Zim ányi `09 Winter School on Heavy Ion Physics

42
Zimányi `09 Winter School on Heavy Ion Physics Significant in-medium reduction of the mass of η’ mesons in √s NN = 200 GeV Au+Au collisions at RHIC Róbert Vértesi 1 , Tamás Csörgő 1,2 , János Sziklai 1 1 MTA KFKI RMKI, Budapest Hungary 2 Department of Physics, Harvard University, Cambridge USA arXiv:0912.0258 [nucl-ex] η’ η’ * 1

description

Zim ányi `09 Winter School on Heavy Ion Physics. η ’. η ’. *. Significant in-medium reduction of the mass of η ’ mesons in √ s NN = 200 GeV Au+Au collisions at RHIC Róbert Vértesi 1 , Tam ás Csörgő 1,2 , János Sziklai 1 1 MTA KFKI RMKI , Budapest Hungary - PowerPoint PPT Presentation

Transcript of Zim ányi `09 Winter School on Heavy Ion Physics

Page 1: Zim ányi `09 Winter School  on Heavy Ion Physics

Zimányi `09 Winter School on Heavy Ion Physics

Significant in-medium reduction of the mass of η’ mesons in

√sNN= 200 GeV Au+Au collisions at RHIC

Róbert Vértesi1, Tamás Csörgő1,2, János Sziklai1

1MTA KFKI RMKI, Budapest Hungary2Department of Physics, Harvard University, Cambridge USA

arXiv:0912.0258 [nucl-ex]

KFKI Budapest, 12/03/2009

η’ η’*

1

Page 2: Zim ányi `09 Winter School  on Heavy Ion Physics

Outline

Introduction Chiral symmetry breaking in the (three-)quark model Symmetry restoration and the η' mass reduction

Experimental signatures Dilepton spectra in Heavy Ion Collisions η' mass through π± Bose-Einstein correlations RHIC vs. SPS

Analysis Simulating the spectra and correlations Fitting the data Systematics

Results & conclusion

12/03/2009 2 R. Vértesi

Page 3: Zim ányi `09 Winter School  on Heavy Ion Physics

Chiral Symmetry Breaking

The three-quark model SU(3) flavor-symmetry Spontaneously broken => 9 Goldstone bosons Corresponding to light mesons

There are only 8! (Meson-octet)

UA(1) chiral symmetry explicitly broken

Distinct topological vacuum-states Tunneling quasiparticles (instantons) 9th boson gains mass − η' (958 MeV)

K0

π− π+

K+

K− K0

η

η’

π0

12/03/2009 3 R. Vértesi

Page 4: Zim ányi `09 Winter School  on Heavy Ion Physics

Restoration of the Symmetry in a Hot, Dense Medium

High energy densities Strong coupling α

s drops

Nontrivial topology vanishes UA(1) no more broken SU(3) restored

Remark:From SSB, One expects massless mesons.However, the flavour symmetry is inexact.

Mass reductionLower bound (Gell-Mann – Okubo):

Upper bound (S,NS isosinglet eigenstates):

Δm is the extra mass from instantons in a not-so-dense medium

K0

π− π+

K+

K− K0

η

η’*

π0

12/03/2009 4 R. Vértesi

Page 5: Zim ányi `09 Winter School  on Heavy Ion Physics

Signature: Particle multiplicity

Hagedorn-model Production of a light meson

TH~160 MeV

Hagedorn-temperature

Originally, η' mesons are rare:

In case of a possible mass drop: With a strongly reduced η' mass:

An enhancement of a factor of 50 at maximum Increased weight of strange states, rather 3 to 16

Consequence of the reduced mass:

An increased abundance of η' mesons12/03/2009 5 R. Vértesi

Page 6: Zim ányi `09 Winter School  on Heavy Ion Physics

The η' through Phase Transition

Hadronization η' meson production with a reduced mass,

thus with an increased multiplicity

Decoupling from non-Goldstonic matter Mean free path for annihilation is large Long lived

