Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic...

37
Adiabatic response of open systems Yosi Avron Martin Fraas Gian Michele Graf December 17, 2015 Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 1 / 18

Transcript of Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic...

Page 1: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Adiabatic response of open systems

Yosi Avron Martin Fraas Gian Michele Graf

December 17, 2015

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 1 / 18

Page 2: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

QuestionAre topological phase protected form contact with the world?

Choosing:

Observables and states=⇒ immunity

Ω

system

bath

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 2 / 18

Page 3: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

QuestionAre topological phase protected form contact with the world?

Choosing:

Observables and states=⇒ immunity

Ω

system

bath

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 2 / 18

Page 4: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Ambiguity: Which transport coefficients?Open vs. isolated systems

Vanchor Ffriction

Fspring

F as response to V .Which F?

Open systems

Ffriction = −ν V

Fspring = ν V

FTotal = P = 0 V

Isolated system

Ffriction = 0

Fspring = FTotal

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 3 / 18

Page 5: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Ambiguity: Which transport coefficients?Open vs. isolated systems

Vanchor Ffriction

Fspring

F as response to V .Which F?

Open systems

Ffriction = −ν V

Fspring = ν V

FTotal = P = 0 V

Isolated system

Ffriction = 0

Fspring = FTotal

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 3 / 18

Page 6: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Sources of ambiguitiesTensor product & Observables

Bath?System

Ambiguous tensor decomposition

Hsystem ⊗Hbath = H′system ⊗H′bath

Ambiguous observables of sub-system

H = Hs ⊗ 1 + Hinteraction + 1⊗ Hb

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 4 / 18

Page 7: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Sources of ambiguitiesTensor product & Observables

Bath?System

Ambiguous tensor decomposition

Hsystem ⊗Hbath = H′system ⊗H′bath

Ambiguous observables of sub-system

H = Hs ⊗ 1 + Hinteraction + 1⊗ Hb

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 4 / 18

Page 8: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Sources of ambiguitiesTensor product & Observables

Bath?System

Ambiguous tensor decomposition

Hsystem ⊗Hbath = H′system ⊗H′bath

Ambiguous observables of sub-system

H = Hs ⊗ 1 + Hinteraction + 1⊗ Hb

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 4 / 18

Page 9: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Ambiguity in fluxes (aka rates aka currents)

Bath

SystemIleft→right

Isystem→bath

Q =∑

j<0 a∗j aj

Q ⊗ 1Ileft→right = i [Hs ,Q]

ITotal = i [Hs+b,Q ⊗ 1]

Formulate an ITotal as a property of the system

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 5 / 18

Page 10: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Ambiguity in fluxes (aka rates aka currents)

Bath

SystemIleft→right

Isystem→bath

Q =∑

j<0 a∗j aj

Q ⊗ 1Ileft→right = i [Hs ,Q]

ITotal = i [Hs+b,Q ⊗ 1]

Formulate an ITotal as a property of the system

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 5 / 18

Page 11: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Krauss maps

Krauss maps

|ψ〉s+B (0) |ψ〉s+B (t)Unitary

Kraussρs(t)ρs(0)

Trb Trb

Kraus: Positivity and Trace preserving

ρ 7→∑

KjρK†j ,

∑K †j Kj = 1

KρK † = (K√ρ)(K

√ρ)† ≥ 0

Tr ρ 7→∑

Tr KjρK†j = Tr

(∑K †j Kj

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 6 / 18

Page 12: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Krauss maps

Krauss maps

|ψ〉s+B (0) |ψ〉s+B (t)Unitary

Kraussρs(t)ρs(0)

Trb Trb

Kraus: Positivity and Trace preserving

ρ 7→∑

KjρK†j ,

∑K †j Kj = 1

KρK † = (K√ρ)(K

√ρ)† ≥ 0

Tr ρ 7→∑

Tr KjρK†j = Tr

(∑K †j Kj

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 6 / 18

Page 13: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Generators of Krauss maps

ρ 7→ ρ+ δt Lρ︸ ︷︷ ︸generator

ρ 7→∑

KjρK†j︸ ︷︷ ︸

positive

K0 = 1 + δt Γ0, Kj =√δt Γj ,

∑K †j Kj = 1

trace preserving: Γ0 + Γ†0 +∑

Γ†j Γj = 0

Solve for Γ0: Γ0 = −iH − 12

∑Γ†j Γj

Lindbladians

L ρ = −i [H, ρ] +Dρ

Dρ =∑

2ΓjρΓ†j − Γ†j Γjρ− ρΓ†j Γj

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 7 / 18

Page 14: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Generators of Krauss maps

