WELLENAUSBREITUNG Formelsammlung...Reflexion an glatten Grenzfl¨achen, die Parallelplattenleitung...

27
WELLENAUSBREITUNG Formelsammlung INSTITUT F ¨ UR NACHRICHTENTECHNIK UND HOCHFREQUENZTECHNIK 5. Auflage, Sept. 2014 Gregor Lasser

Transcript of WELLENAUSBREITUNG Formelsammlung...Reflexion an glatten Grenzfl¨achen, die Parallelplattenleitung...

  • WELLENAUSBREITUNG

    Formelsammlung

    INSTITUT FÜR NACHRICHTENTECHNIK

    UND HOCHFREQUENZTECHNIK

    5. Auflage, Sept. 2014

    Gregor Lasser

  • Maxwellsche Theorie

    ~∇ · ~S = limV→0

    1

    V

    Σ

    ~S · d~F = − ∂∂tρ

    ~∇ · (~∇× ~H) ≡ 0

    ~∇× ~H = ~S + ∂∂t~D

    ~∇ · ~S = − ∂∂t

    (~∇ · ~D) = − ∂∂tρ

    ~∇ · ~S + ∂∂tρ = 0

    ~∇ · ~D= ρ~∇ · ~B=0~∇× ~E =− ∂

    ∂t~B

    ~∇× ~H = ~S + ∂∂t~D

    Σ

    ~D · d~F =∫

    τ

    ρ dV∫

    Σ

    ~B · d~F =0∮

    ~E · d~l=− ∂∂t

    Σ

    ~B · d~F∮

    ~H · d~l=∫

    Σ

    ~S · d~F + ∂∂t

    Σ

    ~D · d~F

    ~F = q(

    ~E + ~v × ~B)

    ~S = σ ~E

    ~S = ρ~v

    ~D = ε ~E = εrε0 ~E

    ~B = µ ~H = µrµ0 ~H

    ∂tρ(~r, t) +

    σ

    ερ(~r, t) = 0

    ρ(~r, t) = ρ0(~r)e−σ

    εt

    τD =ε

    σ

    1

  • ~∇ · ~E = 0~E(x, y, z, t) = ~E(~r, t) = Re{ ~E(~r) ejωt} = 1

    2

    (

    ~E(~r) ejωt + ~E∗(~r) e−jωt)

    ~∇× ~H = ~S + jω ~D = σ ~E + jωε ~E = jωδ ~E

    δ = ε+σ

    jω= ε− j σ

    ω

    tan θ =ε′′

    ε′=

    σ

    ωε

    ~∇ · ~E = 0~∇ · ~H = 0~∇× ~E = −jωµ ~H~∇× ~H = jωδ ~E

    ~P (t) = ~E(t)× ~H(t)

    ~∇ · ~P (t) = −σ ~E(t) · ~E(t)︸ ︷︷ ︸

    ~E2(t)

    − ∂∂t

    2~E(t) · ~E(t)︸ ︷︷ ︸

    ~E2(t)

    2~H(t) · ~H(t)︸ ︷︷ ︸

    ~H2(t)

    )

    we(t) =ε

    2~E2(t)

    wm(t) =µ

    2~H2(t)

    pv(t) = σ ~E2(t)

    V

    ~∇ · ~P (t)dV =∮

    Σ

    ~P (t) · d~F

    − ∂∂t

    V

    (

    we(t) + wm(t))

    dV =

    Σ

    ~P (t) · d~F +∫

    V

    pv(t)dV

    ~E(~r, t) =1

    2

    (

    ~E(~r) ejωt + ~E∗(~r) e−jωt)

    ~E(t) · ~E(t) = 14

    (

    ~E(~r) · ~E(~r) e2jωt + 2 ~E(~r) · ~E∗(~r) + ~E∗(~r) · ~E∗(~r) e−2jωt)

