DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125...

38
Thermodynamics of Tropical Cyclogenesis 1 David J. Raymond New Mexico Tech Socorro, NM, USA May 23, 2011 1 This work supported by the US Office of Naval Research and National Science Foundation.

Transcript of DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125...

Page 1: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Thermodynamics of Tropical Cyclogenesis1

David J. Raymond

New Mexico TechSocorro, NM, USA

May 23, 2011

1This work supported by the US Office of Naval Research and NationalScience Foundation.

Page 2: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Collaborators

I Carlos LópezI Sharon SessionsI Saška Gjorgjievska

Page 3: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Flux Form of Vorticity Equation (Haynes and McIntyre 1987)

Vertical component of absolute vorticity:

∂ζz∂t

+ ∇h · Z + k̂ ·∇hθ ×∇hΠ = 0

Horizontal flux of vertical vorticity:

Z = Z 1 + Z 2 + Z f = vhζz − ζhvz + k̂ × F

Vertical component of baroclinic generation (ignore):

k̂ ·∇hθ ×∇hΠ ≈ 0

Page 4: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Circulation Tendency Equation

dt= −˛

vnζzdl +

˛ζnvzdl +

˛Ftdl

Γ =

ˆζzdA

n

t

A

Page 5: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Top and bottom-heavy mass flux profiles

strong downdrafts weak downdrafts

updraft and downdraft mass flux

Page 6: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Typhoon Nuri overview

120 125 130 135 140 145 150 155 160longitude (deg E)

0

5

10

15

20

25

30

lati

tude (

deg N

)

TWTDTSTY

Nuri track, sea surface temperature (C)

26

27

28

29

30

31

Page 7: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Nuri 1 (tropical wave)

10 m/s

143 144 145 146 147 148 149 150longitude (deg E)

11

12

13

14

15

16

17

18

lati

tude (

deg N

)

z = 1.2 km

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

143 144 145 146 147 148 149 150longitude (deg E)

11

12

13

14

15

16

17

18

lati

tude (

deg N

)

z = 5.0 km

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Nuri 1: relative winds, absolute vorticity (ks−1 )

Page 8: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Nuri 2 (tropical depression)

10 m/s

138 139 140 141 142 143longitude (deg E)

13

14

15

16

17

18

lati

tude (

deg N

)

z = 1.2 km

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

138 139 140 141 142 143longitude (deg E)

13

14

15

16

17

18

lati

tude (

deg N

)

z = 5.0 km

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Nuri 2: relative winds, absolute vorticity (ks−1 )

Page 9: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Nuri 1 vorticity budget

0 5 10 15 20 25

circulation (km2 /s)

0

4

8

12

16

heig

ht

(km

)

−30 −15 0 15 30

circ tend (km2 /s/day)

0

4

8

12

16

convergence

tilting

friction

net

−5 0 5 10 15

mass flux (109 kg/s)

0

4

8

12

16

Nuri 1

Page 10: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Nuri 2 vorticity budget

0 5 10 15 20 25

circulation (km2 /s)

0

4

8

12

16

heig

ht

(km

)

−30 −15 0 15 30

circ tend (km2 /s/day)

0

4

8

12

16

convergence

tilting

friction

net

0 5 10 15

mass flux (109 kg/s)

0

4

8

12

16

Nuri 2

Page 11: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Tropical wave TCS030 overview

120 125 130 135 140 145 150 155 160longitude (deg E)

0

5

10

15

20

25

30

lati

tude (

deg N

)

TW

TCS030 track, sea surface temperature (C)

26

27

28

29

30

31

Page 12: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

TCS030 (Weak tropical wave)

10 m/s

140 141 142 143 144 145 146 147longitude (deg E)

10

11

12

13

14

15

16

17

lati

tude (

deg N

)

z = 1.2 km

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

140 141 142 143 144 145 146 147longitude (deg E)

