X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

43
X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm

Transcript of X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Page 1: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

X-ray and γ-ray polarimetry

Stanislav TashenovKTH Stockholm

Page 2: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

OutlineOutlineDefinitions

Photon Polarimetry - Short Overview

Principle – Klein-Nishina formulaPixel Detector – coincident technique

Experimental study of the polarization of Radiative Recombination

From experimental setup till results

Summary

Compton Polarimetry of hard X-rays

New developments of Compton polarimeters for “low” energies (few 100 keV)

Extension of Compton polarimetry to higher energies, tracking (till few 10 MeV)

Compton circular polarimetry

Other types of polarimeters

PhotoelectricPair productionCrystalline

Page 3: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

What is photon polarization?Classical: polarization of electromagnetic waves

linear:

Quantum Mechanical: photon helicity

112

1sincos

ii

yx eeeee

S S

λ = 1 λ = -1

circular:

λ = 1 λ = -1

112

1 xe

112

iey

Linear polarization – superposition of states with opposite helicities

Page 4: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

What is partial photon polarization?

Mixed state is described by a density matrix:

Linear polarization components:

Circular:

polarization ellipse

Stokes parameters

Page 5: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Rayleigh (elastic) scattering

Wollaston and otherprisms

Photon polarimetry & imaging

energy, ev

1 1e4 1e510 100 1e30.1

Birefringence effect

Linear dichroism

LCD

IR visible light UV soft X-ray X-ray hard X-ray gamma →

Bragg reflection

Photoabsorption

x-ray optics

Micropattern gascounters

Thomson scattering

CCD cameras

Segmented solidstate detectors

Chandra X-ray image of Crab Nebula

and Compton scattering

Page 6: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Photon polarimetry & imaging

energy, ev

Page 7: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Photon polarimetry & imaging

energy, ev

1e4 1e5 1e6 1e7 1e8 1e9

IR visible light UV soft X-ray X-ray hard X-ray gamma →

Photoabsorption

Thomson scattering

CCD cameras

Segmented solidstate detectors

and Compton scattering

Pair production

Birefringencein CPP

AGATA,GRETA

AdvancedComptonTelescope

Page 8: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

OutlineOutlineDefinitions

Photon Polarimetry - Short Overview

Principle – Klein-Nishina formulaPixel Detector – coincident technique

Experimental study of the polarization of Radiative Recombination

From experimental setup till Results

Summary

Compton Polarimetry of hard X-rays

New developments of Compton polarimeters for “low” energies (few 100 keV)

Extension of Compton polarimetry to higher energies, tracking (till few 10 MeV)

Compton circular polarimetry

Other types of polarimeters

PhotoelectricPair productionCrystalline

Page 9: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

0 30 60 90 120 150 180

ener

gy

(KeV

)

scattering angle c (deg)

2/m keV 240ω 2ec

0

48

96

144

192

240

2/m keV 350ω 2ec

0

70

140

210

280

350

recoil electron

scattered photon

)cos1(1'

2 cecm

e-

c

100 101 102 103 104 10510-4

10-3

10-2

10-1

100

101

102

103

104

atte

nuat

ion

1/cm

energy (KeV)

Ge energy absorption

Photabsorption

ComptonPair Production

TotalK

L

Compton scattering

Page 10: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

0

30

60

90

120

150

180

210

240

270

300

330

E

´

E

Klein-Nishina equation

)cos θsin2'

'()

'(

2

1 22220

rd

d

Compton polarimetry

090

090

M

Modulation

0 30 60 90 120 150 1800.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0 0.01 MeV 0.1 MeV 1 MeV 10 MeV

scattering angle, deg

Differential cross section

Modulation

Page 11: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

coincidence

Eel

E= E= el + 50 100 150 200 250 300

0

5000

10000

15000

20000

25000

Ly

energy (KeV)

Ly

K-R

EC

L-R

EC

M-,

N-.