    ~E(t) · ~E(t) = 12| ~E(t)|2

    we(t) = we=ε

    4| ~E(t)|2

    wm(t) = wm=µ

    4| ~H(t)|2

    pv(t) = pv =σ

    2| ~E(t)|2

    ~T =1

    2~E × ~H∗ = ~Tw + j ~Tb

    2

  • ~E · d~l = Et1∆l + En1∆x+ En2∆x− Et2∆l −En2∆x−En1∆x

    = (Et1 − Et2)∆l − 0En1 + 0En2 = −∂

    ∂t

    F

    ~B · d~F = 0

    Et1 = Et2

    Ht1 = Ht2∫

    ~D · d~F = (Dn1 −Dn2)∆F = ρS∆F

    Dn1 −Dn2 = ρS → ε1En1 − ε2En2 = ρSBn1 = Bn2 → µ1Hn1 = µ2Hn2

    ~n · ~D1 = ρS~n · ~B1 = 0~n× ~E1 = ~0~n× ~H1 = ~K

    ~n · ( ~D1 − ~D2) = ρS~n · ( ~B1 − ~B2) = 0~n× ( ~E1 − ~E2) = ~0~n× ( ~H1 − ~H2) = ~K

    ∇2 ~E − µε ∂2

    ∂t2~E − µσ ∂

    ∂t~E = 0

    ∇2 ~E + (ω2µε− jωµσ) ~E = 0∇2 ~E + ω2µδ ~E = 0∇2 ~H + ω2µδ ~H = 0

    ∇2 = ∂2

    ∂x2+

    ∂2

    ∂y2+

    ∂2

    ∂z2

    k = ω√

    µδ

    Ψ(x, y, z) = X(x) Y (y)Z(z)

    1

    X(x)

    ∂2

    ∂x2X(x) +

    1

    Y (y)

    ∂2

    ∂y2Y (y) +

    1

    Z(z)

    ∂2

    ∂z2Z(z) + k2

    ︸︷︷︸

    const.

    = 0

    1

    X(x)

    ∂2

    ∂x2X(x) = −k2x

    k2x + k2y + k

    2z = k

    2 = ω2µδ

    ∂2

    ∂x2X(x) + k2xX(x) = 0

    3

  • ∂yHz −

    ∂zHy = jωδEx

    ∂zHx −

    ∂xHz = jωδEy

    ∂xHy −

    ∂yHx = jωδEz

    ∂yEz −

    ∂zEy =−jωµHx

    ∂zEx −

    ∂xEz =−jωµHy

    ∂xEy −

    ∂yEx =−jωµHz

    Ex =−jκ2

    (

    kz∂

    ∂xEz + ωµ

    ∂yHz

    )

    Ey =−jκ2

    (

    kz∂

    ∂yEz − ωµ

    ∂xHz

    )

    Hx =−jκ2

    (

    kz∂

    ∂xHz − ωδ

    ∂yEz

    )

    Hy =−jκ2

    (

    kz∂

    ∂yHz + ωδ

    ∂xEz

    )

    4

  • Die homogene ebene Welle (HEW)

    +∂

    ∂zey =µ

    ∂thx

    − ∂∂zex =µ

    ∂thy

    0=µ∂

    ∂thz

    − ∂∂zhy = ε

    ∂tex

    +∂

    ∂zhx = ε

    ∂tey

    0= ε∂

    ∂tez

    ∂2

    ∂z2ex − µε

    ∂2

    ∂t2ex = 0

    ex(z, t) = c1 f1(z − v t)︸ ︷︷ ︸

    =e+x (z,t)

    + c2 f2(z + v t)︸ ︷︷ ︸

    =e−x (z,t)

    v =1√εµ

    k

    η =

    õ

    ε

    η = η0 =

    √µ0ε0

    ≈ 120πΩ ≈ 377Ω

    h+x = −e+yη

    e+xh+y

    = −e+yh+x

    = η

    ~E ⊥ ~H ⊥~ize−xh−y

    = −e−yh−x

    = −η

    we(t) =ε

    2(e2x + e

    2y)

    wm(t) =µ

    2(h2x + h

    2y)

    5

  • wm(t) =µ

    2

    1

    η2(e2x + e

    2y) = we(t)

    p+x ≡ 0p+y ≡ 0p+z = e

    +x h

    +y − e+y h+x

    p+z =1

    η(e+x

    2+ e+y

    2)

    ~P (t) = ~E × ~H = 1η

    (

    e+x2 + e+y

    2)

    ~iz =1

    (

    E2x0 + E2y0

    )

