WELLENAUSBREITUNG Formelsammlung...Reflexion an glatten Grenzfl¨achen, die Parallelplattenleitung...
Embed Size (px)
Transcript of WELLENAUSBREITUNG Formelsammlung...Reflexion an glatten Grenzfl¨achen, die Parallelplattenleitung...
-
WELLENAUSBREITUNG
Formelsammlung
INSTITUT FÜR NACHRICHTENTECHNIK
UND HOCHFREQUENZTECHNIK
5. Auflage, Sept. 2014
Gregor Lasser
-
Maxwellsche Theorie
~∇ · ~S = limV→0
1
V
∮
Σ
~S · d~F = − ∂∂tρ
~∇ · (~∇× ~H) ≡ 0
~∇× ~H = ~S + ∂∂t~D
~∇ · ~S = − ∂∂t
(~∇ · ~D) = − ∂∂tρ
~∇ · ~S + ∂∂tρ = 0
~∇ · ~D= ρ~∇ · ~B=0~∇× ~E =− ∂
∂t~B
~∇× ~H = ~S + ∂∂t~D
∫
Σ
~D · d~F =∫
τ
ρ dV∫
Σ
~B · d~F =0∮
~E · d~l=− ∂∂t
∫
Σ
~B · d~F∮
~H · d~l=∫
Σ
~S · d~F + ∂∂t
∫
Σ
~D · d~F
~F = q(
~E + ~v × ~B)
~S = σ ~E
~S = ρ~v
~D = ε ~E = εrε0 ~E
~B = µ ~H = µrµ0 ~H
∂
∂tρ(~r, t) +
σ
ερ(~r, t) = 0
ρ(~r, t) = ρ0(~r)e−σ
εt
τD =ε
σ
1
-
~∇ · ~E = 0~E(x, y, z, t) = ~E(~r, t) = Re{ ~E(~r) ejωt} = 1
2
(
~E(~r) ejωt + ~E∗(~r) e−jωt)
~∇× ~H = ~S + jω ~D = σ ~E + jωε ~E = jωδ ~E
δ = ε+σ
jω= ε− j σ
ω
tan θ =ε′′
ε′=
σ
ωε
~∇ · ~E = 0~∇ · ~H = 0~∇× ~E = −jωµ ~H~∇× ~H = jωδ ~E
~P (t) = ~E(t)× ~H(t)
~∇ · ~P (t) = −σ ~E(t) · ~E(t)︸ ︷︷ ︸
~E2(t)
− ∂∂t
(ε
2~E(t) · ~E(t)︸ ︷︷ ︸
~E2(t)
+µ
2~H(t) · ~H(t)︸ ︷︷ ︸
~H2(t)
)
we(t) =ε
2~E2(t)
wm(t) =µ
2~H2(t)
pv(t) = σ ~E2(t)
∫
V
~∇ · ~P (t)dV =∮
Σ
~P (t) · d~F
− ∂∂t
∫
V
(
we(t) + wm(t))
dV =
∮
Σ
~P (t) · d~F +∫
V
pv(t)dV
~E(~r, t) =1
2
(
~E(~r) ejωt + ~E∗(~r) e−jωt)
~E(t) · ~E(t) = 14
(
~E(~r) · ~E(~r) e2jωt + 2 ~E(~r) · ~E∗(~r) + ~E∗(~r) · ~E∗(~r) e−2jωt)
~E(t) · ~E(t) = 12| ~E(t)|2
we(t) = we=ε
4| ~E(t)|2
wm(t) = wm=µ
4| ~H(t)|2
pv(t) = pv =σ
2| ~E(t)|2
~T =1
2~E × ~H∗ = ~Tw + j ~Tb
2
-
∮
~E · d~l = Et1∆l + En1∆x+ En2∆x− Et2∆l −En2∆x−En1∆x
= (Et1 − Et2)∆l − 0En1 + 0En2 = −∂
∂t
∫
F
~B · d~F = 0
Et1 = Et2
Ht1 = Ht2∫
~D · d~F = (Dn1 −Dn2)∆F = ρS∆F
Dn1 −Dn2 = ρS → ε1En1 − ε2En2 = ρSBn1 = Bn2 → µ1Hn1 = µ2Hn2
~n · ~D1 = ρS~n · ~B1 = 0~n× ~E1 = ~0~n× ~H1 = ~K
~n · ( ~D1 − ~D2) = ρS~n · ( ~B1 − ~B2) = 0~n× ( ~E1 − ~E2) = ~0~n× ( ~H1 − ~H2) = ~K
∇2 ~E − µε ∂2
∂t2~E − µσ ∂
∂t~E = 0
∇2 ~E + (ω2µε− jωµσ) ~E = 0∇2 ~E + ω2µδ ~E = 0∇2 ~H + ω2µδ ~H = 0
∇2 = ∂2
∂x2+
∂2
∂y2+
∂2
∂z2
k = ω√
µδ
Ψ(x, y, z) = X(x) Y (y)Z(z)
1
X(x)
∂2
∂x2X(x) +
1
Y (y)
∂2
∂y2Y (y) +
1
Z(z)
∂2
∂z2Z(z) + k2
︸︷︷︸
const.
