ans QUDA, slightly different conditioning is used. Instead of preconditioning

Dzmob =b0DW + 1 (c0DW − 1)PL 0 · · · −mf (c0DW − 1)PR

(c1DW − 1)PR b1DW + 1 (c1DW − 1)PL · · · 00 (c2DW − 1)PR b2DW + 1 · · · 0

.

.

.. . .

. . .. . .

.

.

.−mf (cLs−1DW − 1)PL 0 · · · (cLs−1DW − 1)PR bLs−1DW + 1

directly, CPS multiplies

2κb = diag [b0(4−M) + 1, b1(4−M) + 1, · · · bLs−1(4−M) + 1]−1

2κbDzmob =

(M5 −κbM4oe

−κbM4eo M5

)

Page 7: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

M5 =

1 κb0κc0

PL 0 · · · −mfκb0κc0

PRκb1κc1

PR 1 κb1κc1

PL · · · 0

0 κb2κc2

PR 1 · · · 0

.... . .

. . .. . .

...

−mfκbLs−1

κcLs−1PL 0 · · · κbLs−1

κcLs−1PR 1

M4,oe =

b0D4,oe c0D4,oePL 0 · · · −mf c0D4,oePR

c1D4,oePR b1D4,oe c1D4,oePL · · · 00 c2D4,oePR b2D4,oe · · · 0...

. . .. . .

. . ....

−mf cLs−1D4,oe − PL 0 · · · cLs−1D4,oe

Asymmetric and symmetric preconditionings are defined similarly

Asymκ: M5 − κbM4,eoM−15 κbM4,oe

Sym1κ: 1−M−15 κbM4,eoM

−15 κbM4,oe

Sym2κ: 1− κbM4,eoM−15 κbM4,oeM

−15

Page 8: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Condition numbers of different preconditioning for zMobius243 × 64, zMobius(Ls =8), m=0.005

Pc λmin λmax λmax / λmin

Asym 5 ∼ 6×10−5 3.5×103 ∼ 7× 107

Sym1 3 ∼ 4× 10−6 6.2×100 ∼ 2× 106

Sym2 8 ∼ 10× 10−7 5.1×100 ∼ 6× 106

Asymκ 2.542×10−6 1.272×101 5.00×106

Sym1κ 2.914×10−6 6.260×100 2.15×106

Sym2κ 4.517×10−6 4.880×100 1.08×106

Sym1κ(MIT) 4.461×10−7 5.086×100 1.14×107

Sym2κ(MIT) 4.208×10−7 2.711×101 6.44×107

483 × 96, zMobius(Ls =10), m=0.00078Pc λmin λmax λmax / λmin

Asym 1.933×10−5 2.354×103 1.218×108

Sym1 3.766×10−7 5.946×100 1.579×107

Sym2 1.988×10−7 5.050×100 2.541×107

Sym2κ 2.086×10−7 5.013×100 2.403×107

Condition numbers for symmetric preconditioners (Sym1, Sym2) are in generalsignificantly better than Asymmetric preconditioners, in contrast to scaledShamir.

Effect of other details such as Sym1 vs. Sym2, κb matrix, and different orderingof bs , cs are not clear yet.

Page 9: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Delayed Deflation: Motivation

Algorithmic developments in eigenvector generation, especially Chebyshef-acceleratedLanczos made it possible to generate eigenvectors efficiently, as long as all the vectorscan be kept on memory.483 × 96,ml = 0.00078 2200 zMobius(10) generation: 800K Preconditioned dslash,condition number 2× 10−7 → 4× 10−4

1 inversion with Mobius(24,b+c=2) ∼ 57K preconditioned dslash.We can use QUDA on GPU to run the deflated solver efficiently. However, there is asignificant mismatch between partitions sizes for evec generation (192 Fermilab pi0, 16core Ivy Bridge) and GPU solve (12GPU, 3 pi0g nodes)

Mobius QUDA PerformanceFermilab pi0g (K40m), half precision

V Grid(Nz × Nt) Total Gflops/GPU644 × 12 2× 8 4480 280

483 × 96× 16 2× 8 5170 323483 × 96× 8 1× 8 2740 343

483 × 96× 16 1× 12 3920 327323 × 64× 16 1× 4 1690 423

We can save generated5D eigenvectors efficientlyenough to disks on clus-ters, but reading them be-fore every inversion wouldbe prohibitively expensive.Can we circumvent this→Delayed deflation.

Page 10: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Rλmax ,λn (x) = Polynomial with pre-calculated coefficients which approximates 1/xfrom λmax to λn

D−1 |χ〉 ∼ Rλmax ,λn (D) |χ〉+∑λ<λn

[1/λ− Rλmax ,λn (λ)

]|λ〉 〈λ| |χ〉

= ψHλmax ,λn

+ ψLλmax ,λn

= ψλmax ,λn

We can do any linear operation on ψH and ψL separately and combine it later.Examples are:

Self-contraction (disconnected diagrams)

Contraction with numerically inexpensive propagators (Heavy Quark, etc..)