    ~iz

    ex(z, t) = Re{Ex(z) ejωt} = E0 cos (k(vt− z)) = E0 cos (ωt− kz)

    k =ω

    v= ω

    √µε

    λ =2π

    k=

    ω√εµ

    ~E1 = ~Ex =(E1~ix + 0~iy) e−jkz

    ~E2 = ~Ey =(0~ix + E2~iy) e−jkz

    ex(z, t) =E1 cos (ωt− kz)ey(z, t) =E2 cos (ωt− kz + ψ)

    ex(0, t)=E1 cos (ωt)

    ey(0, t)=E2 cos (ωt+ ψ)

    ex(0, t) =E cos (ωt),

    ey(0, t) =E cos (ωt∓π

    2) = ±E sin (ωt)

    ex(z, 0) = E cos (−kz) = E cos (kz)ey(z, 0) = E cos (−kz ±

    π

    2) = ±E sin (kz)

    ~E=Ey0 e−jkz~iy

    η ~H =−Ey0 e−jkz~ix

    P =

    ~P · d~F = 12Re{

    ( ~E × ~H∗) · d~F}

    =1

    2Re{

    (ExH∗y −EyH∗x)dF}

    =wd

    2Re{−Ey0 e−jkz(−

    Ey0η

    e+jkz)} =E2y02η

    wd

    P =|U |22ZPV

    6

  • U =

    ∫ 0

    −d

    Eydy = Ey0 d

    P =|Ey0|2d22ZPV

    ~∇× ~E =−jωµ ~H~∇× ~H =σ ~E + jωε ~E

    δ = ε− j σω

    = ε(1− js)

    s =1

    Q= tan θ =

    σ

    εω

    η2 =µ

    δ=µ

    ε

    1

    1− js

    η = R+ jX = ηE1√

    1− jsjkz = jω

    µδ = jω√µε

    1− js = γ = α + jβjkz = jkE

    1− js

    R = ηE

    √√1 + s2 + 1

    2(1 + s2)X = ηE

    √√1 + s2 − 12(1 + s2)

    α = kE

    √√1 + s2 − 1

    2β = kE

    √√1 + s2 + 1

    2

    η ≈ ηE(1 + js

    2) jkz ≈ kE(

    s

    2+ j)

    η ≈ ηE1 + j√

    2sjkz ≈ kE

    √s

    2(1 + j)

    d =1

    α≈ 1kE

    2

    s=

    √2

    ωµσ

    7

  • Reflexion an glatten Grenzflächen,die Parallelplattenleitung

    sinΘ1sinΘ2

    =

    √ε2ε1

    =n2n1

    ΓTM =

    √ε2 cosΘ1 −

    √ε1 cosΘ2√

    ε2 cosΘ1 +√ε1 cosΘ2

    =n2 cosΘ1 −

    n2 − sin2Θ1n2 cosΘ1 +

    n2 − sin2Θ1TTM =

    2√ε1 cosΘ1√

    ε2 cosΘ1 +√ε1 cosΘ2

    =2n cosΘ1

    n2 cosΘ1 +√

    n2 − sin2Θ1

    ΓTE =

    √ε1 cosΘ1 −

    √ε2 cosΘ2√

    ε1 cosΘ1 +√ε2 cosΘ2

    =cosΘ1 −

    n2 − sin2Θ1cosΘ1 +

    n2 − sin2Θ1TTE =

    2√ε1 cosΘ1√

    ε1 cosΘ1 +√ε2 cosΘ2

    =2 cosΘ1

    cosΘ1 +√

    n2 − sin2Θ1

    ΓTM = 0 ⇐ tanΘB =√ε2ε1

    =n2n1

    = n

    λ1z0m cosΘm = mπ ⇒ d = −z0m =

    λ1m

    2 cosΘm=

    m

    2 f√µ1ε1 cosΘm

    λx =λ1

    sin Θm

    λH,m =λ0

    sinΘm

    d = mλ02

    fG,m =mc

    2d

    λG,m =c

    fG,m=

    2d

    m

    λH,m =λ0

    1− (mλ02d

    )2

    λH,m =λ0

    1− ( λ0λG,m

    )2

    sinΘm =λ0λH,m

    =

    1− (mλ02d

    )2

    8

  • Die Oberflächenwelle

    s1 =σ1ωε1

    ≫ 1

    s2 =σ2ωε2

    ≪ 1

    kE2 = ω√ε2µ0

    kz ≈ kE2(

    1− j 12s1

    ε2ε1

    )

    α ≈ kE21

    2s1

    ε2ε1

    = kE2

    (R1

    R2

    )2

    2

    1

    s1

    ε2ε1

    β ≈ kE2 = ω√ε2µ0

    kx1≈√ωµ0σ1

    2(−1 + j)

    kx2≈ωε2√ωµ02σ1

    (1− j) = ωε2η1

    kx2kx1

    ≈ −ωε2σ1

    Ex1 = kE2 d11− jε2

    2s1ε1

    −1 + j A1 ejkx1x e−jkzz

    Ex1 = −Ez1√ωε22σ1

    (1 + j)