= 0
1
X(x)
∂2
∂x2X(x) = −k2x
k2x + k2y + k
2z = k
2 = ω2µδ
∂2
∂x2X(x) + k2xX(x) = 0
3
-
∂
∂yHz −
∂
∂zHy = jωδEx
∂
∂zHx −
∂
∂xHz = jωδEy
∂
∂xHy −
∂
∂yHx = jωδEz
∂
∂yEz −
∂
∂zEy =−jωµHx
∂
∂zEx −
∂
∂xEz =−jωµHy
∂
∂xEy −
∂
∂yEx =−jωµHz
Ex =−jκ2
(
kz∂
∂xEz + ωµ
∂
∂yHz
)
Ey =−jκ2
(
kz∂
∂yEz − ωµ
∂
∂xHz
)
Hx =−jκ2
(
kz∂
∂xHz − ωδ
∂
∂yEz
)
Hy =−jκ2
(
kz∂
∂yHz + ωδ
∂
∂xEz
)
4
-
Die homogene ebene Welle (HEW)
+∂
∂zey =µ
∂
∂thx
− ∂∂zex =µ
∂
∂thy
0=µ∂
∂thz
− ∂∂zhy = ε
∂
∂tex
+∂
∂zhx = ε
∂
∂tey
0= ε∂
∂tez
∂2
∂z2ex − µε
∂2
∂t2ex = 0
ex(z, t) = c1 f1(z − v t)︸ ︷︷ ︸
=e+x (z,t)
+ c2 f2(z + v t)︸ ︷︷ ︸
=e−x (z,t)
v =1√εµ
=ω
k
η =
õ
ε
η = η0 =
√µ0ε0
≈ 120πΩ ≈ 377Ω
h+x = −e+yη
e+xh+y
= −e+yh+x
= η
~E ⊥ ~H ⊥~ize−xh−y
= −e−yh−x
= −η
we(t) =ε
2(e2x + e
2y)
wm(t) =µ
2(h2x + h
2y)
5
-
wm(t) =µ
2
1
η2(e2x + e
2y) = we(t)
p+x ≡ 0p+y ≡ 0p+z = e
+x h
+y − e+y h+x
p+z =1
η(e+x
2+ e+y
2)
~P (t) = ~E × ~H = 1η
(
e+x2 + e+y
2)
~iz =1
2η
(
E2x0 + E2y0
)
~iz
ex(z, t) = Re{Ex(z) ejωt} = E0 cos (k(vt− z)) = E0 cos (ωt− kz)
k =ω
v= ω
√µε
λ =2π
k=
2π
ω√εµ
~E1 = ~Ex =(E1~ix + 0~iy) e−jkz
~E2 = ~Ey =(0~ix + E2~iy) e−jkz
ex(z, t) =E1 cos (ωt− kz)ey(z, t) =E2 cos (ωt− kz + ψ)
ex(0, t)=E1 cos (ωt)
ey(0, t)=E2 cos (ωt+ ψ)
ex(0, t) =E cos (ωt),
ey(0, t) =E cos (ωt∓π
2) = ±E sin (ωt)
ex(z, 0) = E cos (−kz) = E cos (kz)ey(z, 0) = E cos (−kz ±
π
2) = ±E sin (kz)
~E=Ey0 e−jkz~iy
η ~H =−Ey0 e−jkz~ix
P =
∫
~P · d~F = 12Re{
∫
( ~E × ~H∗) · d~F}
=1
2Re{
∫
(ExH∗y −EyH∗x)dF}
=wd
2Re{−Ey0 e−jkz(−
Ey0η
e+jkz)} =E2y02η
wd
P =|U |22ZPV
6
-
U =
∫ 0
−d
Eydy = Ey0 d