. R

EC

single pixel spectrum

50 100 150 200 250 300048

12

energy (KeV)

50 100 150 200 250 300048

12recoil electron

Compton photon

4 x 7 mm 15 m

m

4 x

7 m

m

50 100 150 200 250 3000

1000

2000

3000

4000K-REC

L-RECM,..-REC

energy (KeV)

coincident sum spectrum

Segmented detectors – coincidence technique

Page 12: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

)cos1(1'

2 cecm

e-

c

0 30 60 90 120 150 180

ener

gy (

KeV

)

scattering angle c (deg)

2/m keV 240ω 2ec

0

48

96

144

192

240

2/m keV 350ω 2ec

0

70

140

210

280

350

recoil electron

scattered photon

Compton kinematics

For higher energies the reconstruction is more difficult → Tracking is required

Page 13: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

OutlineOutlineDefinitions

Photon Polarimetry - Short Overview

Principle – Klein-Nishina formulaPixel Detector – coincident technique

Experimental study of the polarization of Radiative Recombination

From experimental setup till results

Summary

Compton Polarimetry of hard X-rays

New developments of Compton polarimeters for “low” energies (few 100 keV)

Extension of Compton polarimetry to higher energies, tracking (till few 10 MeV)

Compton circular polarimetry

Other types of polarimeters

PhotoelectricPair productionCrystalline

Page 14: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Radiative RecombinationRadiative Recombination

Time Reversal

Photoionization

e-

h

Radiative Electron Capture

8

E L

E K

E KIN

e-

h

30 60 90 120 150 1800

20

40

60

80

100

120

140

160

M-R

EC

K-R

EC

L-R

EC

Ly1

Ly2

+

M1

cou

nts

energy (KeV)

U92+ → N2 collision at 310 MeV/u150○ observation angle

Page 15: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Photon PolarizationPhoton Polarization

E

B

e- Electron is ejectedalong the electric field

Nonrelativistic dipoleapproximation

E

B

e-

E

B

e- Electron is ejectedalong the electric field

Nonrelativistic dipoleapproximation

e-

E

Radiative Electron Capture Photoionization

non-relativistic dipole approximation: 100 % polarization for all emission angles

Page 16: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

K-REC photon polarizationK-REC photon polarization

0 30 60 90 120 150 180-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

degr

ee o

f lin

ear

pola

rizat

ion

angle (deg)

0 30 60 90 120 150 180-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

300 MeV 500 MeV 800 MeV

degr

ee o

f lin

ear

pola

rizat

ion

angle (deg)

K-REC into bare uranium ions(U92+ + e- U91+ + ħω ) non-relativistic

dipole approximation:100 % polarizationfor all emission angles

Large relativistic contributions

J. Eichler et al., PRA, 65 (2002) 052716A. Surzykov et al., Phys. Lett. A 289 (2001) 213A. Surzykov et al., PRA 68 (2003) 022710

E

B

e- Electron is ejectedalong the electric field

Nonrelativistic dipoleapproximation

E

B

e-

E

B

e- Electron is ejected

e-

e-

along the magnetic fieldalong the electric field

Page 17: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

e- cooler

GAS JET

∙ U92+ stored at energies of 98.4, 132.2, 190.0, 400.0 MeV/u∙ Number of stored particles 1 to 3x108

∙ Energy definition 10-4 with cooling

GAS JETN2 1012 p/cm2

SIS injection400 MeV/u

Particledetector

90o

60o

REC measurement at the ESR storage ring

Page 18: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

ion beam (400 MeV/u)

targ

etga

s

K-REC

ESR storage ring

I∥

I⊥

100 150 200 250 3000

5

10

15

20

25

30

coun

ts

energy (KeV)

I⊥

I∥

Experiment:Polarization Measurement for RadiativeRecombination Transitions (U92+ + e- U91+ + ħω )

Page 19: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

90º 90○ rotational symmetry of the detector

0 60 120 180 240 300 3600

1

2

3

4

5

6

7

8

9

norm

aliz

ed in

tens

ity I

/I

scattering angle (deg)

Degree of Linear Polarizationfor ideal (pointlike) detectors

100% 80% 40%

0 60 120 180 240 300 3600

2

4

6

8

10

12

14

16

scattering angle (deg)

scat

terin

g in

tens

ity I

0 60 120 180 240 300 3600.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

norm

aliz

ed in

tens

ity I

/I

scattering angle (deg)