    Ex2 = −1

    1 − jEz2(√

    2σ1ωε2

    − j√ωε22σ1

    )

    ZW =ExHy

    ZW2 =kzωδ2

    =kE2

    (

    1− j 12s1

    ε2ε1

    )

    ωε2(1− js2)≈ ηE2

    (

    1 + js22

    )

    ZW1 =kzωδ1

    9

  • Iz =

    Σ

    ~S1 · d~F = σ1∞∫

    x=0

    b∫

    y=0

    Ez1dxdy

    = σ1A1b e−jkzz

    ∞∫

    x=0

    ejkx1 xdx

    = jσ1A1b

    kx1e−jkzz

    dUz = IzdZ

    dP =1

    2|Iz|2dZ

    ~T =1

    2~E × ~H∗ = 1

    2

    −EzH∗y0

    ExH∗y

    Tx0 =1

    2

    (

    − Ez0H∗y0)

    = −12

    ωδ∗1k∗x1

    |A1|2

    dP = Tx0 b dz

    Tx0 b dz =1

    2|Iz|2dZ ⇒ dZ = −

    ωδ∗1k2x1

    σ21

    dz

    b

    dZ ≈ η1dz

    b

    dZ = dR + jdX, dR =dz

    bR1, dX =

    dz

    bX1

    dPW = TW b dz =1

    2|Iz|2dR

    Iz = −bHy1(0)

    dPW =1

    2|Hy1(0)|2bR1dz bzw.

    dPWdz

    =1

    2|Hy1(0)|2bR1

    p =1

    b

    dPWdz

    =1

    2|Htang(0)|2R1

    R1 =1

    σ1 d1= R� (lies: R square)

    R =l

    σA

    R =

    dR =

    l∫

    0

    R�

    bdz =

    1

    σ1d1

    l

    b∝

    √ω

    R =l

    2π a

    √ωµ

    2σ1, X =

    l

    2π a

    √ωµ

    2σ1

    R

    R0=

    X

    X0=a

    2

    √ωµσ12

    =a

    2d1∝

    √ω ≫ 1

    10

  • Resonatoren

    λG,m,n =1

    √(m2a

    )2+(

    n2b

    )2

    λH=λ

    1−(

    λλG

    )2

    vP =c

    1−(

    λλG

    )2

    vG = c

    1−( λ

    λG

    )2

    κ2 =(mπ

    a

    )2

    +(nπ

    b

    )2

    ≡ ω2εµ− k2z

    P =

    Re{~T} · d~F =∫

    Tzdxdy = −1

    2

    a∫

    0

    b∫

    0

    EyH∗xdxdy =

    ωkzµ

    2

    (aA

    π

    )2

    b

    a∫

    0

    sin2 (π

    ax)dx

    =ωkzµ

    4ab(aA

    π

    )2

    −dP = 12|Htang|2RMdF

    − ∂∂zP (z) =

    1

    2RM

    (

    2

    a∫

    0

    [

    |Hx|2 + |Hz|2]

    y=0dx+ 2

    b∫

    0

    [

    | Hy︸︷︷︸

    0

    |2 + |Hz|2]

    x=0dy

    )

    = RMA2(

    (kza

    π)2

    a∫

    0

    sin2 (π

    ax)dx+

    a∫

    0

    cos2 (π

    ax)dx+

    b∫

    0

    dy)

    = A2RM

    (a

    2

    (1 + (

    2a

    λH)2)+ b

    )

    α =π

    ωµRM

    λHa3b

    (a

    2

    (1 + (

    2a

    λH)2)+ b

    )

    c = pλH2, bzw. kz =

    λH=pπ

    c(mπ

    a

    )2

    +(nπ

    b

    )2

    +(pπ

    c

    )2

    = ω2mnpεµ

    11

  • ωmnp = πv

    √(m

    a

    )2

    +(n

    b

    )2

    +(p

    c

    )2

    Q0,mnp =ωmnpW

    P

    Q0 =2πW

    PTmit T =

    1

    fmnp

    W =1

    4

    τ

    (

    ε ~E · ~E∗ + µ ~H · ~H∗)