P =|Ey0|2d22ZPV
~∇× ~E =−jωµ ~H~∇× ~H =σ ~E + jωε ~E
δ = ε− j σω
= ε(1− js)
s =1
Q= tan θ =
σ
εω
η2 =µ
δ=µ
ε
1
1− js
η = R+ jX = ηE1√
1− jsjkz = jω
√
µδ = jω√µε
√
1− js = γ = α + jβjkz = jkE
√
1− js
R = ηE
√√1 + s2 + 1
2(1 + s2)X = ηE
√√1 + s2 − 12(1 + s2)
α = kE
√√1 + s2 − 1
2β = kE
√√1 + s2 + 1
2
η ≈ ηE(1 + js
2) jkz ≈ kE(
s
2+ j)
η ≈ ηE1 + j√
2sjkz ≈ kE
√s
2(1 + j)
d =1
α≈ 1kE
√
2
s=
√2
ωµσ
7
-
Reflexion an glatten Grenzflächen,die Parallelplattenleitung
sinΘ1sinΘ2
=
√ε2ε1
=n2n1
ΓTM =
√ε2 cosΘ1 −
√ε1 cosΘ2√
ε2 cosΘ1 +√ε1 cosΘ2
=n2 cosΘ1 −
√
n2 − sin2Θ1n2 cosΘ1 +
√
n2 − sin2Θ1TTM =
2√ε1 cosΘ1√
ε2 cosΘ1 +√ε1 cosΘ2
=2n cosΘ1
n2 cosΘ1 +√
n2 − sin2Θ1
ΓTE =
√ε1 cosΘ1 −
√ε2 cosΘ2√
ε1 cosΘ1 +√ε2 cosΘ2
=cosΘ1 −
√
n2 − sin2Θ1cosΘ1 +
√
n2 − sin2Θ1TTE =
2√ε1 cosΘ1√
ε1 cosΘ1 +√ε2 cosΘ2
=2 cosΘ1
cosΘ1 +√
n2 − sin2Θ1
ΓTM = 0 ⇐ tanΘB =√ε2ε1
=n2n1
= n
2π
λ1z0m cosΘm = mπ ⇒ d = −z0m =
λ1m
2 cosΘm=
m
2 f√µ1ε1 cosΘm
λx =λ1
sin Θm
λH,m =λ0
sinΘm
d = mλ02
fG,m =mc
2d
λG,m =c
fG,m=
2d
m
λH,m =λ0
√
1− (mλ02d
)2
λH,m =λ0
√
1− ( λ0λG,m
)2
sinΘm =λ0λH,m
=
√
1− (mλ02d
)2
8
-
Die Oberflächenwelle
s1 =σ1ωε1
≫ 1
s2 =σ2ωε2
≪ 1
kE2 = ω√ε2µ0
kz ≈ kE2(
1− j 12s1
ε2ε1
)
α ≈ kE21
2s1
ε2ε1
= kE2
(R1
R2
)2
=β
2
1
s1
ε2ε1
β ≈ kE2 = ω√ε2µ0
kx1≈√ωµ0σ1
2(−1 + j)
kx2≈ωε2√ωµ02σ1
(1− j) = ωε2η1
kx2kx1
≈ −ωε2σ1
Ex1 = kE2 d11− jε2
2s1ε1
−1 + j A1 ejkx1x e−jkzz
Ex1 = −Ez1√ωε22σ1
(1 + j)
Ex2 = −1
1 − jEz2(√
2σ1ωε2
− j√ωε22σ1
)
ZW =ExHy
ZW2 =kzωδ2
=kE2
(
1− j 12s1
ε2ε1
)
ωε2(1− js2)≈ ηE2
(
1 + js22
)
ZW1 =kzωδ1
9
-
Iz =
∫
Σ
~S1 · d~F = σ1∞∫