ρ 7→ ρ+ δt Lρ︸ ︷︷ ︸generator

ρ 7→∑

KjρK†j︸ ︷︷ ︸

positive

K0 = 1 + δt Γ0, Kj =√δt Γj ,

∑K †j Kj = 1

trace preserving: Γ0 + Γ†0 +∑

Γ†j Γj = 0

Solve for Γ0: Γ0 = −iH − 12

∑Γ†j Γj

Lindbladians

L ρ = −i [H, ρ] +Dρ

Dρ =∑

2ΓjρΓ†j − Γ†j Γjρ− ρΓ†j Γj

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 7 / 18

Page 15: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Generators of Krauss maps

ρ 7→ ρ+ δt Lρ︸ ︷︷ ︸generator

ρ 7→∑

KjρK†j︸ ︷︷ ︸

positive

K0 = 1 + δt Γ0, Kj =√δt Γj ,

∑K †j Kj = 1

trace preserving: Γ0 + Γ†0 +∑

Γ†j Γj = 0

Solve for Γ0: Γ0 = −iH − 12

∑Γ†j Γj

Lindbladians

L ρ = −i [H, ρ] +Dρ

Dρ =∑

2ΓjρΓ†j − Γ†j Γjρ− ρΓ†j Γj

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 7 / 18

Page 16: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Schrodinger and HeisenbergStates and Observables

Adjoint (Banach space)

Tr(XAρ

)= Tr

((A∗X )ρ

) Observables

‖X‖ <∞

States

Trρ <∞

L ρ = −i [H, ρ] + 2ΓρΓ† − Γ†Γρ− ρΓ†Γ

L∗ X = +i [H,X ] + [Γ†,X ]Γ + Γ†[X , Γ]

Schrodinger and Heisenberg

ρ = Lρ, X = L∗X

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 8 / 18

Page 17: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Schrodinger and HeisenbergStates and Observables

Adjoint (Banach space)

Tr(XAρ

)= Tr

((A∗X )ρ

) Observables

‖X‖ <∞

States

Trρ <∞

L ρ = −i [H, ρ] + 2ΓρΓ† − Γ†Γρ− ρΓ†Γ

L∗ X = +i [H,X ] + [Γ†,X ]Γ + Γ†[X , Γ]

Schrodinger and Heisenberg

ρ = Lρ, X = L∗X

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 8 / 18

Page 18: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Schrodinger and HeisenbergStates and Observables

Adjoint (Banach space)

Tr(XAρ

)= Tr

((A∗X )ρ

) Observables

‖X‖ <∞

States

Trρ <∞

L ρ = −i [H, ρ] + 2ΓρΓ† − Γ†Γρ− ρΓ†Γ

L∗ X = +i [H,X ] + [Γ†,X ]Γ + Γ†[X , Γ]

Schrodinger and Heisenberg

ρ = Lρ, X = L∗X

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 8 / 18

Page 19: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Schrodinger and HeisenbergStates and Observables

Adjoint (Banach space)

Tr(XAρ

)= Tr

((A∗X )ρ

) Observables

‖X‖ <∞

States

Trρ <∞

L ρ = −i [H, ρ] + 2ΓρΓ† − Γ†Γρ− ρΓ†Γ

L∗ X = +i [H,X ] + [Γ†,X ]Γ + Γ†[X , Γ]

Schrodinger and Heisenberg

ρ = Lρ, X = L∗X

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 8 / 18

Page 20: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Fluxes (aka rates) L∗QTwo notions of currents in open systems

Bath

SystemIleft→right

Isystem→bath

Q

Left-right current

Ileft→right = i [H,Q] = i Ad(H)Q

Flux: Total current

ITotal = Q = L∗Q

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18

Page 21: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Fluxes (aka rates) L∗QTwo notions of currents in open systems

Bath

SystemIleft→right

Isystem→bath

Q

Left-right current

Ileft→right = i [H,Q] = i Ad(H)Q

Flux: Total current

ITotal = Q = L∗Q

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18

Page 22: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Fluxes (aka rates) L∗QTwo notions of currents in open systems

Bath

SystemIleft→right

Isystem→bath

Q

Left-right current

Ileft→right = i [H,Q] = i Ad(H)Q

Flux: Total current

ITotal = Q = L∗Q

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18

Page 23: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Lindbladians

Loop currents are not rates

Fluxes vanish in stationary states:

Iloop = − ∂∂φH 6= L

∗Q

φ

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 10 / 18

Page 24: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Stationary states

Stationary states of LTowards adiabatic theory of fluxes

L∗1 = 0 =⇒ 0 ∈Spectrum(L)

σ1σ3

σ2

σ1

generic KerLKerL

If dimH <∞ dim Ker L=1 generically

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 11 / 18

Page 25: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Stationary states

Stationary states of LTowards adiabatic theory of fluxes

L∗1 = 0 =⇒ 0 ∈Spectrum(L)

σ1σ3

σ2

σ1

generic KerLKerL

If dimH <∞ dim Ker L=1 generically

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 11 / 18

Page 26: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Fluxes vanish in stationary states

Fluxes vanish in stationary states:

Tr Q σ = 0

Tr Qσ = Tr (L∗Q)σ = Tr QLσ = 0

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 12 / 18

Page 27: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Adiabatic expansion for fluxesSlow manifold

Adiabatic evolutions

ερ = Ltρ, ε 1

Adiabatic expansion

ρt = σt +εL−1σt +. . .

