WORM ALGORITHM - issp.u-tokyo.ac.jp

27
WORM ALGORITHM Nikolay Prokofiev, Umass, Amherst Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver Vladimir Kashurnikov, MEPI, Moscow Massimo Boninsegni, UAlberta, Edmonton NASA ISSP, August 2006 Evgeni Burovski, Umass, Amherst Matthias Troyer, ETH Masha Ira

Transcript of WORM ALGORITHM - issp.u-tokyo.ac.jp

Page 1: WORM ALGORITHM - issp.u-tokyo.ac.jp

WORM ALGORITHM

Nikolay Prokofiev, Umass, Amherst

Boris Svistunov, Umass, Amherst

Igor Tupitsyn, PITP, Vancouver

Vladimir Kashurnikov, MEPI, Moscow

Massimo Boninsegni, UAlberta, Edmonton

NASA

ISSP, August 2006

Evgeni Burovski, Umass, Amherst

Matthias Troyer, ETH

Masha

Ira

Page 2: WORM ALGORITHM - issp.u-tokyo.ac.jp

Why bother with algorithms?

PhD while still young

( , )G r τ

New quantities, more theoreticaltools to address physics

Grand canonical ensembleOff-diagonal correlations“Single-particle” and/or condensate wave functionsWinding numbers and

Examples from : superfluid-insulator transition, spin chains, helium solid & glass, deconfined criticality,resonant fermions, holes in the t-J model, …

S ρ ( )rϕ

( )N µ

Efficiency

PhD while still youngBetter accuracyLarge system sizeMore complex systemsFinite-size scalingCritical phenomena Phase diagrams

Reliably!

Page 3: WORM ALGORITHM - issp.u-tokyo.ac.jp

Worm algorithm idea

Consider:

- configuration space = arbitrary closed loops

- each cnf. has a weight factor c n fW

- quantity of interest c n fAc n f c n f

c n f

c n fc n f

A W

AW

=∑∑

Page 4: WORM ALGORITHM - issp.u-tokyo.ac.jp

“conventional”sampling scheme:

local shape change Add/delete small loops

can not evolve to

No sampling of topological classes(non-ergodic)

Critical slowing down(large loops are related tocritical modes)

updates zd

NL

L

dynamical critical exponent in many cases2z ≈

Page 5: WORM ALGORITHM - issp.u-tokyo.ac.jp

Worm algorithm idea

draw and erase:

Masha

Ira

or

Masha

Ira+

keepdrawing

Topological are sampled (whatever you can draw!)

No critical slowing down in most cases

Disconnected loops are related to correlation functions and are not merely an algorithm trick!

Masha

Masha

Page 6: WORM ALGORITHM - issp.u-tokyo.ac.jp

High-T expansion for the Ising model ( 1)i jij

HK

T < >

− = σ σ σ = ±∑

/

{ } { } { }

cosh (1 tanh )i i

i j

i

H T

b ij bi j

i

K

j

e KZ e K−

σ σ σ=< > =<

σ

>

σ + σ σ= ≡ ≡∑ ∑ ∑∏ ∏

( ){ } 0,1 { 0,1} 1

~ tanh tanh i

i

bb

i b b

N Ni j

N Nb ij b ij

Mi

i

K Kσ

σ σ= = σ = ±=< > =< >

σ

= ∑ ∑ ∑∑∏ ∏ ∏

i b ijij

M N even=< >< >

= =∑{ }

~ tanhb

b

N loops

N

b ij

K=< >=

∑ ∏

Graphically:

number of lines;continuity (enter/exit)

bN =iM even→ =

2 4

2

Page 7: WORM ALGORITHM - issp.u-tokyo.ac.jp

/

{ }i

H TI MM IG e−

σσ σ= ∑

{ } 1

tanh b i

b

i

i

I iMN Mi

N b ij i

G K +δ +δ

σ =±=< >

≡ σ ∑ ∑∏ ∏

Spin-spin correlation function: ,IMIM

Gg

Z=

{ }

~ tanhb

b

N loopsIM w

N

b ijorm

K=<= >

+

∑ ∏

2

41I

M

3

Worm algorithm cnf. space = Z G�WZ Z G= + κ

Same as for generalized partition

Page 8: WORM ALGORITHM - issp.u-tokyo.ac.jp

Complete algorithm:

- If , select a new site for at random

- select direction to move , let it be bond

- If accept wit h prob.

I M=

M b

,I M

R =1

min(1, tanh( ))

min(1, tanh ( ))

K

K−bN = 0

1bN → 1

0

Easier to implement then single-flip!