x=0
b∫
y=0
Ez1dxdy
= σ1A1b e−jkzz
∞∫
x=0
ejkx1 xdx
= jσ1A1b
kx1e−jkzz
dUz = IzdZ
dP =1
2|Iz|2dZ
~T =1
2~E × ~H∗ = 1
2
−EzH∗y0
ExH∗y
Tx0 =1
2
(
− Ez0H∗y0)
= −12
ωδ∗1k∗x1
|A1|2
dP = Tx0 b dz
Tx0 b dz =1
2|Iz|2dZ ⇒ dZ = −
ωδ∗1k2x1
σ21
dz
b
dZ ≈ η1dz
b
dZ = dR + jdX, dR =dz
bR1, dX =
dz
bX1
dPW = TW b dz =1
2|Iz|2dR
Iz = −bHy1(0)
dPW =1
2|Hy1(0)|2bR1dz bzw.
dPWdz
=1
2|Hy1(0)|2bR1
p =1
b
dPWdz
=1
2|Htang(0)|2R1
R1 =1
σ1 d1= R� (lies: R square)
R =l
σA
R =
∫
dR =
l∫
0
R�
bdz =
1
σ1d1
l
b∝
√ω
R =l
2π a
√ωµ
2σ1, X =
l
2π a
√ωµ
2σ1
R
R0=
X
X0=a
2
√ωµσ12
=a
2d1∝
√ω ≫ 1
10
-
Resonatoren
λG,m,n =1
√(m2a
)2+(
n2b
)2
λH=λ
√
1−(
λλG
)2
vP =c
√
1−(
λλG
)2
vG = c
√
1−( λ
λG
)2
κ2 =(mπ
a
)2
+(nπ
b
)2
≡ ω2εµ− k2z
P =
∫
Re{~T} · d~F =∫
Tzdxdy = −1
2
a∫
0
b∫
0
EyH∗xdxdy =
ωkzµ
2
(aA
π
)2
b
a∫
0
sin2 (π
ax)dx
=ωkzµ
4ab(aA
π
)2
−dP = 12|Htang|2RMdF
− ∂∂zP (z) =
1
2RM
(
2
a∫
0
[
|Hx|2 + |Hz|2]
y=0dx+ 2
b∫
0
[
| Hy︸︷︷︸
0
|2 + |Hz|2]
x=0dy
)
= RMA2(
(kza
π)2
a∫
0
sin2 (π
ax)dx+
a∫
0
cos2 (π
ax)dx+
b∫
0
dy)
= A2RM
(a
2
(1 + (
2a
λH)2)+ b
)
α =π
ωµRM
λHa3b
(a
2
(1 + (
2a
λH)2)+ b
)
c = pλH2, bzw. kz =
2π
λH=pπ
c(mπ
a
)2
+(nπ
b
)2
+(pπ
c
)2
= ω2mnpεµ
11
-
ωmnp = πv
√(m
a
)2
+(n
b
)2
+(p
c
)2
Q0,mnp =ωmnpW
P
Q0 =2πW
PTmit T =
1
fmnp
W =1
4
∫
τ
(
ε ~E · ~E∗ + µ ~H · ~H∗)
dτ
P =1
2RM
∮
Σ
~Htang · ~H∗tangdF
λ101 =2ac√a2 + c2
ω101 =π√εµ
√a2 + c2
ac
Ey =−2ωma
πA sin (
π
ax) sin (
π
cz)
Hx =2jkza
πA sin (
π
ax) cos (
π
cz)
Hz =−2j A cos (π
ax) sin (
π
cz)
We = Wm=A2µa2 + c2
4c2abc
P =A2RMac(a2 + c2) + 2b(a3 + c3)
c2
Q0 =πη
2RM
b√
