xxx Mooring forces and ship behaviour in navigation locks
Embed Size (px)
Transcript of xxx Mooring forces and ship behaviour in navigation locks

www.pianc.orgwww.pianc.org
xxx
1
Mooring forces and ship behaviourin navigation locks
Tom De Mulder
Flemish AuthoritiesMobility and Public Works Department
Flanders Hydraulics ResearchAntwerp, Belgium
www.pianc.orgwww.pianc.org
Hydraulic design of F/E system
2
• Limit F/E time
• Respect hawser force criterion
a.o.:
�limit ‘turbulence’
�prevent line damage/break
�limit ship motion
� safety and comfort
� objective and subjective

www.pianc.orgwww.pianc.org
Hawser force criterion
3
Water
Vessel
Lock
Positioning system
Objective:displacements,forces,slopes,…
Subjective:captain,pilot,lockmaster,…
www.pianc.orgwww.pianc.org
Hawser force criterion
4
DEFINITION
VERIFICATION
VALIDATION
CRITERION

www.pianc.orgwww.pianc.org
Hawser force criterion
5
Water
Vessel
Lock
Positioning system
Classical approach
Definition: hydrodyn. force < threshold
Verification: scale modelValidation: operational
www.pianc.orgwww.pianc.org
Hawser force criterion
6
Innovative approaches ?
Pandora opening the box (J.W. Waterhouse, 1896)

www.pianc.orgwww.pianc.org
Hawser force criterion
7
ftion (ship size)
Innovative definitionsof threshold ?
ftion (bollard type)
ftion (mooring line characteristics)
www.pianc.orgwww.pianc.org
Hawser force criterion
8
Water
Vessel
Lock
Positioning system
Innovative approachThreshold=f tion ( positioning system )

www.pianc.orgwww.pianc.org
Hawser force criterion
9
Threshold for hydrodynamic force
norientatio line,
factorion magnificat dynamic
.t.factor w.rsafety
strength tensileminimum
.
)cos()cos(threshold
lines mooring
====
= ∑
ii
m
us
u
ms
iiu
f
Tf
T
ff
T
φθ
φθ
massspring
shiphawser
cf. H.-W. Partenscky (1986) ; A. Vrijburcht (1994) ; T. De Mulder (2007)
www.pianc.orgwww.pianc.org
Hawser force criterion
10
Threshold for longitudinal hydrodynamic force
A. Vrijburcht (1994) ; Rijkswaterstaat (2000)
inland navigation

www.pianc.orgwww.pianc.org
Hawser force criterion
11
Thresholds for hydrodynamic forces/moments
A. Vrijburcht (1977)
long. forces of 0.10 à 0.20‰
ocean-goingvessels120,000 DWT
pre-tension
www.pianc.orgwww.pianc.org
Hawser force criterion
12
Validation: Hydrostatic force ~ water surface slope
Measurements (FHR/APA, 2007) in Berendrecht lock (L x W=500m x 68m)
-0.60
-0.50
-0.40
-0.30
-0.20
-0.10
0.00
+0.10
+0.20
+0.30
+0.40
+0.50
+0.60
0 120 240 360 480 600 720 840 960 1080
time [s]
long
itudi
nal w
ater
sur
face
slo
pe [‰
]
0.0
+0.5
+1.0
+1.5
+2.0
+2.5
+3.0
+3.5
+4.0
+4.5
+5.0
+5.5
+6.0
wat
er le
vel [
m T
AW
]
water surface slope north 1-5
water surface slope south 1-5
water surface slope north 2-4
water surface slope south 2-4
water level
long. slope of +0.50 ‰
long. slope of -0.35 ‰

www.pianc.orgwww.pianc.org
Hawser force criterion
13
SCALE MODELS
NUMERICAL MODELS
IN SITU MEASUREMENTS
Innovativeverification tools ?
www.pianc.orgwww.pianc.org
Hawser force criterion
14
Numerical tools for verification of criterion
1D/2D Shallow Water Equations
3D Reynolds-Averaged Navier-Stokes (Computational Fluid Dynamics)
+ Fluid Structure Interaction (optional)
CPP/CNR/FHR/Modelys (2007)

www.pianc.orgwww.pianc.org
Hawser force criterion
15
Numerical tools for verification of criterion
1D/2D Shallow Water Equations
3D Reynolds-Averaged Navier-Stokes (Computational Fluid Dynamics)
+ Fluid Structure Interaction (optional)
www.pianc.orgwww.pianc.org
Hawser force criterion
16
Numerical tools for verification of criterion
• Longitudinal forces / slopes = ±OK
• Transversal forces / slopes ?!
Comparison hydrostatic force numerical model - scal e model
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 1920 2040 2160 2280 2400
Time [s]
Hyd
rost
atic
For
ce [‰
]
0.0
1.5
3.0
4.5
6.0
7.5
9.0
10.5
12.0
13.5
15.0
Wat
er le
vel [
m T
AW
]
Hydrostatic force - Scale model
Hydrostatic Force - Numerical model (parametrisatio n 1)
Hydrostatic Force - Numerical model (parametrisatio n 2)
Water level - Scale model
Water level - Numerical model
parametrisation of direct effect filling jets ?

www.pianc.orgwww.pianc.org
Mooring forces and ship behaviour
17
Water
Vessel
Lock
Positioning system
Numerical modeling ofwhole system ?:
•Hydrodynamic forces•Mooring line forces•Ship motion
www.pianc.orgwww.pianc.org
Mooring forces and ship behaviour
18
Daidalos and Ikaros (C.P. Landon, 1799)
Numerical modeling of whole system ?

www.pianc.orgwww.pianc.org
Mooring forces and ship behaviour
19
• Ship at (off-shore or port) terminal exposed to wind waves
Numerical modeling of whole system ?
• Application to ship moored in (shallow and confined)
navigation lock !?
www.pianc.orgwww.pianc.org
Mooring forces and ship behaviour
20
Numerical modeling of whole system ?
CPP/FHR/Univ.Gent (2007)

www.pianc.orgwww.pianc.org
Mooring forces and ship behaviour
21
Numerical modeling of whole system
• Large number of (often uncertain) parameters !?
• Results sensitive to choice of (some) parameters !?
• Computational effort !?
www.pianc.orgwww.pianc.org
Ship behaviour sailing in/out lock
22
numerical modeling (without/with density currents)!?
CPP/FHR (2008)
integration in ship manoeuvrability simulator !?

www.pianc.orgwww.pianc.org
Mooring forces and ship behaviour
23
• Notwithstanding numerous innovations…
• …still not fully understood
• More efforts needed for in situ observations/measurements:
� validation data for (more or less sophisticated) models
� above all for gaining insight !!!
www.pianc.orgwww.pianc.org
Mooring forces and ship behaviour
24