VRdissertation Gr

download VRdissertation Gr

of 80

description

Τα τελευταία χρόνια, έχει σημειωθεί μια μεταστροφή από τους κλασικούς στό-χους του αυτομάτου ελέγχου όπως είναι η ευστάθεια και η απόδοση συστήματος,σε λιγότερο παραδοσιακούς, όπως είναι η σθεναρότητα και η ανοχή στα σφάλματα.Ο λόγος γι’ αυτή την μεταστροφή είναι η αναγκαιότητα να αντιμετωπιστεί αποτε-λεσματικά η αναπόφευκτη εμφάνιση σφαλμάτων στα συστήματα ελέγχου. Με τονόρο σφάλμα εννοούμε τη μη αποδεκτή αλλαγή μιας τουλάχιστον χαρακτηριστικήςιδιότητας ή παραμέτρου του συστήματος από την φυσιολογική, συνήθη κατάστασήτου

Transcript of VRdissertation Gr

  • : 250

    2010

  • ,

  • ii

  • . . , , , , . , , .

    , , . , , . - , , . , - , , .

    - , , , , , , . , . - . , .

    - , - , , , -, , , , , , , . , . , , , .

    iii

  • , , .

    , - IBM Memory and Probe Technologies Group, StorageTechnologies. . , Storage Technologies . , Memoryand Probe Technologies Group, . . Abu Sebastian, . . Deepak R. Sahoo, .

    -, -. , . . - , 23 , . , - , .

    , , - . . , . , .

    iv

  • - . (C.152).

    . 08-25/05/2010 -, 40% .

    v

  • vi

  • xiii

    1 11.1 1

    1.1.1 . . . . . . . . . . . . . . . 31.1.2 . . . . . . . . . . . . . . . . 6

    1.2 - . . . . . . . . . . . . . . . . . . 8

    1.3 . . . . . . . . . . . . . . . . 10

    2 132.1 . . . . . . . . . . . . . . . . . . . . . . 132.2 . . . . . . . 14

    2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2.2 . . . . . . . . . . . 15

    2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 162.3.1 . . . . . . . . . . . . . . . . . . . . . 162.3.2 . . . . . . . . . . . . . . . . . . . . . 17

    2.4 . . . . . . . . . . . . . . . . . . . 182.4.1 182.4.2 19

    2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.5.1 . . . . . . . . 212.5.2 . . . . . . . . . . . . . . . . . . . . . . . 21

    2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3 233.1 . . . . 233.2 . . . . . . . . . . . . . . . . . . 243.3 . . . . . . . . . . . . . . . . . . 26

    3.3.1 . . . . . . . . . . . . . 283.3.1.1

    . . . . . . . . . . . . . . . . . . . . . 29

    vii

  • 3.3.1.2 . . . . . . . . . . . . . . . . . . . 30

    3.3.2 . . . . . . . . . . . . . 303.3.2.1 303.3.2.2 30

    3.4 : . 313.4.1 . . . . . . . . . . . . . . 313.4.2 . . . . . . . . . . . . . . . . . . . . . 32

    3.4.2.1 . . . . . . . 353.4.2.2 . . . . . . . 36

    3.5 . . . . . . . . . . 373.5.1 . . . . . . . . . . . . . . . . . . 37

    3.5.1.1 - . . . . . . . . . . . . 37

    3.5.1.2 - . . . . . . . . . . 37

    3.5.2 . . . . . . 383.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    4 - 434.1 . . . . . 434.2 . . . . . . . . . . . . . 484.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    5 53

    57

    viii

  • 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 . . . . . . . . . . . . . . . . . . . . . 31.3 . . . . . . 51.4 ) , ) -

    [1]. . . . . . . . . . . . . . . . . 71.5 . . . . . . 81.6 . . . . . . . . . . . . . 10

    2.1 (n=2): a) , b) - . . . . . . . . . . . . . . . . . . . . . 15

    2.2 (n=2) . . . . . . . 172.3 W(i) -

    : ) ) (n=2) 192.4 -

    (n=2) . . . . . . . . . . . . 202.5 -

    (n=2) . . . . . . . . . . . . . 20

    3.1 (n=2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    3.2 : ) , ) (n= 2). . . . . . . . . . . . . . . . . . . 25

    3.3 : ) ,) (n= 2). . . . . . . . . . . . . . . . . 25

    3.4 (n= 2). . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3.5 (n= 2). . . . . . . . . . . . . . . . . . . . . . . . . . 29