”Condensate” in the medium Low-pT η' mesons are unable to get on-shell in the vacuum Medium acts as a trap for low- pT η‘ mesons

As medium dissolves, the η's regain their original mass

The Return of the prodigal Goldstone boson. J. I. Kapusta, D. Kharzeev, L. D. McLerran Phys.Rev.D53:5028-5033,1996. arXiv:hep-ph/9507343

12/03/2009 6 R. Vértesi

Page 7: Zim ányi `09 Winter School  on Heavy Ion Physics

Channels of Observation

Leptonic decay Increased η'/π proportion in the low-pT range Excess in the ℓ+ℓ− spectrum under the ρ mass

η meson (BR=45%) Enhancement of η production BEC of charged pions

Sensitive to the sources of the pions

Direct measurement? Would be convincing, however, poor S/B ratio (π0→γγ)

12/03/2009 7 R. Vértesi

Page 8: Zim ányi `09 Winter School  on Heavy Ion Physics

10/14/2009

Discovered and still used in Astrophysics

Consider two plain vawes:

Bosons: symmetrization needed

Spectra:

Correlation:

Simplified picture: plain wave, no multiparticle-interactions, thermalization etc.

HBT effect (BEC)

k1 k2

x1

x2

1,2

S(x,k)

source

detector

12/03/2009 8 R. Vértesi

Page 9: Zim ányi `09 Winter School  on Heavy Ion Physics

Pions from QM freezeout Primordial (from phase transition) Fast decaying resonances Long-life resonances (ω,η,η',KS

0)

Correlation

Intercept

Correlation measurent ↔ λ*(mT) ↔ core−halo ratio

π± Correlations and the Core-Halo picture

Core

Halo

12/03/2009 9 R. Vértesi

Core: π±, K±, Λ, Σ, …

Halo: η’, η, ω, KS

Page 10: Zim ányi `09 Winter School  on Heavy Ion Physics

Simulating the Condensate Resonance ratios from different models

ALCOR, FRITIOF, Kaneta et al., Letessier et. al., Stachel et al., UrQMD.

η' enhancement:

Restored η' mass:

If , the η' can’t get on-shell;a M-B distribution is assumed:

Parameters From measurements T

FO = 177 MeV, <u

T> = 0.48

Conservative assumption TFO

η' =TFO

Tcond

=TFO

Hydrodynamical models α (related to the dimension of expansion)

Looked for: in-medium mass mη'

* inverse slope B-1

Spectra from decays using JETSET12/03/2009 10 R. Vértesi

Page 11: Zim ányi `09 Winter School  on Heavy Ion Physics

Data:NA44 ELab=200 GeV S+Pb

Resonances:FRITIOF

Earlier, less refinedmodeling of condensate

No sign of mass reduction

SPS data and simulation: No signal

Signal of partial U(A)(1) symmetry restoration from two pion Bose-Einstein correlationsT. Csörgő, D. Kharzeev,, S.E. Vance. e-Print: hep-ph/9910436

12/03/2009 11 R. Vértesi

NA44S+Pb data

mT (GeV)

Page 12: Zim ányi `09 Winter School  on Heavy Ion Physics

RHIC data Properties

Central Au+Au √sNN

= 200 GeV Mid-rapidity

PHENIX: |η|<0.36 STAR: |η|< 0.50 π+π+ correlation measurements λ*(mT)/λ*max

(different methods)

Data used in the analysis PHENIX Sinyukov 50% STAR Edgeworth expansion

(6th order, only even)

Shown for comparison purposes PHENIX preliminary STAR Gauss

12/03/2009 12 R. Vértesi

Page 13: Zim ányi `09 Winter School  on Heavy Ion Physics

Finding the most likely mass

Simulations all over the (B-1, m*) plain Altogether 17 x 1248 x 1000000 events simulated Here: Resonance ratios of Kaneta & Xu, arXiv:nucl-th/0405068