10

11

12

13

14

15

16

17

lati

tude (

deg N

)

z = 5.0 km

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

TCS030: relative winds, absolute vorticity (ks−1 )

Page 13: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

TCS030 vorticity budget

0 5 10 15 20 25

circulation (km2 /s)

0

4

8

12

16

heig

ht

(km

)

−30 −15 0 15 30

circ tend (km2 /s/day)

0

4

8

12

16

convergence

tilting

friction

net

−5 0 5 10 15

mass flux (109 kg/s)

0

4

8

12

16

TCS030

Page 14: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Summary 1

I Circulations spin up when the positive circulation tendency dueto the convergence of vorticity exceeds the negative tendencydue to friction.

I Top-heavy convective mass flux profiles generate mid-levelspinup.

I Bottom-heavy mass flux profiles generate low-level spinup.

Question: What controls the magnitude and shape of mass fluxprofiles?

Page 15: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Over the Pacific at dawn

Page 16: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Nice clouds

Page 17: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Rough ocean

Page 18: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Thermodynamic study of 5 Pacific systems

I Nuri (1 and 2) developing typhoonI TCS025 (1 and 2) strong waveI TCS030 weak waveI TCS037 developing midget tropical cycloneI Hagupit developing typhoon (very early stage)

Page 19: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Soundings in moist entropy form – TCS030

200 220 240 260 280 300 320moist entropy (J/K/kg)

0

2

4

6

8

10heig

ht

(km

)Mean Soundings

TCS030

Page 20: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Soundings in moist entropy form – Nuri1

200 220 240 260 280 300 320moist entropy (J/K/kg)

0

2

4

6

8

10heig

ht

(km

)Mean Soundings

TCS030

Nuri1

Page 21: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Soundings in moist entropy form – Nuri2

200 220 240 260 280 300 320moist entropy (J/K/kg)

0

2

4

6

8

10heig

ht

(km

)Mean Soundings

TCS030

Nuri1

Nuri2

Page 22: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Thermodynamic Effect of Vortices

Developing disturbanceWest Pacific wave

PV anomaly

warmPV anomaly

warmReed and Recker (1971)

cool

Page 23: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Rain and Mass Flux Profiles (Raymond and Sessions 2007)

­2 ­1 0 1 2

θ perturbation (K)

0

5000

10000

15000

20000

he

igh

t (m

)

unperturbed

δθ = ± 0.5 K

δθ = ± 1.0 K

δθ = ± 2.0 K

A

0 0.5 1

moisture perturbation (g/kg)

unperturbed

δr = 0.25 g/kg

δr = 0.5 g/kg

δr = 1.0 g/kg

B

Page 24: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Rain and Mass Flux Profiles (cont...)

5 10 15 20

imposed windspeed (m/s)

0

10

20

30

40

50

60

rain

ra

te (

kg

/m2/d

ay)

unperturbed

δθ = ± 2.0 K

δr=1.0 g/kg

A

5 10 15 20

imposed windspeed (m/s)

0

0.2

0.4

0.6

0.8

1

NG

MS

unperturbed

δθ = ± 2.0 K

δr = 1.0 g/kg

B

Page 25: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Rain and Mass Flux Profiles (cont...)

0 0.01 0.02 0.03

mass flux (kg/m2s)

0

5000

10000

15000

20000

he

igh

t (m

)

unperturbed

δθ = ± 0.5 K

δθ = ± 1.0 K

δθ = ± 2.0 K

vy=7m/s

A

0 0.01 0.02 0.03

mass flux (kg/m2s)

unperturbed

δr = 0.25 g/kg

δr = 0.5 g/kg

δr = 1.0 g/kg

vy=7m/s

B

Page 26: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Rain and vorticity convergenceWater budget in a control volume:

d [r ]

dt= − [∇h · (vhr)]− g(R − F rs)