    3.6 (n= 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    3.7 - id j = i f j (n= 2). . . . . . . . . . 33

    ix

  • 3.8 - (n= 2) . . . . . . . . . . . . . . . . . . . . . 36

    3.9 (n= 2) . . . . . . . . . . . . 373.10 Undetected fault case (n= 2). . . . . . . . . . . . . . . . . . . . . . 383.11 (n= 2). . . . . 393.12 -

    (n= 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    4.1 ) , ) -- . . . 44

    4.2 - q 1 , . . . 46

    4.3 - q 2 , . . . 46

    4.4 - q 3 , . . . 47

    4.5 . . . . . . . . . . 48

    4.6 (B) (D) - . . . . . . . . . . . . . . . . . . 51

    x

  • 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    4.2 . . . . . . . . . . . . . . . . . . . 45

    4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    xi

  • xii

  • W(i)

    W(i1 j i0) WQ(i1 j i0) Q(i1 j i0)Wu(i1 j i0) W(i1 j i0) u WQu (i1 j i0) WQ(i1 j i0) u Q(i)

    X(i)

    Xu(i) X(i) u

    W(i)

    Wr(i)

    Ww(i)

    WQ(i) Q(i)

    Wu(i) W(i) u

    WQu (i) WQ(i) u

    f(i)

    fm(i)

    Q(i)

    q c(i) Q(i)

    Qr(i)

    xiii

  • Qw(i)

    q (i)

    q u (i) u q (i)

    q cXu(i) Xu(i)

    qXu(i); q+Xu(i) X(i)

    q cX(i) X(i)

    q cWQ(i) WQ(i)

    q cWQu (i) WQu (i)

    qWQu (i); q+WQu

    (i) WQ(i)

    q cWu(i) Wu(i)

    qWu(i); q+Wu(i) W(i)

    q cW(i) W(i)

    ey(i)emaxy

    ( )

    efu(i)emaxfu

    u

    ( )

    F(i)

    n

    P(i) Q(i)

    S(i)

    Snp(i)

    Sp(i)

    w(i)

    wu(i);wminu ;w

    maxuu w(i)( )

    y(i)

    ym(i)

    Q(i1 j i0)

    xiv

  • 1

    1.1

    , - , , . - . , [1]. : ) - / , ) - , ) , , . - , , - . , , .

    . , . , -.

    1

  • 1.

    , , , .

    - , . - :

    Y (t) = g(U(t);x(t);q) ; (1.1)

    Y (t); U(t); x(t) , q . , -, [2]. 1.1 - [1],

    Y (t) = Y (t)+DY (t) = Y (t)+ f (t) (1.2)

    , , , [2]. 1.1 [1], .. q = a

    Y (t) = (a+Da(t))U(t) = aU(t)+Da(t)U(t) = Y (t)+ f (t)U(t): (1.3)

    +

    f(t)=(t)

    o (t) (t)a

    f(t)=a(t)

    U(t) (t)

    pi

    () ()

    1.1: .

    - . , : ) , -

    2

  • 1.1

    ( ) (- ) ( 1.2) [3], ) , (1.2) [4], ) , - ( 1.2) [5].

    f(t)

    t

    f(t)

    t

    f(t)

    t()

    pipi

    () ()

    pi

    1.2: .

    1.1.1

    , - - . - [1]. , -. , , . - , . , , .

    , (1.3). , . ,

    3

  • 1.

    ( ) ( ) - , -. [6], [7]. - , , [8], [9].

    . , Fourier, , , ARMA , , , [10], [11], [12]. , - , , , .

    - , [13]. , [14]. , - . . , , , [15],[16]. - [17]. -, , - :

    y= fTq ; (1.4)

    y , f q . , .

    - .

    4

  • 1.1

    U(t) pi + Y(t)

    e(t)

    pipi

    pi

    pi

    pi

    1)

    2)

    1) pi

    2)

    3) pi

    /

    4)

    5)

    1) Fourier

    2)

    pi

    3)

    4)

    5) ARMA pi

    6)

    pi

    f(t) f(t) f(t)

    1) pi

    2)

    3) pipi

    1) pi/

    2) pi

    3)

    4) pi

    pipi 1) 2) pi pi

    3)

    4) pi

    pi

    pi

    -

    1)

    2)

    3)

    /

    1.3:

    . -

    5

  • 1.

    , - , - .

    - , , . , , . , - , . - .

    1.1.2

    ,

    S 2 Sns M!F 2 Fn f ; (1.5)

    S , F M .

    - -. : ) , ) , 1.4. -, , - . -, , , . .