Mapping the confidence level Choose best λ*(mT)/λ*max fit

With the shown model: mη'*=530 MeV12/03/2009 13 R. Vértesi

Page 14: Zim ányi `09 Winter School  on Heavy Ion Physics

Calculations vs. Prediction

Theoretical region: Kapusta et al. arXiv:nucl-th/9507343

Sigma-contours from model calculations: either in agreement with theory, or slightly below

Different α expansion exponents: systematic uncertainity

12/03/2009 14 R. Vértesi

Page 15: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics and Results

Systematics Largest uncertainity: models for resonance ratios Modifying parameters in the widest reasonable range

−1/2 ≤ α ≤ +1/2 (1) 140 MeV ≤ T

cond ≤ 220 MeV

100 MeV ≤ TFO ≤ 177 MeV

Other systematics: y-cutoff, core-halo composition

Best estimate:

An upper boundary can be determined for the η’ mass: No description of data possible when m*

η’ > 730 MeV (An acceptable description means CL>0.1%)

12/03/2009 15 R. Vértesi

Page 16: Zim ányi `09 Winter School  on Heavy Ion Physics

Tcond=140 MeV

α=-1/2

Systematics – a Visual Summary

α=+1/2T

FO =

100 MeV

Tcond=220 MeV

Letessier et al.

α=0 Tcond=177 MeV

TFO=177 MeV

12/03/2009 16 R. Vértesi

Page 17: Zim ányi `09 Winter School  on Heavy Ion Physics

Dilepton Excess in CERES

Original motivation

Measurement

Model calculations

Excess in the range b/w the π and ρ mass

Recently: other explanation

but...

Invariant e+ e- pair yield measurements compared to hadronic model yields

e+ e- pair production in Pb - Au collisions at 158-GeV per nucleon. CERES cn. (G. Agakichiev et al.). Jun 2005. 39pp.

Eur.Phys.J.C41:475-513,2005. e-Print: nucl-ex/0506002

12/03/2009 17 R. Vértesi

Page 18: Zim ányi `09 Winter School  on Heavy Ion Physics

10/14/2009

Au+Au invariant e+ e- pair yield

Significant excess in PHENIX 200 GeV Au+Au measurements Not present in p+p data – in accordance with hadronic models Excess must be an effect of the hot, dense medium

Dilepton Excess in PHENIX

A. Adare et al. (PHENIX cn.)Phys.Lett.B670:313-320,2009.

S. Afanasiev et al. (PHENIX cn.) e-Print: arXiv:0706.3034

12/03/2009 18 R. Vértesi

Page 19: Zim ányi `09 Winter School  on Heavy Ion Physics

The η’ Spectrum

Left: Resonance ratios from Kaneta – Xu arXiv:nucl-th/0405068

An enhancement factor of ~24, mostly at low-pT

Breaks mT –scaling at low-pT

Possible explanation of the dilepton excess needs check!

12/03/2009 19 R. Vértesi

Page 20: Zim ányi `09 Winter School  on Heavy Ion Physics

Cross-check with dilepton spectrum needed

More λ* data at low pT is needed to reduce systematics

Revitalize interest in chiral symmetry restoration

K0

π− π+

K+

K− K0

η

η’*

π0- < 220 MeV

at the 99.9% confidence levelfrom PHENIX+STAR π+π+ correlation data + 6 models

m*η’ mη’

Conclusion

12/03/2009 20 R. Vértesi

Page 21: Zim ányi `09 Winter School  on Heavy Ion Physics

The End

Thank You for your attention

backup slides follow…

12/03/2009 21 R. Vértesi

Page 22: Zim ányi `09 Winter School  on Heavy Ion Physics

mT-scaling

pp

central

periph.

E. Shuryak, Prog.Part.Nucl.Phys.53:273-303,2004. 

12/03/2009 22 R. Vértesi

Page 23: Zim ányi `09 Winter School  on Heavy Ion Physics

η' mass: Fitted values

12/03/2009 23 R. Vértesi

Page 24: Zim ányi `09 Winter School  on Heavy Ion Physics

η' mass: Acceptability boundaries

12/03/2009 24 R. Vértesi

Page 25: Zim ányi `09 Winter School  on Heavy Ion Physics

Dilepton excess in details

Fig.26: Invariant mass spectrum of e+e- pairs compared to expectations from the model of hadron decays for p+p and for different Au+Au centrality classes.