    P =1

    2RM

    Σ

    ~Htang · ~H∗tangdF

    λ101 =2ac√a2 + c2

    ω101 =π√εµ

    √a2 + c2

    ac

    Ey =−2ωma

    πA sin (

    π

    ax) sin (

    π

    cz)

    Hx =2jkza

    πA sin (

    π

    ax) cos (

    π

    cz)

    Hz =−2j A cos (π

    ax) sin (

    π

    cz)

    We = Wm=A2µa2 + c2

    4c2abc

    P =A2RMac(a2 + c2) + 2b(a3 + c3)

    c2

    Q0 =πη

    2RM

    b√

    (a2 + c2)3

    ac(a2 + c2) + 2b(a3 + c3)

    Q0 =πη

    √2

    6RM

    12

  • Koaxialleitungen

    ~E = Er ~er~H = Hϕ ~eϕ

    ∂zU(z) + Z ′I(z) = 0 ,

    ∂zI(z) + Y ′U(z) = 0

    mit Z ′ = R′ + jωL′ , Y ′ = G′ + jωC ′

    ∂zU(z)− Y ′Z ′U(z) = 0 , ∂

    ∂zI(z)− Y ′Z ′I(z) = 0

    U(z) = Uve−jkzz + Ure

    +jkzz , I(z) = Ive−jkzz + Ire

    +jkzz

    Uv = ZLIv , Ur = −ZLIr

    ZL =

    Z ′

    Y ′bzw. ZL =

    R′ + jωL′

    G′ + jωC ′

    jkz =√Y ′Z ′ =

    (G′ + jωC ′)(R′ + jωL′)

    R′

    L′=G′

    C ′

    vP =ω

    k=

    ω

    Re{kz}≈ 1√

    L′C ′

    L =1

    I

    A

    ~B · ~nA dA

    L′ =1

    I

    ∫ ra

    ri

    ~B · ~nA dr =1

    I

    ∫ ra

    ri

    Bϕ dr =µ

    I

    ∫ ra

    ri

    Hϕ dr

    Hϕ =I

    2πr

    L′ =µ

    I

    ∫ ra

    ri

    I

    2πrdr

    L′ =µ

    2πlnrari

    C =Q

    C~E · ~er dr

    ~E =τ

    2πε

    ~err

    C ′ =τ

    C~E · ~er dr

    ∫ rari

    τ2πε

    ~err· ~er dr

    =2πε

    ∫ rari

    1rdr

    13

  • C ′ =2πε

    ln rari

    ZL,verlustlos =η

    2πlnrari

    mit η =

    õ

    ε

    R� =

    √ωµL2σ

    R′ =Rinnen +Raussen

    l≈

    R�l2πri

    + R�l2πra

    l=

    R�

    2π(1

    ri+

    1

    ra)

    R′ =

    √ωµL2σ

    1

    2π(1

    ri+

    1

    ra)

    G′ = ωC ′ tan δε = ω2πε

    ln rari

    tan δε

    jkz = γ = α+ jβ =√

    (G′ + jωC ′)(R′ + jωL′)

    α = αR + αG = (R′

    2√

    L′

    C′︸ ︷︷ ︸

    (1)

    +G′

    √L′

    C′

    2︸ ︷︷ ︸

    (2)

    )1

    cosh δR−δG2

    ︸ ︷︷ ︸

    (3)

    mit sinh δR =R′

    ωL′, sinh δG =

    G′

    ωC ′

    αR ≈R′

    2√

    L′

    C′

    =R�

    2ηra

    1 + rari

    ln rari

    ZL,min. Dämpfung =η0

    2π√εr

    lnrari

    =77 Ω√εr

    Umax = Emax ri lnrari

    = Emax raln ra

    rirari

    ZL,max.Spannungsfest =60 Ω√εr

    Pmax =U2max2ZL

    =πE2maxr

    2i

    ηlnrari

    =πE2maxr

    2a

    η

    ln rari

    ( rari)2

    ZL,max. Leistung =30 Ω√εr

    pv(z) = −dP

    dz= − d

    dzP0e

    −2αz = 2αP0e−2αz = 2αP (z)

    mit α = αR + αG

    14

  • Dielektrische Wellenleiter

    ξ= kx1d

    η= kx2d

    −ξ cot ξ = η

    ξ2 + η2 = ω2µ0d2(ε1 − ε2) = V 2 ⇒ V =

    2πd

    λ0

    n21 − n22

    kx1,m =(2m− 1)π

    2d, m = 1, 2, . . .

