Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis...

27
Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A. Czarnecki (Edmonton) A. Djouadi (Paris) B. Dutta (Texas A&M) J. Ellis (CERN) L. Evans (CERN) D. Hooper (Fermilab) G. Isidori (Frascati) S. Jaeger (Munich) K. Jakob (Freiburg) E. W. Kolb (Chicago) S. Kraml (CERN) M. Mangano (CERN) A. Masiero (Padua) H-P. Nilles (Bonn) K. Olive (Minnesota) S. Raby (Ohio) Q. Shafi (Delaware) M. Spiropulu (CERN) F. Steffen (MPI Munich) J. Wess (Harvard) F. Wilczek (MIT)
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis...

Page 1: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1

B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk)A. Czarnecki (Edmonton) A. Djouadi (Paris)B. Dutta (Texas A&M) J. Ellis (CERN)L. Evans (CERN)D. Hooper (Fermilab) G. Isidori (Frascati) S. Jaeger (Munich)K. Jakob (Freiburg)E. W. Kolb (Chicago) S. Kraml (CERN) M. Mangano (CERN)A. Masiero (Padua) H-P. Nilles (Bonn)K. Olive (Minnesota)S. Raby (Ohio) Q. Shafi (Delaware)M. Spiropulu (CERN)F. Steffen (MPI Munich)J. Wess (Harvard)F. Wilczek (MIT)

Page 2: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 2

A SUSY scenario for LHC from Cosmology

OUTLINE• Determination of the WIMP mass• Determination of the WIMP halo• Determination of the rotation curve

• PREDICTIONS for LHC (if SUSY)

Ingredientsto this analysis

gamma spectrafor BG + DMASUSY

Particle Physics

Cosmology

Astrophysics

23%DM, thermalhistory of WIMPs annihilationcross sectionGalaxy formation

CosmicsGamma rays

Astronomers

Rotation curveDoughnut of stars at 14 kpcDoughnut of H2 at 4 kpc

WdB, C. Sander, V. Zhukov, A. Gladyshev, D. Kazakov,EGRET excess of diffuse Galactic Gamma Rays as Tracer of DM, astro-ph/0508617, A&A, 444 (2005) 51

Page 3: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 3

Thermal History of WIMPs

Thermal equilibrium abundance

Actual abundance

T=M/22Co

mo

vin

g n

um

ber

d

ensi

ty

x=m/TJungmann,Kamionkowski, Griest, PR 1995

WMAP -> h2=0.1130.009 -> <v>=2.10-26 cm3/s

DM increases in Galaxies:1 WIMP/coffee cup 105 <ρ>. DMA (ρ2) restarts again..

T>>M: f+f->M+M; M+M->f+fT<M: M+M->f+fT=M/22: M decoupled, stable density(when annihilation rate expansion- rate, i.e. =<v>n(xfr) H(xfr) !)

Annihilation into lighter particles, likequarks and leptons -> 0’s -> Gammas!Only assumption in this analysis:WIMP = THERMAL RELIC!

Page 4: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 4

Example of DM annihilation (SUSY)

Dominant + A b bbar quark pairSum of diagrams should yield<σv>=2.10-26 cm3/s to getcorrect relic density

Quark-Fragmentation known!Hence spectra of positrons,gammas and antiprotons known!Relative amount of ,p,e+ known as well.

f

f

f

f

f

f

Z

Z

W

W 0

f~

A Z

≈37 gammas

Page 5: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 5

M0=50 GeV M0 =70 GeV

Momentum dependence of contributions to DM annihilation

Z-exchange N3,42 with both s- and p-wave

A-exchange N1N3,4 only s-wave (p-independent)

decoupling time(1 ns after BB)

Page 6: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 6

Instrumental parameters:

Energy range: 0.02-30 GeVEnergy resolution: ~20%Effective area: 1500 cm2

Angular resol.: <0.50

Data taking: 1991-1994

Main results: Catalogue of point sourcesExcess in diffuse gamma rays

EGRET on CGRO (Compton Gamma Ray Observ.)

Data publicly available from NASA archive

Page 7: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 7

Energy loss times of electrons and nuclei

Protons diffuse much faster than energy loss time, so expect SAME shape everywhere. Indeed observed: outer Galaxy can be fitted with same shape as inner Galaxy.