(a2 + c2)3
ac(a2 + c2) + 2b(a3 + c3)
Q0 =πη
√2
6RM
12
-
Koaxialleitungen
~E = Er ~er~H = Hϕ ~eϕ
∂
∂zU(z) + Z ′I(z) = 0 ,
∂
∂zI(z) + Y ′U(z) = 0
mit Z ′ = R′ + jωL′ , Y ′ = G′ + jωC ′
∂
∂zU(z)− Y ′Z ′U(z) = 0 , ∂
∂zI(z)− Y ′Z ′I(z) = 0
U(z) = Uve−jkzz + Ure
+jkzz , I(z) = Ive−jkzz + Ire
+jkzz
Uv = ZLIv , Ur = −ZLIr
ZL =
√
Z ′
Y ′bzw. ZL =
√
R′ + jωL′
G′ + jωC ′
jkz =√Y ′Z ′ =
√
(G′ + jωC ′)(R′ + jωL′)
R′
L′=G′
C ′
vP =ω
k=
ω
Re{kz}≈ 1√
L′C ′
L =1
I
∫
A
~B · ~nA dA
L′ =1
I
∫ ra
ri
~B · ~nA dr =1
I
∫ ra
ri
Bϕ dr =µ
I
∫ ra
ri
Hϕ dr
Hϕ =I
2πr
L′ =µ
I
∫ ra
ri
I
2πrdr
L′ =µ
2πlnrari
C =Q
∫
C~E · ~er dr
~E =τ
2πε
~err
C ′ =τ
∫
C~E · ~er dr
=τ
∫ rari
τ2πε
~err· ~er dr
=2πε
∫ rari
1rdr
13
-
C ′ =2πε
ln rari
ZL,verlustlos =η
2πlnrari
mit η =
õ
ε
R� =
√ωµL2σ
R′ =Rinnen +Raussen
l≈
R�l2πri
+ R�l2πra
l=
R�
2π(1
ri+
1
ra)
R′ =
√ωµL2σ
1
2π(1
ri+
1
ra)
G′ = ωC ′ tan δε = ω2πε
ln rari
tan δε
jkz = γ = α+ jβ =√
(G′ + jωC ′)(R′ + jωL′)
α = αR + αG = (R′
2√
L′
C′︸ ︷︷ ︸
(1)
+G′
√L′
C′
2︸ ︷︷ ︸
(2)
)1
cosh δR−δG2
︸ ︷︷ ︸
(3)
mit sinh δR =R′
ωL′, sinh δG =
G′
ωC ′
αR ≈R′
2√
L′
C′
=R�
2ηra
1 + rari
ln rari
ZL,min. Dämpfung =η0
2π√εr
lnrari
=77 Ω√εr
Umax = Emax ri lnrari
= Emax raln ra
rirari
ZL,max.Spannungsfest =60 Ω√εr
Pmax =U2max2ZL
=πE2maxr
2i
ηlnrari
=πE2maxr
2a
η
ln rari
( rari)2
ZL,max. Leistung =30 Ω√εr
pv(z) = −dP
dz= − d
dzP0e
−2αz = 2αP0e−2αz = 2αP (z)
mit α = αR + αG
14
-
Dielektrische Wellenleiter
ξ= kx1d
η= kx2d
−ξ cot ξ = η
ξ2 + η2 = ω2µ0d2(ε1 − ε2) = V 2 ⇒ V =
2πd
λ0
√
n21 − n22
kx1,m =(2m− 1)π
2d, m = 1, 2, . . .