    ωc,m =(2m− 1)π

    2d√

    ε0µ0(εr1 − εr2)

    15

  • Streifenleitungen

    ZL ≈√µ0ε0

    1

    2πln(8h

    w+w

    4h

    )

    ZW =ZL√εeff

    λ =λ0√εeff

    εeff = 1 + q(εr − 1)fc,TEM =

    c

    4h√εr − 1

    hmax =λ0

    4√εr − 1

    fc,QTEM =c

    (2w + 0, 8h)√εr

    α = αL + αD

    − ∂∂zP (z) = |Hx0|2Rw,

    R =

    √ωµ

    2σ,

    αL =1

    2P (z)

    √ωµ

    2σw |Hx0|2 =

    √ωµ

    1

    ηh

    P =

    ~P · d~F =∫

    Tw,zdxdy =1

    2

    EyH∗xdxdy =

    1

    2η|Ey0|2hw

    ZW = ηh

    w.

    αL =

    √ωµ

    1

    ZWw.

    α′L = αL

    (

    1 +2

    πarctan (1, 4

    d1))

    αD = kEs

    2,

    ε′

    ε′′= tanΘ = s

    αD =π

    λtanΘ

    αD =π

    λtanΘ

    ( εrεeff

    εeff − 1εr − 1

    )

    16

  • Wellen und Hindernisse

    Γrauh = Γglatt exp[−2 (kσ cosΘe)2

    ]

    E/E0 = 1/2− exp (−jπ/4) [C (v) + jS (v)] /√2

    C (v) =

    v∫

    0

    cos(πt2/2

    )dt S (v) =

    v∫

    0

    sin(πt2/2

    )dt

    v = h√

    2/λ (1/ds + 1/de)

    17

  • Antennen

    ~A (~r) = µ

    V ′

    ~Se (~r′) e−jk|~r−~r

    ′|

    4π |~r − ~r ′| dV′

    ~A (~r) = µe−jkr

    4πr

    V ′

    ~Se (~r′) e+jkr

    ′ cos ϑdV ′ = µe−jkr

    4πr~N (ϑ)

    |~r − ~r ′| =√

    r2 + r ′2 − 2rr ′ cosϑ

    =

    (r − r ′ cosϑ)2 + r ′2 sin2 ϑ

    = (r − r ′ cosϑ)[

    1 +1

    2

    r ′2 sin2 ϑ

    (r − r ′ cosϑ)2+ . . .

    ]

    ∆α = k∆r =2π

    λ

    r′ 2 sin2 ϑ

    2 (r − r ′ cosϑ)

    ∆αmax =π

    λ

    r ′2

    r

    π

    2=π

    λ

    D2

    rR

    rR =2D2

    λ(+λ)

    Eϑ (ϑ, ϕ)

    Eϑ (ϑmax, ϕmax)=

    Hϕ (ϑ, ϕ)

    Hϕ (ϑmax, ϕmax)= f (ϑ, ϕ)

    ϑmax = π/2 und

    ϕmax = beliebig

    EϑEϑ (π/2)

    =Hϕ

    Hϕ (π/2)= f (ϑ, ϕ) = sin ϑ

    φ = r2Re{

    ~T}

    · ~er

    ~T =1

    2~E× ~H⋆

    1

    2

    f

    (

    ~E× ~H⋆)

    · ~er df

    18

  • Pr =1

    2Re

    ∫∫

    f

    (

    ~E × ~H⋆)

    · ~er df

    df = r2 sinϑdϑdϕ = r2dΩ

    Pr =

    Re{

    ~T}

    r2 · ~er dΩ =∫

    φ dΩ = φmax

    φ

    φmaxdΩ

    f (ϑ, ϕ) =E (ϑ, ϕ)

    E (ϑmax, ϕmax)

    φ

    φmax= |f (ϑ, ϕ)|2

    Pr = φmax

    |f (ϑ, ϕ)|2 dΩ = φmaxΩä

    Ωä =

    2π∫

    0

    π∫

    0

    |f (ϑ, ϕ)|2 sinϑdϑdϕ

    D =4π

    Ωä=

    4π2π∫

    0

    dϕ∫ π

    0|f(ϑ, ϕ)|2 sin ϑdϑ

    PLHDPLDUT

    =PrHDPrDUT

    eDUT = · · ·

    |EϑHD | =η |I| s2λr

    sinϑ.