Page 9: WORM ALGORITHM - issp.u-tokyo.ac.jp

I=M

M

I

M

M

M

,

( ) ( ) 1

I M

bonds bonds bb

G I M G I M

Z Z

N N N

− = − +

= + δ = + ∑

Correlation function: ( ) ( ) /g i G i Z=

Energy: either 1 2 (1)E JNd JNdg= − σ σ = −

Magnetization fluctuations: ( )22 ( )iM N g i= σ = ∑ ∑

or 2tanh( ) sinh ( )bondsE J K dN N K = − +

MC estimators

Page 10: WORM ALGORITHM - issp.u-tokyo.ac.jp

Ising lattice field theory( , ,

2 4

, )x y zi i i i

i i i

Ht U

T∗

+ν=±

ν

− = ψ ψ + µ ψ − ψ ∑ ∑ ∑

/H

i

Ti eZ d −= ψ ∏ ∫

expand0

( )

!i i

N Nt i i

N

te

N

∗+ν

∗∞ψ ψ +ν

=

ψ ψ= ∑

( )( )2 42

1

{ } , !

ii i ii

i

NM UM

i i iN i ii

tZ d e

N

ν

ν

µ ψ − ψ∗

ν ν

= ψ ψ ψ ∑ ∏ ∏ ∫

1 21 2( )i M M

M M Me ϕ − = =→

( )ii

Q M∏

where ( )Q M =2

1 2

0

0

M x Ux

M M

dx x eπ∞

µ −

=∫if closed oriented loops

tabulated numbers

Page 11: WORM ALGORITHM - issp.u-tokyo.ac.jp

i i + ν

'i + ν

iN ν

', 'iN +ν −ν

,( )i i

i i

N N ν +ν −νν ν∗ψ ψ∑ ∑

Flux in = Flux out closed oriented loopsof integer N-currents

( )( ) I M

G I Mg I M

Z∗−− = = ψ ψ

(one open loop)

M

I

Worm algorithm cnf. space = Z G�

Page 12: WORM ALGORITHM - issp.u-tokyo.ac.jp

Same algorithm:

sectors, prob. to acceptZ G↔

I=M

draw1M MN N ν ν→ + '

'

( 1)min 1,

( 1) ( )M

M M

t Q MR

N Q M ν

+= + , , 1M MN N+ν −ν +ν −ν→ −

( 1)min 1,

( )I

z GI

Q MR

Q M→

+= ,( ) ( 1)

min 1,( )

M M

M

N Q MR

t Q M+ν −ν −

= erase

M

M

M

M

Keep drawing/erasing …

Page 13: WORM ALGORITHM - issp.u-tokyo.ac.jp

Multi-component gauge field-theory(deconfined criticality, XY-VBS and Neel-VBS quantum phase transitions…

( ) 2 2 2

, , , , ,2

; ; ;

[ ( )]a i a i a i ab a i b ia i a i i

i

ab

A ie A iH

t UT

ν∗+ν �ν

ν− = ψ ψ + µ ψ − ψ ψ − κ ∇× ∑ ∑ ∑∑

1A+2A+

3A−4A−

11 22 12U U U= ≠

11 22 12U U U= =

XY-VBS transitionno DCP, always first-order

Neel-VBS transition, unknown !

Page 14: WORM ALGORITHM - issp.u-tokyo.ac.jp

Lattice path-integrals for bosons and spins are “diagrams” of closed loops!

10 ( , )ij i j i iij

i j j iiji

H t n n b bH H U n n n +

< >

+ µ −= = − ∑ ∑ ∑

1

0 0

0

( )

1 1 1

0 0

Tr Tr

Tr 1 ( ) ( ) ( ) ' ...

H dHH

H

Z e e e

e H d H H d d

β

− τ τ−β−β

β β β−β

τ

∫= ≡ = − τ τ + τ τ τ τ + ∫ ∫ ∫

i j

imag

inar

y tim

e

0

β

+

0,1,2,0in =i j

τ'τ

+

(1,2)t

Page 15: WORM ALGORITHM - issp.u-tokyo.ac.jp

Diagrams forim

agin

ary

time

lattice site

-Z=Tr e Hβ

Diagrams for

† -M= Tr T ( ) ( )eI M IM

HIb bG β

τ τ τ

0

β

imag

inar

y tim

e

lattice site

0

β

I

M

The rest is conventional worm algorithm in continuo us time

(there is no problem to work with arbitrary number of continuousvariables as long as an expansion is well defined)

Page 16: WORM ALGORITHM - issp.u-tokyo.ac.jp

( ) ( )1 2 1 2

0

; , , ,n nnn

A y d x d x d x D x x x yξ

ξ∞

=

=∑∑∫∫∫ur r r r r r r ur

K K

Diagram order

Same-order diagrams

Integration variables

Contribution to the answeror the diagram weight

(positive definite, please)

ENTER

Diagrammatic Monte Carlo (not in this lecture)

Page 17: WORM ALGORITHM - issp.u-tokyo.ac.jp

M

II

II

M

Page 18: WORM ALGORITHM - issp.u-tokyo.ac.jp

Path-integrals in continuous space are consist of closed loops too!