Result (400 MeV/u, 90o observation angle)degree of linear polarization:polarization angle:

0.79 ± 0.080o ± 3o

0

30

60

90

120

150

180

210

240

270

300

330

Compton scattering angular distribution: Internal normalization

Page 20: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Monte-Carlo simulation describingthe detector response to polarized light

e-

c

Z=14±1 mm

Compton profile

Rayleigh scattering

Statistical error ±4 % up to ±12 %

Overall error is dominated by the statistical uncertainty

Multiple Compton scattering

Detector geometry

All systematic effects ±2 % up to ±3 %

---

< +0.5 %

±2 % up to ±3 %

---

estimated uncertainty:

(+1.3 % shift)

(detector depletion depth)

Page 21: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

0 30 60 90 120 150 180-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

100 MeV/u 400 MeV/u 800 MeV/u

degr

ee o

f lin

ear

pola

rizat

ion

observation angle lab

(deg)

Angular dependence

100 200 300 400 5000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

degr

ee o

f lin

ear

pola

rizat

ion

projectile energy (MeV/u)

Energy dependence

θ=60o

Uranium (Z=92)Results

S. Tashenov et al., PRL 97 (2006) 223202

Page 22: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Ψion beam

E

S

Ion beam spin polarizationIon beam spin polarization

0 30 60 90 120 150 180-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Stokes Parameters P

1

P2

degre

e o

f lin

ear

po

lari

zatio

n

angle (deg)

Uranium 500 MeV/u

1

22tan PP

degree of ion beamspin polarization⇒

A.Surzhykov et al., PRL 94 (2005) 203202

Page 23: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

OutlineOutlineDefinitions

Photon Polarimetry - Short Overview

Principle – Klein-Nishina formulaPixel Detector – coincident technique

Experimental study of the polarization of Radiative Recombination

From experimental setup till results

Summary

Compton Polarimetry of hard X-rays

New developments of Compton polarimeters for “low” energies (few 100 keV)

Extension of Compton polarimetry to higher energies, tracking (till few 10 MeV)

Compton circular polarimetry

Other types of polarimeters

PhotoelectricPair productionCrystalline

Page 24: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Further developments of Compton polarimeters

Optimization for lower energies (~60 keV)

2D Si(Li) stripe detector2 mm stripe width

0 50 100 150 200 250 300 350 4000.00

0.25

0.50

0.75

1.00

energy, keV

Si

Ge

Com

pton

/to

tal

100 101 102 103 104 10510-4

10-3

10-2

10-1

100

101

102

103

104

atte

nuat

ion

1/cm

energy (KeV)

Ge energy absorption

Photabsorption

ComptonPair Production

TotalK

L

stack of 10 DSSD2 mm stripe width

Page 25: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Further developments of Compton polarimeters

Increased segmentation for betterpolarization sensitivity

2D Ge μ-stripe detector0.25 x 1.2 mm stripe width

)cos1(1'

2 cecm

)cos θsin2'

'()

'(

2

1 22220

rd

d

´

E

Scattering angle θ is selected by theenergy condition 30 45 65 90 115 135 150 165

205 188 170 149 133 123 119 116 energy [keV]

scattering angle [deg]

Preliminary results: 210 keVTest experiment at ESRF, 2005

Page 26: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Further developments of Compton polarimeters

3D position sensitivity achievedby means of digital signal processing

Pulse Shape Analysis2D pixel detector with10 mm pixel size →1 ÷ 3 mm 3D position resolution

0 60 120 180 240 300 3600.0

0.5

1.0

1.5

2.0

2.5

norm

aliz

ed in

tens

ity

scattering angle, deg

KTH Stockholm Ge 5 x 5 pixel detector10 mm pixel size equipped with digitalpulse sampling electronics

Laboratory calibrationas a polarimeterpreliminary results

Page 27: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

OutlineOutlineDefinitions

Photon Polarimetry - Short Overview

Principle – Klein-Nishina formulaPixel Detector – coincident technique

Experimental study of the polarization of Radiative Recombination

From experimental setup till results

Summary

Compton Polarimetry of hard X-rays

New developments of Compton polarimeters for “low” energies (few 100 keV)

