XAS: X-ray Absorption Spectroscopy - University of...

26
1 1 XAS: X-ray Absorption Spectroscopy Hwo-Shuenn Sheu [email protected] NSRRC, Taiwan Malaya University, 2011/12/14-5 2 outline Basic principles for XAS Experimental setup for XAS Applications

Transcript of XAS: X-ray Absorption Spectroscopy - University of...

1

1

XAS: X-ray AbsorptionSpectroscopy

Hwo-Shuenn Sheu

[email protected], Taiwan

Malaya University, 2011/12/14-5

2

outline

•Basic principles for XAS•Experimental setup for XAS•Applications

2

3

A

bsor

ptio

n

Photon energy(eV)

The X-ray Absorption Coefficient: μ

I = I0e−μt

4

X-ray Absorption

3

5

Why need SR X-ray sources?

6

**

*

RgDsMtHsBhSgDbRfLrRaFr

RnAtPoBiPbTlHgAuPtIrOsReWTaHfLuBaCs

XeITeSbSnInCdAgPdRhRuTcMoNbZrYSrRb

KrBrSeAsGeGaZnCuNiCoFeMnCrVTiScCaK

ArClSPSiAlMgNa

NeFONCBBeLi

HeH

**

*

NoMdFmEsCfBkCmAmPuNpUPaThAc

YbTmErHoDyTbGdEuSmPmNdPrCeLa

XAS accessible elements

XANES only; EXAFS hardish; K-edgeEXAFS; L3-edge EXAFS; L3/K-edgeEXAFS

26

4

7

X-ray Absorption Basic Principles:

•NEXAFS: near edge x-ray absorptionfine stuture

•XANES: x-ray absorption near edgespectroscopy

•EXAFS: extended x-ray absorption finestructureEXAFS

XANES

x

X-ray photon energy (keV)

-Ge0.0

0.4

0.8

1.2

11 11.5 12

Pre-edge

-20 –50eV

50 –1000eV

8

X-ray absorption spectroscopy

5

9

The interference of the outgoing and backscatteredphotoelectron wave

0.0

0.4

0.8

1.2

11 11.5 12

10

From Matthew Newville

6

11

From Matthew Newville

12

From Matthew Newville

7

13

Excursion: Wave-particle dualism

14

The EXAFS formula: quantitative information

8

15

From Matthew Newville

16

Structure parameters extracted from EXAFS

R

N

Z

9

17

Experimental setup for XAS

tII

x 0lnTransmission mode

Fluorescence mode x = If / I0

18

XAS Beamline (BL17C1) at NSRRC

I0It

Iref

sample

Dr. Jyh Fu Lee

10

19

Fluorescent (Lytle & 13 element array) detector

20

Transmission mode (a) and fluorescent mode (b)

11

21

Applications

22

12

23

414 415

Double excitations

(c)

(c) Double excitations in the N2 spectrum Rydberg associated to the N 1s1g* transition.

(a)

400 401 402

N 1s1g*

(a) 8 vibrational levels observed in the absorpttion spectrum: N 1s1g*

Abs

orpt

ion

Inte

nsity

(arb

.Uni

ts)

406 407 408 409 410Photon Energy (eV)

(b)N 1sRydberg series

1

3

2

4

3

56

78

9

10

1112 13

(b) N 1sRydberg series

K-shell photoabsorption of N2 moleculeC.T. Chen and F. Sette, Phys. Rev. A 40 (1989)

K-shell photoabsorption of gas-phase N2

Abs

orpt

ion

Inte

nsity

(arb

.uni

ts)

N 1s 1g*

N 1s Rydberg series

Doubleexcitations

Shaperesonance

x10

400 405 410 415 420Photon energy (eV)

24

XANESChemical information: oxidation state

Oxidation Numbers (formalvalences)I Cu2OII CuOIII KCuO2

Higher transitions energy areexpected for higher valencestates.