σ0

σt

ρt = ρ0 + ερ1 + . . .

ε0 : Ltρ0 = 0 =⇒ ρ0 = σt

σt instantaneous stationary state

ε1 : σt = Ltρ1

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 13 / 18

Page 28: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Adiabatic expansion for fluxesSlow manifold

Adiabatic evolutions

ερ = Ltρ, ε 1

Adiabatic expansion

ρt = σt +εL−1σt +. . .

σ0

σt

ρt = ρ0 + ερ1 + . . .

ε0 : Ltρ0 = 0 =⇒ ρ0 = σt

σt instantaneous stationary state

ε1 : σt = Ltρ1

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 13 / 18

Page 29: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Adiabatic expansion for fluxesSlow manifold

Adiabatic evolutions

ερ = Ltρ, ε 1

Adiabatic expansion

ρt = σt +εL−1σt +. . .

σ0

σt

ρt = ρ0 + ερ1 + . . .

ε0 : Ltρ0 = 0 =⇒ ρ0 = σt

σt instantaneous stationary state

ε1 : σt = Ltρ1

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 13 / 18

Page 30: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Adiabatic expansion for fluxesSlow manifold

Adiabatic evolutions

ερ = Ltρ, ε 1

Adiabatic expansion

ρt = σt +εL−1σt +. . .

σ0

σt

ρt = ρ0 + ερ1 + . . .

ε0 : Ltρ0 = 0 =⇒ ρ0 = σt

σt instantaneous stationary state

ε1 : σt = Ltρ1

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 13 / 18

Page 31: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Adiabatic expansion for fluxesSlow manifold

Adiabatic evolutions

ερ = Ltρ, ε 1

Adiabatic expansion

ρt = σt +εL−1σt +. . .

σ0

σt

ρt = ρ0 + ερ1 + . . .

ε0 : Ltρ0 = 0 =⇒ ρ0 = σt

σt instantaneous stationary state

ε1 : σt = Ltρ1

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 13 / 18

Page 32: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Q in adiabatically evolving stateNo need to invert L

The magic

Tr Q ρt ≈ Tr Qσt

ρ = σt + εL−1σt + . . .

Ltρt = εLL−1σ + · · · ≈ εσt

Tr Qρt = 1εTr L

∗Qρt = Tr QLtρt ≈ Tr Qσt

The irrelevant dynamics

Adiabatic fluxes oblivious to L. Only care about σ

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 14 / 18

Page 33: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Q in adiabatically evolving stateNo need to invert L

The magic

Tr Q ρt ≈ Tr Qσt

ρ = σt + εL−1σt + . . .

Ltρt = εLL−1σ + · · · ≈ εσt

Tr Qρt = 1εTr L

∗Qρt = Tr QLtρt ≈ Tr Qσt

The irrelevant dynamics

Adiabatic fluxes oblivious to L. Only care about σ

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 14 / 18

Page 34: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Sharing stationary states.

Sharing instantaneous stationary states

KerLt = Ker(Ad Ht)

Example: D = γAd2(H)

σ

photon

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 15 / 18

Page 35: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Geometry of transportTransport coefficients

φ control plane σ = (∂µσ) φµ

Tr Qρt︸ ︷︷ ︸response

≈ Tr (Q∂µσ) φµ︸︷︷︸driving

Transport coefficient

Fµ = Tr (Q∂µσ)

Oblivious to L, cares bout σ

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 16 / 18

Page 36: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Transport coefficients & Adiabatic curvature

‘U(φ) = e iQµφµ

σ(φ) = U(φ)σU∗(φ)

∂µσ = i [Qµ, σ]

Transport coefficients

Fµν = iTr [Qµ,Qν ]σ

If σ projections

Fmuν = i Tr σ[∂µσ, ∂νσ]

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 17 / 18

Page 37: Yosi Avron Martin Fraas Gian Michele Graf …Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 9 / 18 Lindbladians Loop currents are

Fluxes

Conclusions and OverviewViews of the QHE

Macroscopic

L∗Q = ∂∂AH

Index=ChernGap condition?

A. Fraas and Graf, JSP(2012) arxiv1202.5750

φ1φ2

Multiply connected

∂∂AH

ChernDissipation: Kahler geometry

A. Fraas, Kenneth and Graf,NJP (2011) arxiv1008.4079

Yosi Avron, Martin Fraas, Gian Michele Graf Adiabatic response of open systems December 17, 2015 18 / 18