    . , ,

    6

  • 1.1

    1 2

    pi 1

    pi

    pi

    () ()

    pi 2 pi 3 pi 4

    1 2

    pi 1 pi 2 pi 3 pi 4

    1.4: ) , ) - [1].

    . - : ) [18], ) - Bayesian [19], ) , ) - [20], ) , [21].

    - , . - - : . [22]. - , - [23]. , - , ( ), [24].

    , - . -, - -, - ( ). ,

    7

  • 1.

    - , . - [25], [26].

    1.5 - .

    pi

    1) ,

    2)

    3)

    pi

    pi pi

    pi

    pi

    pi

    1.5:

    1.2 -

    () , - . . , - [27], [28], [29], [30], [31], [32], [33], .

    8

  • 1.2

    , , . - . - , [34], [35]. , [36]. , , .

    , [37]., . CAD , CARAMEL, - [38]. , . , [39]. - . - . , [40].

    , , [41], [42]. - , . , , [43]. , [44],[45], Kalman [46], RLS [47] - [48].

    9

  • 1.

    1.3

    - , , 1.6. , -, .

    0

    ( )f i

    i1fi

    ( )4ff i( )1ff i( )3ff i

    ( )2ff i

    2fi 3fi 4fi 5fi

    1.6:

    , - , - :

    y(i) = f(i)Tq (i); (1.6)q (i) = q (i1)+w(i)+ Dq (i)Dq i f j ; i f j < i i f j+1 ; (1.7)ym(i) = y(i)+ ey(i); (1.8)

    fmu (i) = fu(i)+ efu(i); (1.9)

    ym(i) 2R; fm(i) 2Rn - , ey(i) 2 R ( / ) y(i), efu(i) 2 Rn - fu(i).q (i) 2Rn , w(i) 2Rn -, Dq (i) 2 Rn .

    . ,

    10

  • 1.3

    , - ( )., - , , - . - . - , : ) ( ), ) ( ).

    - ( ) . , - , . - .

    - : ) - , ) . , - , . , , . -, . - , , . , , -, , , ,

    11

  • 1.

    . - , , , . , - , , . , - . , - .

    12

  • 2

    2.1

    :

    y(i) = f(i)Tq (i); (2.1)q (i) = q (i1)+w(i); (2.2)

    y(i) 2 R , f(i) 2 Rn , q (i) 2 Rn - , w(i) 2 Rn is the -. y(i) f(i) = [f1(i); : : : ;fn(i)]T .

    ym(i) = y(i)+ ey(i); (2.3)

    ey(i) 2 R , / . , u :

    fmu (i) = fu(i)+ efu(i); (2.4)

    efu(i) 2 R; u = 1; : : : ;n . ey(i) efu(i) ,

    jey(i)j emaxy ; (2.5)efu(i) emaxfu : (2.6)13

  • 2.

    emaxy ; emaxfu

    . w(i)

    , -:

    wu(i) 2wminu ;w

    maxu; 8i; u= 1; : : : ;n (2.7)

    wminu ; wmaxu

    .

    F(i), - q (i) ((2.1)& (2.2)), ((2.3) & (2.4)) - ((2.5) & (2.6)) (2.7). , , . , . , .

    2.2

    2.2.1

    , :

    W(i) =

    8>:q :264 q

    W1(i)...

    qWn(i)

    3754 q 4264 q

    +W1(i)...

    q+Wn(i)

    3759>=>; : (2.8)

    2.1. u :

    Wu(i) = proju

    (W(i)) =nqu : qu 2

    hqWu(i); q

    +Wu(i)

    io;8 u 2 f1; : : : ;ng; (2.9)

    proju

    (X) X u

    :

    q cWu(i) =q+Wu(i)+q

    Wu(i)

    2; u= 1; : : : ;n: (2.10)

    14

  • 2.2

    1

    2

    min ( ( )) P i

    max ( ( )) P i

    (b)

    ( )c i

    1 ( ) i

    2 ( ) i

    1( )

    i

    1( ) +

    i

    2( )

    i

    2( ) +

    i ( ) i

    ( ) i

    1

    2

    1( )

    i

    2( )+

    i

    2( )

    i

    1( )+

    i

    ( )

    c i

    (a)

    1 ( ) i

    2 ( ) i

    ( ) i

    2.1: (n=2): a) , b)

    , W(i) :

    q cW(i) =q cW1(i); : : : ; q

    cWn(i)

    T: (2.11)

    2.2.2

    :

    Q(i) =nq : (q q c(i))T P(i)1 (q q c(i)) 1

    o; (2.12)

    q c(i) P(i) 0 -, 2.1. , r (q jQ(i)) :

    Q(i) = fq : hq;qi r (q jQ(i))g ; 8 q 2 Rn; (2.13)

    [49]:

    r (q jQ(i)) = supq2Q(i)

    hq;qi= hq;q c(i)i+ hq;P(i)qi1/2 ;q 2 Rn; (2.14)

    hi .