Fig.29: e+e- pair invariant mass distributions in p + p (left) and minimum bias Au+Au collisions (right). The pT ranges are shown in the legend.

12/03/2009 25 R. Vértesi

Page 26: Zim ányi `09 Winter School  on Heavy Ion Physics

Resonances: Kaneta-Xu vs. RHIC

Statistical chemical freezeout model Central mid-η 200 GeV Au+Au Describes PHENIX hadron spektrum well

Kaneta & Xu, arXiv:nucl-th/0405068

12/03/2009 26 R. Vértesi

Page 27: Zim ányi `09 Winter School  on Heavy Ion Physics

Resonances:Letessier-Rafelski vs. RHIC

Statistical chemical freezeout model Central mid-η 200 GeV Au+Au

J.Letessier J.Rafelski, arXiv:nucl-th/0504028

12/03/2009 27 R. Vértesi

Page 28: Zim ányi `09 Winter School  on Heavy Ion Physics

Resonances:ALCOR vs. RHIC

Coalescence-model

η’/ η ratio has to be fixed from other models (Kaneta, here)

P. Levai, T.S. Biro, T. Csorgo, J. Zimanyi, hep-ph/0007247

12/03/2009 28 R. Vértesi

Page 29: Zim ányi `09 Winter School  on Heavy Ion Physics

Resonances:FRITIOF vs. RHIC

200 GeV mid-rapidity Au+Au simulation Note:Does not describe STAR data, neither the unified PHENIX+STAR

dataset. For PHENIX data only, it is consistent with mη’=958MeV.

B. Anderson et al., Nucl. Phys. B 281 (1987) 289.

12/03/2009 29 R. Vértesi

Page 30: Zim ányi `09 Winter School  on Heavy Ion Physics

Resonances:Stachel et al. vs. RHIC

Statistical chemical freezeout model Central mid-η 200 GeV Au+Au

J.Stachel et al., arXiv:nucl-th/9907090

12/03/2009 30 R. Vértesi

Page 31: Zim ányi `09 Winter School  on Heavy Ion Physics

Resonances:UrQMD vs. RHIC

200 GeV midrapidity

Au+Au, RHIC √sNN=200 GeV

J. P. Sullivan et al., Phys. Rev. Lett. 70 (1993) 3000

12/03/2009 31 R. Vértesi

Page 32: Zim ányi `09 Winter School  on Heavy Ion Physics

Rafelski vs. PHENIX

12/03/2009 32 R. Vértesi

Page 33: Zim ányi `09 Winter School  on Heavy Ion Physics

Rafelski vs. PHENIX & STAR

12/03/2009 33 R. Vértesi

Page 34: Zim ányi `09 Winter School  on Heavy Ion Physics

Rafelski vs. STAR

12/03/2009 34 R. Vértesi

Page 35: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics: Rafelski α=−1/2

12/03/2009 35 R. Vértesi

Page 36: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics: Rafelski α=0

12/03/2009 36 R. Vértesi

Page 37: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics: Rafelski α=+1/2

12/03/2009 37 R. Vértesi

Page 38: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics: Rafelski T’=140 MeV

12/03/2009 38 R. Vértesi

Page 39: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics: Rafelski T’=177 MeV

12/03/2009 39 R. Vértesi

Page 40: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics: Rafelski T’=220 MeV

12/03/2009 40 R. Vértesi

Page 41: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics: Rafelski TFO=100 MeV

12/03/2009 41 R. Vértesi

Page 42: Zim ányi `09 Winter School  on Heavy Ion Physics

Systematics: Rafelski TFO=177 MeV

12/03/2009 42 R. Vértesi