-1 = 1/E dE/dt

univ

Page 8: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 8

The EGRET excess of diffuse galactic gamma rays without and with DM annihilation

π0π0

WIM

PS

IC

Brems

IC

Brems

If normalization free, only relative point-to-point errors of ≤7% important, not absolute normalization error of 15%. Statistical errors negligible.

Fit only KNOWN shapes of BG + DMA, i.e. 1 or 2 parameter fitNO GALACTIC models needed. Propagation of gammas straightforward

Page 9: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 9

Background + signal describe EGRET data!

Blue: background uncertainty

Background + DMA signal describe EGRET data!

Blue: WI MP mass uncertainty

50 GeV

70

I CI C

Page 10: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 10

Analysis of EGRET data in 6 sky directions

A: inner Galaxy (l=±300, |b|<50)B: Galactic plane avoiding AC: Outer Galaxy

D: low latitude (10-200)

E: intermediate lat. (20-600)F: Galactic poles (60-900)

A: inner Galaxy B: outer disc C: outer Galaxy

D: low latitude E: intermediate lat. F: galactic poles

Total 2 for all regions :28/36 Prob.= 0.8 Excess above background > 10σ.

Page 11: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 11

Fits for 180 instead of 6 regions

180 regions:80 in longitude 45 bins4 bins in latitude 00<|b|<50

50<|b|<100

100<|b|<200

200<|b|<900 4x45=180 bins

>1400 data points. Reduced 2≈1 with 7% errors

bulge

disk

sun

R

Page 12: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 12

R

x y

z

2002,Newberg et al. Ibata et al, Crane et al. Yanny et al.

1/r2 profile and ringsdetermined from inde-pendent directions

xy

xz

Expected Profile

v2M/r=cons.and

(M/r)/r2

1/r2

for const.rotation

curveDivergent for

r=0?NFW1/r

Isotherm const.

Dark Matter distribution

Halo profile

Observed Profile

xy

xz

Outer Ring

Inner Ring

bulge

tota

lDM

1/r2 halodisk

Rotation Curve

Normalize to solar velocity of 220 km/s

Page 13: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 13

N-body simulation from Canis-Major dwarf galaxy

prograde retrograde

Ob

serv

ed

sta

rs13 kpc

Page 14: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 14

Fig. 2. The calculated HI scaleheight is shown as a function of the galacto-centric radius in the outer region of the Galaxy. Note that neither the oblate nor the prolate-shaped halos are clearly favoured by the data.

Gas flaring in the Milky Way used to determine DM halo

Kalberla (Univ. Bonn):

If one includes ring of DMwith mass 2.1010 Msolarflaring perfectly understood

Page 15: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 15

Enhancement of inner (outer) ring over 1/r2 profile 6 (8).Mass in rings 0.3 (3)% of total DM

Inner Ring coincides with ring of dust and H2 -> gravitational potential well!

H2

4 kpc coincides with ring ofneutral hydrogen molecules!H+H->H2 in presence of dust->grav. potential well at 4-5 kpc.

Page 16: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 16

7 Physics Questions answered SIMULTANEOUSLY if WIMP = thermal relic

• Astrophysicists: What is the origin of “GeV excess” of diffuse

Galactic Gamma Rays?• Astronomers: Why a change of slope in the galactic rotation

curve at R0 ≈ 11 kpc? Why ring of stars at 13 kpc? Why ring of molecular hydrogen at 4 kpc? • Cosmologists: How is DM annihilating?A: into quark

pairs

How is Cold Dark Matter distributed?• Particle physicists: Is DM annihilating as expected in

Supersymmetry?

A: DM substructure

A: DM annihilation

A: standard profile + substructure

A: Cross sections perfectly consistent with mSUGRA for light gauginos, heavy squarks/sleptons

Page 17: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 17

Expected SUSY mass spectra in mSUGRA

mSUGRA: common masses m0 and m1/2 for spin 0 and spin ½ particles

Page 18: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 18

Gauge unification perfect with SUSY spectrum from EGRET

With SUSY spectrum from EGRET + WMAP data and start values of couplings from final LEP data perfect gauge coupling unification!