ωc,m =(2m− 1)π
2d√
ε0µ0(εr1 − εr2)
15
-
Streifenleitungen
ZL ≈√µ0ε0
1
2πln(8h
w+w
4h
)
ZW =ZL√εeff
λ =λ0√εeff
εeff = 1 + q(εr − 1)fc,TEM =
c
4h√εr − 1
hmax =λ0
4√εr − 1
fc,QTEM =c
(2w + 0, 8h)√εr
α = αL + αD
− ∂∂zP (z) = |Hx0|2Rw,
R =
√ωµ
2σ,
αL =1
2P (z)
√ωµ
2σw |Hx0|2 =
√ωµ
2σ
1
ηh
P =
∫
~P · d~F =∫
Tw,zdxdy =1
2
∫
EyH∗xdxdy =
1
2η|Ey0|2hw
ZW = ηh
w.
αL =
√ωµ
2σ
1
ZWw.
α′L = αL
(
1 +2
πarctan (1, 4
∆
d1))
αD = kEs
2,
ε′
ε′′= tanΘ = s
αD =π
λtanΘ
αD =π
λtanΘ
( εrεeff
εeff − 1εr − 1
)
16
-
Wellen und Hindernisse
Γrauh = Γglatt exp[−2 (kσ cosΘe)2
]
E/E0 = 1/2− exp (−jπ/4) [C (v) + jS (v)] /√2
C (v) =
v∫
0
cos(πt2/2
)dt S (v) =
v∫
0
sin(πt2/2
)dt
v = h√
2/λ (1/ds + 1/de)
17
-
Antennen
~A (~r) = µ
∫
V ′
~Se (~r′) e−jk|~r−~r
′|
4π |~r − ~r ′| dV′
~A (~r) = µe−jkr
4πr
∫
V ′
~Se (~r′) e+jkr
′ cos ϑdV ′ = µe−jkr
4πr~N (ϑ)
|~r − ~r ′| =√
r2 + r ′2 − 2rr ′ cosϑ
=
√
(r − r ′ cosϑ)2 + r ′2 sin2 ϑ
= (r − r ′ cosϑ)[
1 +1
2
r ′2 sin2 ϑ
(r − r ′ cosϑ)2+ . . .
]
∆α = k∆r =2π
λ
r′ 2 sin2 ϑ
2 (r − r ′ cosϑ)
∆αmax =π
λ
r ′2
r
π
2=π
λ
D2
rR
rR =2D2
λ(+λ)
Eϑ (ϑ, ϕ)
Eϑ (ϑmax, ϕmax)=
Hϕ (ϑ, ϕ)
Hϕ (ϑmax, ϕmax)= f (ϑ, ϕ)
ϑmax = π/2 und
ϕmax = beliebig
EϑEϑ (π/2)
=Hϕ
Hϕ (π/2)= f (ϑ, ϕ) = sin ϑ
φ = r2Re{
~T}
· ~er
~T =1
2~E× ~H⋆
1
2
∫
f
(
~E× ~H⋆)
· ~er df
18
-
Pr =1
2Re
∫∫
f
(
~E × ~H⋆)
· ~er df
df = r2 sinϑdϑdϕ = r2dΩ
Pr =
∫
4π
Re{
~T}
r2 · ~er dΩ =∫
4π
φ dΩ = φmax
∫
4π
φ
φmaxdΩ
f (ϑ, ϕ) =E (ϑ, ϕ)
E (ϑmax, ϕmax)
φ
φmax= |f (ϑ, ϕ)|2
Pr = φmax
∫
4π
|f (ϑ, ϕ)|2 dΩ = φmaxΩä
Ωä =
2π∫
0
π∫
0
|f (ϑ, ϕ)|2 sinϑdϑdϕ
D =4π
Ωä=
4π2π∫
0
dϕ∫ π
0|f(ϑ, ϕ)|2 sin ϑdϑ
PLHDPLDUT
=PrHDPrDUT
eDUT = · · ·
|EϑHD | =η |I| s2λr
sinϑ.