2/1

11

( )... exp ( )

2

Pi i

Pi

m R RZ dR dR U R

=β τ +

=

− = − + τ τ ∑∫∫∫

P

1

2

P

1 2, , ,( , , ... , )i i i i NR r r r = 1,ir 2,ir P

βτ =

2

( )2

ii j

i i j

pH V r r

m <= + −∑ ∑

Feynman path-integral

Page 19: WORM ALGORITHM - issp.u-tokyo.ac.jp

( , )r tψ

( ', ')r tψ +

ZG

diagrammatic expansionfor ( ) 0V r <

Page 20: WORM ALGORITHM - issp.u-tokyo.ac.jp

Not necessarily for closed loops!

Feynman (space-time) diagrams for fermions with contact interaction (attractive)

1 1 1 1 2 2 2 2( , ) ( , ) ( , ) ( , )a r a r a r a rτ τ τ τ+ +↑ ↓ ↓ ↑

U= −

connect vortexes with and G↑G↓

perm(( ) )( ) 1n nn G G GD U drdG τ↑ ↑ ↓ ↓ −= −

rK K2( ) ( ) ( , )t ( )de 0n n

i jnD x xG drdUξ

ξ τ↑= − ≥∑ r r rsum over all possible connections2( !)n

Pair correlation function

,

( ) ( )i i ji i j

H k V r rσ ↑ ↓σ=↑↓ <

= ε + −∑ ∑

Page 21: WORM ALGORITHM - issp.u-tokyo.ac.jp

Worm cnf. space = ( )Z G =・ ? ?disconnected loop

Domain walls in 2D Ising model are loops!

G space is NOT necessarily physical

Disconnected loop is unphysical!

Ira

Masha

?

?

Page 22: WORM ALGORITHM - issp.u-tokyo.ac.jp

Quantum spin chainsmagnetization curves, gaps, spin wave spectra

[ ( ) ]H x jx ix jy iy z jz iz izij i

J S S S S J S S H S< >

= − + + − ∑ ∑

S=1/2 Heisenberg chain

Bethe ansatz (M. Takahashi)

MC data

Page 23: WORM ALGORITHM - issp.u-tokyo.ac.jp

Line is for the effective fermion

theory with spectrum

2 2( 2 / )p n L cpπε = = ∆ + 0.4105(1)∆ =

2.48(1)c =

Lou, Qin, Ng, Su, Affleck ‘99deviations are due to magnon-magnon interactions

Page 24: WORM ALGORITHM - issp.u-tokyo.ac.jp

( ) '

2( )†

1''

= T (x, ) (0)( , )

G

ipxI

E Ep JG

G e dx S S

S e Z e

p τ

τ ττ

τ

α

− −∆>>α

α

=

τ

∫∑

One dimensional S=1 chain with / 0.43z xJ J =

0.02486(5)∆ =Spin gap

Z -factor 0.980(5)Z =

Energy gaps:

( )

( , 1)1

e eG p Z

e

−∆τ −∆ β−τ

−∆β

++

τ >> ≈

Page 25: WORM ALGORITHM - issp.u-tokyo.ac.jp

Spin waves spectrum: One dimensional S=1 Heisenberg chain

Page 26: WORM ALGORITHM - issp.u-tokyo.ac.jp

Worm algorithm = cnf. space of + updates based on Z G� Masha

Ira

Conclusions:

Can be formulated for:

- classical and quantum models (Bose/Fermi/Spin)

- different representations (path-integrals, Feynam di agrams,SSE)

- non-local solutions of balance Eqn. (clusters, dire cted loops, geom. worm)

Page 27: WORM ALGORITHM - issp.u-tokyo.ac.jp

Winding numbers

222

2 2

xdS d

T WFL

L−

∂Λ = =∂ϕ

CeperleyPollock ‘86

Homogeneous gauge in x-direction: , ( ) / , ( )iAx xt te A r L A r dx → = ϕ = ϕ∫

( )2/

ln (0)2

x

x

x

i WW

W

dS

Z e Z

LF T Z F L

ϕ=

ϕ= − = + Λ

∑, ,( ) / 1x i x i x x

i

W N N L + = − =∑

iAe

iAe

iAe−