KCuO2

CuOCu2O

Cu

E (eV)

8970 89900

0.5

1

Y-Ba-Cu-O

(J.B. Boyce et al. Phys. Rev. B 1987)

13

25

Pt L3 and L2 edge XANES

26

“White line”reflects the d-orbital occupancy

14

27

“White line”reflects oxidation state

Higher oxidation state

More empty d-orbitals

More intense white line

28

“Pre edge”reflect local coordination symmetry

Td

Oh

(tetrahedral)

(tetrahedral)

(spinel)

(octahedral)

(octahedral)

Co K-edge

15

29

EXAFS of LiCoO2 powder

30

EXAFS of LiCoO2 powder

16

31

EXAFS of LiCoO2 powder

32

EXAFS of LiCoO2 during charging cycled

Staticordering

Thermalvibration

17

33

Use EXAFS to probe coordination environment:Na(Co0.99Mn0.01)O2

Similar EXAFSspectrum indicateMn and Co are insimilar chemicalenvironment.

34

Ru/Cu core shell structure characterization

Ru/SiO2

Ru-Cu/SiO2

18

35

Ru/Cu core shell structure characterization

Cu/SiO2

Cu-Ru/SiO2

36

Ru/Cu core shell structure characterization

Fresh FreshOxidized Oxidized

Ru Cu

19

37

High pressure x-ray absorption spectroscopy

38

Pressure-induced structural distortion of TbMnO3: Acombined XRD and XAS study

Physical Review B 79, 165110 2009

XRD data and the enhanced intensity of the whiteline and the shifted absorption threshold of Mn K-edge spectra enabled observation of a reducedlocal Jahn-Teller distortion of Mn sites within MnO6octahedra in TbMnO3 with increasing pressure.These provide spectral evidence for pressure-induced bandwidth broadening for mangnites.

a

b1.889Å

2.243Å

145.7 º

Mn(1)

Mn(2)

Mn(1)

Mn(2)

J`

J

20

39

Horse tail hair has beenmeasured to grow between 390and 1260 micrometers per day(compared to ca. 330 micrometersfor human head hair).[7] Thegrowth of mane hair may bewithin this range, in which case a500 micrometer segmentwould correspond to betweenapproximately 10–30 hours ofgrowth.

40

Determination of Arsenic Poisoning and Metabolism in Hair bySynchrotron Radiation: The Case of Phar Lap**

Ivan M. Kempson* and Dermot A. Henry Angew. Chem. Int. Ed. 2010, 49, 4237 –4240

21

41

Photo-Induced Magnetization in Co-Fe Prussian Blue Magnets

•Structural disorder dictated by

composition/processing

•PIM initially observed in

K0.2Co1.4[Fe(CN)6]·6.9H2O

O.Sato et al., Science 272, 704 (1996)

- Ferrimagnetic ordering below ~16 K

- Magnetization increase obtained by red light

- Photoinduced state has lifetime >10 5 s at low T

- Effect reversed by blue light, heating

K+ is interstitial

Fe

Co

C

N

Defect(missing Fe)

KxCoy[Fe(CN)6]˙zH2O

42

Photoinduced magnetismin

RbjCok[Fe(CN)6]l.nH2O

DiamagneticFeII-CN-CoIII

FerrimagneticFeIII-CN-CoII

Electron transfer andspin crossover

h

DiamagneticFeII-CN-CoIII

FerrimagneticFeIII-CN-CoII

Electron transfer andspin crossover

h

-10 0 10 20 30 40 50-10

-5

0

5

10

Mag

net

izat

ion

Ch

ang

e(x

105

emu

-G)

Magnetic fieldparallel

Magnetic fieldperpendicular

Magnetic fieldparallel

Magnetic fieldperpendicular

Lig

ht

Off

Light On

Time (min)

-10 0 10 20 30 40 50-10

-5

0

5

10

Mag

net

izat

ion

Ch

ang

e(x

105

emu

-G)

Magnetic fieldparallel

Magnetic fieldperpendicular

Magnetic fieldparallel

Magnetic fieldperpendicular

Lig

ht

Off

Light On

Time (min)

The magnetism of a nanoscale film of amolecule-based magnet is controlled byboth light and orientation.