PrHD
=πη
3
(s2
λ2
)
|I|2
|EϑHD | =√
3 η
4 π
√
Pr,HDsin ϑ
r
PrHD
=4πr2
3η|EϑHD |
2 1
sin2 ϑ
|EϑHD ||EϑHD|max
= fHD (ϑ) = sin ϑ
PrHD =4πr2
3η|Eϑ,HD|2max
Eϑ =jηI
2πre−jkr F (ϑ, ϕ)
H⋆ϕ = −jI⋆
2πre+jkrF⋆ (ϑ, ϕ)
PrDUT =1
2Re
∮
f
(
~E× ~H⋆)
· ~er df
=
1
2
2π∫
0
π∫
0
η|I|24π2r2
|F (ϑ, ϕ)|2 r2 sinϑdϑdϕ =
19
-
= η|I|28π2
2π∫
0
π∫
0
|F (ϑ, ϕ)|2 sinϑdϑdϕ
|Eϑ|max =η|I|2πr
|F (ϑmax, ϕmax)|
|Eϑ||Eϑ|max
=|F (ϑ, ϕ)|
|F (ϑmax, ϕmax)|= |f (ϑ, ϕ)|
|F (ϑ, ϕ)| = |f (ϑ, ϕ)| |F (ϑmax, ϕmax)| = |f (ϑ, ϕ)|2πr
η|I| |Eϑ|max
PrDUT =r2
2η|Eϑ|2max
2π∫
0
π∫
0
|f (ϑ, ϕ)|2 sinϑdϑdϕ
PrHDPrDUT
=
4πr2
3η
r2
2η
|EϑHD |2max
|Eϑ|2max2π∫
0
π∫
0
|f (ϑ, ϕ)|2 sinϑdϑdϕ
GREF =PLREFPLDUT
· |EϑDUT |2max
|EϑREF |2max
GHD = eDUT8π/3
2π∫
0
π∫
0
|f (ϑ, ϕ)|2 sinϑdϑdϕ
GHD =PLHDPLDUT
· |EϑDUT|2max
|EϑHD |2max= eDUT
PrHDPrDUT
· |EϑDUT|2max
|EϑHD |2max
GHD =8π/3
2π∫
0
π∫
0
|f(ϑ, ϕ)|2 sinϑdϑdϕ
GHD =8π/3
Ωä=
2
3GISO
TE (r) = GPS4πr2
|EE| =A
λrE0
TE (r) =|EE|22η
=
(A
λr
)2E202η
PS =E202η
A
G = 4πr2TE (r)
PS= 4π
A
λ2
GISO =4π
λ2Aw
PE = ATE
20
-
GDUT/ISO =EIRP
PLDUT· |EϑDUT|
2max
|EϑISO |2maxEIRP = PLGISO
L = ns
l =πD
cosψ
s = l sinψ = πD tanψ
kwendell − k0s = 2πν ν = 1, 2, 3, . . .
kwendel =ω
v
ω
(l
v− sc0
)
= 2πν ν = 1, 2, 3, . . .