Extension of Compton polarimetry to higher energies, tracking (till few 10 MeV)

Compton circular polarimetry

Other types of polarimeters

PhotoelectricPair productionCrystalline

Page 28: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

100 101 102 103 104 105

10-4

10-3

10-2

10-1

100

101

102

103

104

atte

nuat

ion

1/cm

energy (KeV)

Ge energy absorption

Photabsorption

ComptonPair Production

TotalK

L

Extension to higher energies

0.1 1 100

10

20

30

40

50

60

even

ts, %

enegy, MeV

multiplicity: 1 2 3 4 5 8 12 20

Gamma-ray trackingis required

0.0 0.5 1.0 1.5 2.0

100

1000

10000

coun

ts

energy, MeV

h = 2 MeV

eventstotaleventsphotopeaktotalpeak /

Solution: BGO shielding orClose-packed geometry

Page 29: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

How well do the scattering angles fit with the corresponding deposited energies?

Tracking principle

)cos1(1'

2 cecm

Page 30: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Performance of tracking

0.0 0.5 1.0 1.5 2.00

50

100

150

200

250

coun

ts

energy, MeV

0.0 0.5 1.0 1.5 2.0100

101

102

103

104

105

coun

ts

energy, MeV0.5 1.0 1.5 2.0

100

101

102

103

104

105

coun

ts

energy, MeV0

Tracking can:1) determine the sequence of the scatterings2) verify the full energy deposition3) obtain the initial energy for the escape events

initial spectrum full energy events

escape events

Page 31: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Gamma arrays for nuclear physics based on tracking principles

AGATA (EU)GRETA (US)

DESPEC (GSI, darmstadt)

J. Simpson, J. of Phys.: Conf. Ser. 41 (2006) 72-80I.Y. Lee et al., Nucl. Phys. A 746 (2004) 255c-259c

Application of linear polarization:

radiation from aligned excited states - Identification of electric and magnetic transitions

g-factor measurements – time variation of linear polarization

J. Rikovska, Hyperf. Int. 24-26 (1985) 963G.J. Schmid et al., NIMA 417 (1998) 95

Page 32: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Gamma arrays for astrophysics

Nuclear Compton Telescopeballoon-borne mission

Advanced Compton Telescopespace mission

S.E. Boggs, P. Jean, Astronomy and Astrophysics 376 (2001) 1126J.D. Kurfess et al., New Astronomy Reviews 48 (2004) 293

„Gamma-ray polarization will be used to study theemission processes in GRBs, pulsars, AGN, andsolar flares—opening a new dimension indiagnostic phase space.“

(27 layers of Si and 4 layers of Ge)(12 Ge detectors)

Page 33: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

OutlineOutlineDefinitions

Photon Polarimetry - Short Overview

Principle – Klein-Nishina formulaPixel Detector – coincident technique

Experimental study of the polarization of Radiative Recombination

From experimental setup till results

Summary

Compton Polarimetry of hard X-rays

New developments of Compton polarimeters for “low” energies (few 100 keV)

Extension of Compton polarimetry to higher energies, tracking (till few 10 MeV)

Compton circular polarimetry

Other types of polarimeters

PhotoelectricPair productionCrystalline

Page 34: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Compton circular polarimetry

Circularly polarized light couples only to spin-oriented electrons

W.H.McMaster, Review of Modern Physics 33 No.1 (1961) 8

03

02

01

0

3

2

1

P

P

P

I

T

P

P

P

I

k, k0 – final and initial photon energiesk, k0, S – photon and electron momenta

Page 35: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Compton circular polarimetry:technical realization

H. Schopper, Nuclear Instruments 3 (1958) 158L.W. Fagg, S.S. Hanna, Review of Modern Physics 31 No.3 (1959) 711

2 out of 26 electronsof Fe can be spin oriented

for Compton scatteringthe opposite spins of theelectron and the photon are preferable