    PrHD

    =πη

    3

    (s2

    λ2

    )

    |I|2

    |EϑHD | =√

    3 η

    4 π

    Pr,HDsin ϑ

    r

    PrHD

    =4πr2

    3η|EϑHD |

    2 1

    sin2 ϑ

    |EϑHD ||EϑHD|max

    = fHD (ϑ) = sin ϑ

    PrHD =4πr2

    3η|Eϑ,HD|2max

    Eϑ =jηI

    2πre−jkr F (ϑ, ϕ)

    H⋆ϕ = −jI⋆

    2πre+jkrF⋆ (ϑ, ϕ)

    PrDUT =1

    2Re

    f

    (

    ~E× ~H⋆)

    · ~er df

    =

    1

    2

    2π∫

    0

    π∫

    0

    η|I|24π2r2

    |F (ϑ, ϕ)|2 r2 sinϑdϑdϕ =

    19

  • = η|I|28π2

    2π∫

    0

    π∫

    0

    |F (ϑ, ϕ)|2 sinϑdϑdϕ

    |Eϑ|max =η|I|2πr

    |F (ϑmax, ϕmax)|

    |Eϑ||Eϑ|max

    =|F (ϑ, ϕ)|

    |F (ϑmax, ϕmax)|= |f (ϑ, ϕ)|

    |F (ϑ, ϕ)| = |f (ϑ, ϕ)| |F (ϑmax, ϕmax)| = |f (ϑ, ϕ)|2πr

    η|I| |Eϑ|max

    PrDUT =r2

    2η|Eϑ|2max

    2π∫

    0

    π∫

    0

    |f (ϑ, ϕ)|2 sinϑdϑdϕ

    PrHDPrDUT

    =

    4πr2

    r2

    |EϑHD |2max

    |Eϑ|2max2π∫

    0

    π∫

    0

    |f (ϑ, ϕ)|2 sinϑdϑdϕ

    GREF =PLREFPLDUT

    · |EϑDUT |2max

    |EϑREF |2max

    GHD = eDUT8π/3

    2π∫

    0

    π∫

    0

    |f (ϑ, ϕ)|2 sinϑdϑdϕ

    GHD =PLHDPLDUT

    · |EϑDUT|2max

    |EϑHD |2max= eDUT

    PrHDPrDUT

    · |EϑDUT|2max

    |EϑHD |2max

    GHD =8π/3

    2π∫

    0

    π∫

    0

    |f(ϑ, ϕ)|2 sinϑdϑdϕ

    GHD =8π/3

    Ωä=

    2

    3GISO

    TE (r) = GPS4πr2

    |EE| =A

    λrE0

    TE (r) =|EE|22η

    =

    (A

    λr

    )2E202η

    PS =E202η

    A

    G = 4πr2TE (r)

    PS= 4π

    A

    λ2

    GISO =4π

    λ2Aw

    PE = ATE

    20

  • GDUT/ISO =EIRP

    PLDUT· |EϑDUT|

    2max

    |EϑISO |2maxEIRP = PLGISO

    L = ns

    l =πD

    cosψ

    s = l sinψ = πD tanψ

    kwendell − k0s = 2πν ν = 1, 2, 3, . . .

    kwendel =ω

    v

    ω

    (l

    v− sc0

    )

    = 2πν ν = 1, 2, 3, . . .

    ω = 2πc0λ0

    und l ≈ πD ≈ λ0

    l = (λ0 + s)v

    c03

    4λ0 < λ <

    4

    3λ0

    P =1

    2|I|2 ZA

    ~T =1

    2~E× ~H⋆

    Tr =1

    2EϑH

    ⋆ϕ

    Tϑ = −1

    2ErHϕ

    ⋆ ≈ 0

    Tϕ ≡ 0|Hϕ| = |Eϑ| /η

    Pr =1

    2

    2π∫

    ϕ=0

    π∫

    ϑ=0

    |Eϑ|2η

    r2 sinϑdϑdϕ

    Eϑ = jηIs

    e−jkr

    rsin ϑ

    Pr = η|I|2 s28λ2

    π∫

    0

    sin3 ϑdϑ

    Pr =1

    3πη

    (s2

    λ2

    )

    |I|2

    RA =2

    3πη

    (s2

    λ2

    )

    m =1 + |ρ|1− |ρ| =

    |Umax||Umin|

    21

  • Z(z) =U(z)

    I(z)