Up

date

fro

m A

mald

i,

dB

, F

ürs

ten

au

, P

LB

260

1991

SM SUSY

Also b->s and g-2 agree within 2σ with SUSY spectrum from EGRET

NO FREEPARAMETER

Page 19: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 19

All SUSY masses allowed by WMAP, if scanned over all tanb and A0

Only large tanb left, if all constraints from Higgs, chargino, g-2 and bsgamma required

Parameter scan confirms large tb and large m0 All points have correct relic density

EGRET

Excl. Chargino

Ex:H

iggs b

sg

Excl.: g

-2

Exc

l. E

WSB

C. Sander, thesis KA

Page 20: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 20

Relic density extremely sensitive to tb at large tb.Determining relic density at colliders -> Δtb ≈ 0.1

Sensitivity from fast running of Higgs mass terms: mA2=m1

2+m22

Page 21: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 21

http://kraml.home.cern.ch/kraml/cgi-bin/micromegas_slha.cgi

Page 22: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 22

http://kraml.home.cern.ch/kraml/cgi-bin/micromegas_slha.cgi

Page 23: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 23

Summary

Analysis shows intriguing hint that

WIMP is thermal relic with expected annihilation into quark pairs

SPATIAL DISTRIBUTION of annihilation signal is signature for DMAwhich clearly shows that EGRET excess is tracer of DM by fact thatone can CONSTRUCT ROTATION CURVE FROM GAMMA RAYS.

DM becomes visible by gamma rays from fragmentation(30-40 gamma rays of few GeV pro annihilation from π0 decays)

Conventional models CANNOT explain above points SIMULTANEOUSLY,especially spectrum of gamma rays in all directions, 1/r2 profile, shape of rotation curve, ring of stars at 14 kpc and ring of H2 at 4 kpc, ….

Results rather model independent, since only KNOWN spectral shapes of signal and background used, NO model dependent calculations of abs.fluxes.Different models or unknown experimental problems may change boost factor and/or WIMP mass, BUT NOT the distribution in the sky.

Page 24: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 24

Summary of summary

LHC accelerator (2008-2018): cannot produce WIMPs directly (too small cross section), BUT IF WIMPs are Lightest Supersymmetric Particle (LSP) THEN WIMPs observable in DECAY of SUSY particles

IF LHC measures WIMP mass 50-100 GeV, gluino around 500 GeV and squarks and sleptons around or above 1 TeV then PERFECT.

Page 25: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 25

Clustering of DM -> boosts annihilation rate

Clumps with Mmin -> dominantcontribution -> MANY clumps in given direction -> same boostfactor in all directions

Annihilation SQUARE of DM density

Clustersize: ≈ solar system?Mmin 10-8 -100 Mּס?Steeply falling mass spectrum. Boost factor <2>/<>2 2-20000(Berezinski, Dokuchaev,..)From fit: B≈100 for WIMP of 60 GeV

Page 26: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 26

Bergstrom et al. astro-ph/0603632, Abstract:

we investigate the viability of the model using the DarkSUSY package to compute the gamma-ray and antiproton fluxes. We are able to show that their (=WdB et al) model is excluded by a wide margin from the measured flux of antiprotons.

Problem with DarkSUSY (DS):1) Flux of antiprotons/gamma in DarkSUSY: O(1) from DMA. However, O(10-2) from LEP data Reason: DS has diffusion box with isotropic diffusion -> DMA fills up box with high density of antiprotons2) More realistic models have anisotropic diffusion. E.g. spiral galaxies have magnetic fields perpendicular to disk-> antiprotons may spiral quickly out of Galaxy.

Objections against DMA interpretation

1) Does antiproton rate exclude interpretation of EGRET data? (L.B.)

Page 27: Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 1 B. Allanach (Cambridge) L. Baudis (Aachen) H.-C. Cheng (UC Davis) S. Y. Choi (Chonbuk) A.

Wim de Boer, Karlsruhe LHC-D, SUSY/BSM, Bonn, Feb. 23, 2007 27

Antiprotons B/C ratio

Preliminary results from GALPROP with isotropic and anisotropic propagation

Summary: with anisotropic propagation you can send charged particleswhereever you want and still be consistent with B/C and 10Be/9Be