RbjCok[Fe(CN)6]l.nH2O

x5

22

43

XRD and XANES of KxCoy[Fe(CN)6]Synthesized in Various Concentration of KCl

14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0

0.0

5.0x103

1.0x104

1.5x104

2.0x104

0 M KCl

0.1 M KCl

0.5 M KCl

1.0 M KCl

Cou

nts

(a.u

.)

2(degree)

(2 0 0) reflection

7700 7710 7720 7730 7740 7750 7760 7770 7780

0

1

2

3

4

1M KCl

0.5M KCl

0.1M KCl

0M KCl

Abs

orpt

ion

(a.u

.)

Energy (eV)

XANES of Co K-edge

44

X-ray Powder Diffraction of KxCoy[Fe(CN) 6]Synthesized in 0.1 M KCl Solution

10 20 30 40 50 60 70 80 90

-2000

0

2000

4000

6000

8000

10000

120005/13/00

Space group: F m 3 mPI : a=10.2787(1)PII : a= 9.9851(6)wRp=0.050Rp=0.033X=0.8529

PI : 1.987(5) 1.140 2.012(5)PII: 1.86(3) 1.140 1.996(3)

Co N C Fe

coun

ts(a

.u.)

2(degree)

23

45

Water- desorption of KxCoy[Fe(CN)6].nH2OXANES of Co K-edge

7700 7710 7720 7730 7740 7750 77600.0

0.5

1.0

1.5

2.0

Pre-edge14K to RT in Vacuum

14K to RT then in air

10-3 torr (30min)

RT in air

Abs

orpt

ion

(a.u

.)

Energy (eV)

vacuum

7700 7710 7720 7730 7740 7750

0.5

1.0

1.5

2.0

2.5Co K-edge25 C

45 C55 C65 C75 C85 C95 C

105 C125 C

Abs

orpt

ion

Energy (eV)

Heating

7700 7710 7720 7730 7740 7750 77600.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

7%11%18%19%32%42%

Abs

orpt

ion

Energy (eV)

Humidity

46

Lytle Detector

APD Cryostat

Xe Lamp

Light irradiation of Co, Fe Prussian Blue magnets

24

47

XANES of Co K-edge: In-situ Xe-lamp Red light(650±40nm) illuminated at 15K

• The Co 3+ become Co 2+

during red lightillumination at 15K andsaturation in 20 min.

• The K-edge of Fe alsoshow significant changeduring the irradiation.

7700 7710 7720 7730 7740 7750 77600.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co-Kedge

0 min1 min

4.5 min11 min20 min27 min30 min

Abs

orpt

ion

Energy (eV)

7100 7110 7120 7130 7140 7150

0.00

0.05

0.10

0.15

0.20

0 min38 min42 min45 min

7129.0 7129.5 7130.0 7130.5 7131.0 7131.5 7132.0 7132.5 7133.00.160

0.165

0.170

0.175

0.180

Fe K-edge

48

Yu Wang, et al J. Am. Chem. Soc. 2000, 122(24), 5742-5747

X-ray Absorption Spectroscopic Studies on Light-InducedExcited Spin State Trapping of an Fe(II) Complex

25

49

X-ray Absorption Spectroscopic Studies on Light-InducedExcited Spin State Trapping of an Fe(II) Complex

K-edge L-edge

50

X-ray Absorption Spectroscopic Studies on Light-InducedExcited Spin State Trapping of an Fe(II) Complex

26

51

X-ray Absorption Spectroscopic Studies on Light-InducedExcited Spin State Trapping of an Fe(II) Complex

52

Acknowledgement

•Prof. Yu Wang ( NTU)•Prof. Bing-Joe Hwang (NTUST)•Dr. Jyh-Fu Lee (NSRRC)•Dr. Ting-Shan Chan (NSRRC)•Dr. Jin-Ming Chen (NSRRC)

Thank you for your attention!