5d→ 4d and save 4d propagators.

This is also amenable to further optimizations with multiple RHS, and via eliminationof global sums.

Page 11: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Delayed Deflation Test

32ID (DWF+Iwasaki+DSDR)a−1 ∼ 1.38Gev, mπ ∼ 170Mevλmax ∼ 4.9, λmin ∼ 1.2× 10−6.

Choice of polynomials for Rλmax ,λ100

Chebyshef: Chebyshef approximation of 1/x over ∼ (λ100, λmax )PolyCG: Use coefficients from CG on a point source, deflated with 100eigenvectors, to build R, and use on other sources.Scaled PolyCG: Use same coefficients as PolyCG. R(x , β) = βR(βx), tocontrol very sharp increase of R(x) at λmax

Observable

Residual of ψλmax ,λn

Point source Pseudoscalar meson propagator (1 pt)Point source Nucleon propagator (8 pts) :

Page 12: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Comparison of approximations

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10x

0.01

0.1

1

10

100

1000

10000

1e+05

1e+06

R(x

)

1/xChebychev(100)PolyCG(100)Chebychev(300)PolyCG(300)PolyCG(300,β=0.95)λ

max

λmin

λ100,200,400

Chebyshef bound

Polynomial approximations of 1/x

Page 13: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

3 4 5x

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

(R(x

)-1/

x)x

Chebychev(300)PolyCG(300)PolyCG(300,β=0.95)λ

max

Chebyshef bound

Relative difference

Page 14: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Comparison of residuals for different DD

100 1000Niter

1e-05

0.0001

0.001

0.01

0.1

1

10

Defl neig=100Chebyshev neig=100Chebyshev neig=200Chebyshev neig=400PolyCG neig=100PolyCG neig=200PolyCG neig=400PolyCG neig=100 β=0.95 PolyCG neig=200 β=0.95 PolyCG neig=400 β=0.95

Residuals (Preliminary)DWF+ID 170Mev

Page 15: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Comparison of different DD for Niter=300

0 10 20 30 40 50 60 70t

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

P(t)

/Pex

act(

t) -

1

Defl neig=100Chebyshev neig=100Chebyshev neig=200Chebyshev neig=400PolyCG,neig=100PolyCG,neig=200PolyCG,neig=400PolyCG neig=100 β=0.95 PolyCG neig=200 β=0.95 PolyCG neig=400 β=0.95

Pseudoscalar meson propagator (preliminary)DWF+ID 170Mev,Niter = 300

Page 16: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

0 10t

1e-05

0.0001

0.001

0.01

0.1

1

10

P(t)

/Pex

act(

t) -

1

Defl neig=100Chebyshev neig=100Chebyshev neig=200Chebyshev neig=400PolyCG,neig=100PolyCG,neig=200PolyCG,neig=400PolyCG neig=100 β=0.95 PolyCG neig=200 β=0.95 PolyCG neig=400 β=0.95

Nucleon propagator(preliminary)DWF+ID 170Mev,Niter = 300

Page 17: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Conclusion/observation

zMobius provides effective approximation of Mobius DWF with smaller Ls whichenables more efficient deflation, measurement, and evolution.

Symmetric preconditioners for zMobius gives significantly smaller conditionnumber. A more careful comparison between different symmetricpreconditioners is under way.

Delayed deflation with Chebyshef and CG-generated polynomial is studied.Polynomials from CG, with additional deflation and eigenvalue scaling seem ableto produce good R(x) for a wide range of observables, although Chebyshefappears competitive in some low-mode dominated quantities. More study isnecessary.

More inspection of CG-generated polynomial can lead to more effective deflationfilter.

Page 18: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

Thank you!

Page 19: zMobius and other recent developments on Domain Wall ... of DWF approximation of the step function (1=Ls ˝(b + c)x ˝Ls) matches the eigenvalue bounds of 5 DW 2+DW. (b + c) between

zMobius DelDef AMA

All Mode Averaging(AMA)

(Blum, Izubichi & Shintani arXiv:1208.4349)Use the translation invariance of LatticeQCD Lagrangian and replace O(rest),g withO(rest) for a set of covariant shifts {g}.

O(imp) =1

NGΣg

(O(rest),g +O(approx),g

)∼

1

NEO(rest) +

1

NGΣgO(approx),g

O(rest) = O(exact) −O(approx)

This is cost effective when O(approx) is such that⟨(∆(O(rest))2

⟩�⟨(∆(O(approx))2

⟩O(approx) much less expensive than O(exact)

Covariance: O(approx),g [U] = O(approx)[Ug ] (However, can be relaxed)