ω = 2πc0λ0
und l ≈ πD ≈ λ0
l = (λ0 + s)v
c03
4λ0 < λ <
4
3λ0
P =1
2|I|2 ZA
~T =1
2~E× ~H⋆
Tr =1
2EϑH
⋆ϕ
Tϑ = −1
2ErHϕ
⋆ ≈ 0
Tϕ ≡ 0|Hϕ| = |Eϑ| /η
Pr =1
2
2π∫
ϕ=0
π∫
ϑ=0
|Eϑ|2η
r2 sinϑdϑdϕ
Eϑ = jηIs
2λ
e−jkr
rsin ϑ
Pr = η|I|2 s28λ2
2π
π∫
0
sin3 ϑdϑ
Pr =1
3πη
(s2
λ2
)
|I|2
RA =2
3πη
(s2
λ2
)
m =1 + |ρ|1− |ρ| =
|Umax||Umin|
21
-
Z(z) =U(z)
I(z)
Q =ω
2RA
(∂XA∂ω
)∣∣∣∣ω=ω0
mit ZA = RA + jXA
∆ω =ω0Q
Q =ω
2GA
(∂BA∂ω
)∣∣∣∣ω=ω0
mit YA = GA + jBA
r = r0 exp (aψ)
PS1PE2
=PS2PE1
G (ϑ, ϕ) =PLREFPLDUT
· |EϑDUT (ϑ, ϕ)|2
|EϑREF (ϑ, ϕ)|2=
=PLREFPLDUT
|EϑDUT |2max
|EϑREF |2max|fDUT (ϑ, ϕ)|2
|fREF (ϑ, ϕ)|2=
=GREF ·|fDUT (ϑ, ϕ)|2
|fREF (ϑ, ϕ)|2
MEG =
∫
4π
G (ϑ, ϕ) P (ϑ, ϕ) dΩ
22
-
Wellen im freien Raum
r.=
√
dλ
4
Te,ISO =Ps
4 π d2
Te =PsGs4 π d2
Pe = TeAe
Pe = TeAe =PsGs4 π d2
Ae
A =λ2
4 πGiso
Pe =PsGs4 π d2
λ2
4 πGe = Ps
(λ
4 π d
)2
GsGe
Pe = Ps
(1
λ d
)2
AsAe
L∣∣dB
= 10 logPsPe
Pe∣∣dBW
= Ps∣∣dBW
+Gs∣∣dB
− LISO∣∣dB
+Ge∣∣dB
LISO = −20 log(
λ
4π d
)
Ls = 10 logPsPn
= 10 · log PsPe,min
Pe,minPn
= L∣∣dB
+ SNRmin∣∣dB
Ti =PsGs4πd2
Pe = TeAe =Ti σ
4πd2Ae =
PsGs σ
(4πd2)2λ2
4πGe
PePs
= σ G2s
(λ
4π
)21
4πd4
σ = AG = A4π
λ2A = 4 π
A2
λ2
23
-
Mehrwegeausbreitung
τ1 = d1/c, und τ2 = d2/c
h(τ) = A1 δ (τ − τ1) +A2 δ (τ − τ2)
H (jω) =
∞∫
0
h(τ) e−jωτ dτ = A1 e−jωτ1 +A2 e
−jωτ2
|H (jω)| =√
A21 + A22 + 2A1A2 cos (ω ·∆τ) mit ∆τ = τ2 − τ1
∆ fNotch =1
∆ τ
H (jω) = |H (jω)| ejφH (jω)
τGr = −dφHdω
~E (~r) = ~E1 e−j~k1~r + ~E2 e
−j~k2~r
~E(t) = ~E0 · cos (ωt− kd)
~E (t) = ~E0 · cos (ωt− k [d0 + vt])= ~E0 · cos (t [ω − kv]− kd0)
= ~E0 · cos(
t
[
2πf − 2πλv
]
− kd0)
= ~E0 · cos(
2πt[
f − vλ
]
− kd0)
∆fD = −v
λ= −f · v
c
∆fD = −v
λcos (γ) = −f · v
ccos (γ)
p(E) =1
σ√2 · π
· e− E2
2·σ2
Varianz: = E2 −(E)2
Varianz = E2 =
∞∫
−∞
E2 · p(E)dE = σ2
σ2 = Re(E)2 = Pm
p(a) =a
σ2· exp
[
− a2
2σ2
]
24
-
Mittelwert a = σ√
π2
quadrat. Mittelwert a2 = 2σ2
Varianz a2 − (a)2 = 2 σ2 − σ2 π2= 0.429σ2
Medianwert a50 = σ√2 · ln2 = 1.18 σ
p(a) =a
σ2· exp
[
−a2 + A2
2σ2
]
· I0(aA
σ2
)
quadrat. Mittelwert a2 = 2σ2 + A2
PePr
= Gs ·Ge(
λ
4πd0
)2 (d0d
)n
p(F ) =1
σF√2 · π
· exp[
−(F −M)2
2 · σ2F
]
25