    Q =ω

    2RA

    (∂XA∂ω

    )∣∣∣∣ω=ω0

    mit ZA = RA + jXA

    ∆ω =ω0Q

    Q =ω

    2GA

    (∂BA∂ω

    )∣∣∣∣ω=ω0

    mit YA = GA + jBA

    r = r0 exp (aψ)

    PS1PE2

    =PS2PE1

    G (ϑ, ϕ) =PLREFPLDUT

    · |EϑDUT (ϑ, ϕ)|2

    |EϑREF (ϑ, ϕ)|2=

    =PLREFPLDUT

    |EϑDUT |2max

    |EϑREF |2max|fDUT (ϑ, ϕ)|2

    |fREF (ϑ, ϕ)|2=

    =GREF ·|fDUT (ϑ, ϕ)|2

    |fREF (ϑ, ϕ)|2

    MEG =

    G (ϑ, ϕ) P (ϑ, ϕ) dΩ

    22

  • Wellen im freien Raum

    r.=

    4

    Te,ISO =Ps

    4 π d2

    Te =PsGs4 π d2

    Pe = TeAe

    Pe = TeAe =PsGs4 π d2

    Ae

    A =λ2

    4 πGiso

    Pe =PsGs4 π d2

    λ2

    4 πGe = Ps

    4 π d

    )2

    GsGe

    Pe = Ps

    (1

    λ d

    )2

    AsAe

    L∣∣dB

    = 10 logPsPe

    Pe∣∣dBW

    = Ps∣∣dBW

    +Gs∣∣dB

    − LISO∣∣dB

    +Ge∣∣dB

    LISO = −20 log(

    λ

    4π d

    )

    Ls = 10 logPsPn

    = 10 · log PsPe,min

    Pe,minPn

    = L∣∣dB

    + SNRmin∣∣dB

    Ti =PsGs4πd2

    Pe = TeAe =Ti σ

    4πd2Ae =

    PsGs σ

    (4πd2)2λ2

    4πGe

    PePs

    = σ G2s

    )21

    4πd4

    σ = AG = A4π

    λ2A = 4 π

    A2

    λ2

    23

  • Mehrwegeausbreitung

    τ1 = d1/c, und τ2 = d2/c

    h(τ) = A1 δ (τ − τ1) +A2 δ (τ − τ2)

    H (jω) =

    ∞∫

    0

    h(τ) e−jωτ dτ = A1 e−jωτ1 +A2 e

    −jωτ2

    |H (jω)| =√

    A21 + A22 + 2A1A2 cos (ω ·∆τ) mit ∆τ = τ2 − τ1

    ∆ fNotch =1

    ∆ τ

    H (jω) = |H (jω)| ejφH (jω)

    τGr = −dφHdω

    ~E (~r) = ~E1 e−j~k1~r + ~E2 e

    −j~k2~r

    ~E(t) = ~E0 · cos (ωt− kd)

    ~E (t) = ~E0 · cos (ωt− k [d0 + vt])= ~E0 · cos (t [ω − kv]− kd0)

    = ~E0 · cos(

    t

    [

    2πf − 2πλv

    ]

    − kd0)

    = ~E0 · cos(

    2πt[

    f − vλ

    ]

    − kd0)

    ∆fD = −v

    λ= −f · v

    c

    ∆fD = −v

    λcos (γ) = −f · v

    ccos (γ)

    p(E) =1

    σ√2 · π

    · e− E2

    2·σ2

    Varianz: = E2 −(E)2

    Varianz = E2 =

    ∞∫

    −∞

    E2 · p(E)dE = σ2

    σ2 = Re(E)2 = Pm

    p(a) =a

    σ2· exp

    [

    − a2

    2σ2

    ]

    24

  • Mittelwert a = σ√

    π2

    quadrat. Mittelwert a2 = 2σ2

    Varianz a2 − (a)2 = 2 σ2 − σ2 π2= 0.429σ2

    Medianwert a50 = σ√2 · ln2 = 1.18 σ

    p(a) =a

    σ2· exp

    [

    −a2 + A2

    2σ2

    ]

    · I0(aA

    σ2

    )

    quadrat. Mittelwert a2 = 2σ2 + A2

    PePr

    = Gs ·Ge(

    λ

    4πd0

    )2 (d0d

    )n

    p(F ) =1

    σF√2 · π

    · exp[

    −(F −M)2

    2 · σ2F

    ]

    25