Mixing ratio: r ; Rainfall rate: R ; Surface evaporation rate: F rs ;Area average: X ; Area average and pressure integral: [X ];Use to estimate rainfall rate (steady state):

R ≈ F rs − [∇h · (vhr)]

Boundary layer vorticity convergence and rainfall rate:

−∇h · (vhζz)bl

ζz= −C

[∇h · (vhr)]

W

Precipitable water: W

Page 27: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Rain and vorticity convergence observed

−0.3 0.0 0.3 0.6 0.9scaled moist conv (day−1 )

−0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

scale

d v

ort

conv (

day−1)

slope = 1.05

Page 28: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Mid-level vortex and low-level spinup

0.03 0.06 0.09 0.12 0.15mid-level vorticity (ks−1 )

−0.04

0.00

0.04

0.08

0.12

0.16

vte

nd

low

(ks−1day−1)

Page 29: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Summary 2

I A mid-level circulation provides a thermodynamic environmentwhich promotes bottom-heavy convective mass flux profilesand more intense rain.

I Intense rain is correlated with strong vorticity convergence.I These factors promote low-level spinup and consequent

formation of a warm-core cyclone.

Question: What limits mid-level vortices?

Page 30: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Clouds from G-V over Atlantic

Page 31: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Visible image of Hurricane Earl (2010)

Page 32: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

View from the hotel

Page 33: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Rain and Saturation Fraction (Raymond, Sessions, andFuchs 2007)

0 0.2 0.4 0.6 0.8 1

saturation fraction

300

290

280

270

260

250

240

230

220

210

200IR

brightn

ess tem

pera

ture

(K

)EPIC soundings

EPIC dropsondes

ECAC soundings

5

10

15

20

25E

PIC

P­3

radar ra

inra

te (m

m/d

)

Page 34: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Saturation Fraction and Moist Entropy

Saturation fraction (S):

S =[r ]

[r∗]=

[s − sD ]

[s∗ − sD ]

Approximate moist entropy (s) and saturated moist entropy (s∗):

s = CP ln(T/TF )− R ln(p/pR) + Lr/TF = sD + Lr/TF

s∗ = sD + Lr∗(sD , p)/TF

Moist entropy budget in a control volume:

d [s]

dt= − [∇h · (vhs)] + [G ] + g

(F es − F et

)Area average: X ; Area average and pressure integral: [X ];Irreversible generation: [G ]; Upward fluxes: F es − F et

Page 35: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Environmental injection of dry airNormalized Okubo-Weiss parameter (measure of rotation vs.horizontal strain; Dunkerton et al. 2009):

N =ζ2r − σ2

1 − σ22

ζ2r + σ2

1 + σ22

where

ζr =∂v∂x− ∂u∂y

σ1 =∂v∂x

+∂u∂y

σ2 =∂u∂x− ∂v∂y

Averaged over middle levels (3-5 km).

vorticity strain

Page 36: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Entropy tendency and Okubo-Weiss

0.3 0.5 0.7 0.9 1.1

normalized Okubo-Weiss

−1.8

−1.2

−0.6

0.0

0.6

ent

tend (

J/K

/m2

/s)

Page 37: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

Summary 3

I The entropy tendency should be a measure of futureintensification, since this tendency is related to the saturationfraction tendency, and hence the prospects for future rainfall.

I A small value of the normalized Okubo-Weiss parameter islikely to be correlated with the import of dry air via strainflow, and hence a negative entropy tendency.

I Entropy tendency and normalized Okubo-Weiss are wellcorrelated and the three systems undergoing intensificationhad positive entropy tendency and N > 0.8.

Page 38: DavidJ.Raymondkestrel.nmt.edu/~zeljka/downloadfiles/tswap/davep.pdf · TyphoonNurioverview 120 125 130 135 140 145 150 155 160 longitude (deg E) 0 5 10 15 20 25 30 latitude (deg N)

The NCAR Gulfstream-V aircraft in St. Croix