Page 36: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Compton circular polarimetry:examples of applications

E.G. Adelberger, Ann. Rev. Nucl. Part. Sci. 35 (1985) 501W.C. Haxton, C.E. Wieman, Annu. Rev. Nucl. Part. Sci. 51 (2001) 261L. N. Labzowsky et al., PRA 63 (2005) 054105M.J. Cooper et al., Radiation Physics and Chemistry 75 (2006) 1638F. Lei et al., Space Science Reviews 82 (1997) 309J.C. Kemp, The Astrophysical Journal 162 (1970) 169

Studies of parity violation and tests of the standard model of elementary particlesNeutrino helicity (Goldhaber experiment)Astrophysics: light emission from strongly magnetized media

Magnetic Compton scattering:measurements of spin distributions in magnetic researchThomson scattering off relativistic electron beams to determine its properties

Page 37: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

OutlineOutlineDefinitions

Photon Polarimetry - Short Overview

Principle – Klein-Nishina formulaPixel Detector – coincident technique

Experimental study of the polarization of Radiative Recombination

From experimental setup till results

Summary

Compton Polarimetry of hard X-rays

New developments of Compton polarimeters for “low” energies (few 100 keV)

Extension of Compton polarimetry to higher energies, tracking (till few 10 MeV)

Compton circular polarimetry

Other types of polarimeters

PhotoelectricPair productionCrystalline

Page 38: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Photoelectric polarimeters~ 1 up to few 10 keV

E. Costa et al., Nature 411 (2001) 662R. Bellazzini et al., NIMA A 576 (2007) 183

Page 39: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Photoelectric polarimeters~ 1 up to few 10 keV

R.P. Pratt et al., “Polarization correlations in atomic photoeffect”, Phys. Rev. 134 No 4a (1964) 916

Cross over happens at muchhigher energies

non-relativisticdipole approximation:100 % polarizationfor all emission angles

E

B

e- Electron is ejectedalong the electric field

Nonrelativistic dipoleapproximation

E

B

e-

E

B

e- Electron is ejected

e-

along the magnetic field

Page 40: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Pair production polarimeters~ few MeV up to ~ 1 GeV

P.F. Bloser et al., arXiv:astro-ph/0308331 (2003)

Problem at lower energies:angle straggling of electronsand positrons in solids

Solution:Gas micro well detectors

Page 41: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Crystalline polarimeters> few GeV

N. Cabibbo, PRL 9 (1962) 270N. Cabibbo, PRL 9 No10 (1962) 435

U. Uggerhoj Rev. Mod. Phys. 77 (2005) 1131A. Apyan et al., arXiv:hep-ex/0512017 v1 (2005)

Page 42: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

In collaboration with...

...the end.

Th. StöhlkerD. BanasA. GumberidzeA. MuthigR. ReuschlU. SpillmannM. TrassinelliS. Trotsenko

GSI, Darmstadt

Experiment

A. Surzhykov S. Fritzsche

GSI, Darmstadt

Theory

D. ProicTh. Krings

FZ-Jülich

Detectors

J. Eichler

Hahn-Meitner-Institut Berlin

Theory

J. Gerl

GSI, Darmstadt

Experiment

R. SchuchS. Bohm

Uni. Stockholm

Experiment

EBIT

nuclear γ-spec

Bo CederwallA. Khaplanov

KTH Stockholm

Experiment

nuclear γ-spec

ESR

Page 43: X-ray and γ-ray polarimetry Stanislav Tashenov KTH Stockholm.

Bragg polarimetry

P. Soffitta et al., "Techniques and detectors for polarimetry in X-ray astronomy" NIMA 510 (2003) 170

E.E. Alp et al., "Polarizer–analyzer optics" Hyperfine Interactions 125 (2000) 45

P. Beiersdorfer et al., "Polarization of K-shell x-ray transitions of Ti19+ and Ti20+ excited by an electron beam" PHYSICAL REVIEW A 60 (1999) 4156

Photoelectric polarimetry

R. Bellazzin et al., "A photoelectric polarimeter for XEUS: a new window in x-ray sky" arXiv:astro-ph/0609571v1 (2006)

E. Costa et al., "An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars" Nature 411 (2001) 662

E. Costa et al., "OPENING A NEW WINDOW TO FUNDAMENTAL PHYSICS AND ASTROPHYSICS: X-RAY POLARIMETRY" arXiv:astro-ph/0603399 (2006)

J.K. Black et al., "X-ray polarimetry with an active-matrix pixel proportional counter" NIMA 513 (2003) 639

Compton polarimetry

F. Lei et al., "Compton polarimetry in gamma-ray astronomy" Space Science Reviews 82 (1997) 309–388

M.L. McConnell, J.M. Ryan "Status and prospects for polarimetry in high energy astrophysics" New Astronomy Reviews 48 (2004) 215–219

Hiroyasu Tajima et al.,"Gamma-ray Polarimetry with Compton Telescope" (2004) arXiv:astro-ph/0407114

R.A. Kroeger et al., "Gamma ray polarimetry using a position sensitive germanium detector" NIMA 436 (1999) 165

L.W. Fagg "Polarization measurements on nuclear gamma rays" Review of Modern Physics 31 No3 (1959) 711

W. McMaster "Matrix representation of polarization" Review of Modern Physics 33 No1 (1961) 8

G.J. Schmid et al., "Gamma-ray polarization sensitivity of the Gammasphere segmented germanium detectors" NIMA 417 (1998) 95

J.H. Lee et al., "Polarization sensitivity and efficiency for a planar-type segmented germanium detector as a Compton polarimeter" NIMA 506 (2003) 125

J. Rikovska, "Gamma-ray linear polarization measurements on oriented nuclei" Hyperfine Interactions 24-26 (1985) 963

Dan Xu et al., "Detection of Gamma Ray Polarization Using a 3-D Position-Sensitive CdZnTe Detector" IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 4, (2005) 1160

S. Tashenov et al., "First Measurement of the Linear Polarization of Radiative Electron Capture Transitions" Physical Review Letters, 97, 223202 (2006)

Circular Compton polarimetry

H. Schopper, "Measurement of circular polarization of gamma-rays" Nuclear Instruments 3 (1958) 158

L.W. Fagg "Polarization measurements on nuclear gamma rays" Review of Modern Physics 31 No3 (1959) 711

R.M. Steffen, Physical Review 118 No.3 (1960) 763-767

R.E. Pechacek et al., Review of Scientific Instruments 35 No.1 (1964) 58-63

R.D.L. Mackie, J. Byrne, Nuclear Instruments and Methods 76 (1969) 241-244

W. Trautmann et al., Physical Review Letters 39 No.17 (1977) 1062-1065

T.F. Fazzini et al., Nuclear Instruments and Methods 192 (1982) 287-290

V.A. Kniaz'kov et al., Nuclear Physics A 417 (1984) 209-230

Pair production polarimetry

M. Kobayashi et al., "New method for measurement of gamma-ray polarization by detection of angular correlation in pair production" NIM 104 (1972) 101

P.F. Bloser et al., "A Concept for a High-Energy Gamma-ray Polarimeter" arXiv:astro-ph/0308331 (2003)

B. Wojtsekhowski et al., "A pair polarimeter for linearly polarized high-energy photons" NIMA 515 (2003) 605

Crystalline polarimetry

N. Cabibbo et al., "New method for producing and analyzing linearly polarized gamma-ray beams" Physical Review Letters 9 no6 (1962) 270

N. Cabibbo et al., "Circular polarization of high-energy gamma-rays by birefringence in crystals" Physical Review Letters 9 no10 (1962) 435

U. Uggerhoj "The interaction of relativistic particles with strong crystalline fields" Review of Modern Physics 77 (2005) 1131

A. Apyan et al., "Coherent Bremsstrahlung, Coherent Pair Production, Birefringence and Polarimetry in the 20-170 GeV energy range using aligned crystals" arXiv:hep-ex/0512017 v1 (2005)

http://www-linux.gsi.de/~tachenov/research/talks/polarimetry.pdf

X-ray polarimetry publications

Thank you for your patience!