    , WQ(i). WQ(i) -, ,

    WQ(i) =

    (q :

    2n\u=1

    hqou;qi r (qou jQ(i)))

    ; (2.15)

    15

  • 2.

    qou = [0; : : : ; 0; 1; 0; : : : ; 0]T ; qou+n =qou (2.16)

    1 u, u= 1; : : : ; n. , - :

    q+WQu (i) = r (qou jQ(i)) ; (2.17)

    qWQu (i) = rqou+n jQ(i)

    : (2.18)

    , qWQu (i); q+WQu

    (i)

    WQ(i) u, Q(i) u :

    WQu (i) = proju

    WQ(i)

    = proj

    u(Q(i)) =

    nqu : qu 2

    hqWQu (i); q

    +WQu

    (i)io

    ;8 u 2 f1; : : : ;ng:(2.19)

    2.3

    , q (i) , S(i),

    q (i) 2 S(i); (2.20) (2.1) (2.2), (2.3) and (2.4) (2.5) (2.6). : ) Sp(i), ) Snp [50], [51], [52], [53].

    2.3.1

    :

    Sp(i) =q : ym(i) emax(i) fm(i)Tq ym(i)+ emax(i) : (2.21)

    emax(i) e(i) = ey(i)ef1(i); : : : ;efn(i)

    q (i)

    i

    emax(i) = emaxy +n

    u=1

    emaxfu maxqZu(i) ; q+Zu(i): (2.22)

    qZu(i);q+Zu(i) q u (i),

    Zu(i) Z(i), - , u. , Sp(i) ,

    Sp1(i) =q : fm(i)Tq = ym(i) emax(i) ; (2.23)

    Sp2(i) = fq : fm(i)Tq = ym(i)+ emax(i)g: (2.24)

    16

  • 2.3

    2.3.2

    , - . , Snp(i), :

    Snp(i) =nq : ym(i) emaxy fA(i)Tq ; fB(i)Tq ym(i)+ emaxy

    o; (2.25)

    fA(i) =fm1 (i)+ sgn(q 1 (i))emaxf1 : : : f

    mn (i)+ sgn(q n (i))emaxfn

    ; (2.26)

    fB(i) =fm1 (i) sgn(q 1 (i))emaxf1 : : : fmn (i) sgn(q n (i))emaxfn

    : (2.27)

    Snp(i) ( 2.2(a)),

    Snp1 (i) = fq : fA(i)Tq = ym(i) emaxy g; (2.28)Snp2 (i) = fq : fB(i)Tq = ym(i)+ emaxy g: (2.29)

    - 2.2(b) E. 2.2(a), .

    1

    2

    ( )m i

    max( ) ( )( )

    m

    m

    y i e ii

    max( ) ( )( )

    + m

    m

    y i e ii

    1 ( )pS i

    2 ( )pS i

    ( )pS i

    ( ) i

    (a) -

    (n=2)

    1

    2

    ( )iA

    ( )iB

    2 ( )npS i

    1 ( )npS i

    max()

    )(

    m

    yy ei

    i

    +

    B

    max()

    )(

    m

    yy ei

    i

    A

    ( )npS i( ) i

    (b) -

    (n=2)

    2.2: (n=2)

    17

  • 2.

    2.4

    - , , ,

    q (i) 2 W(i);8 i (2.30)

    q (i) 2 Q(i);8 i: (2.31)

    q (i) 2 S(i).

    2.4.1

    W(i) , :

    W(i) = argW

    nW :W

    W(i)

    \S(i)

    o; (2.32)

    qu (i) = minqu : qu 2 proj

    u(W(i))

    ; (2.33)

    q+u (i) = maxqu : qu 2 proj

    u(W(i))

    : (2.34)

    W(i) , :

    W(i) = argWfW :W=W(i1)Wwg (2.35)

    Minkowski Ww , :

    Ww =

    8>:q :264 w

    min1...

    wminn

    3754 q 4264 w

    max1...

    wmaxn

    3759>=>; : (2.36)

    (2.32)-(2.34) - . , 2n :

    qWu(i) = minqf Tu q ; (2.37)

    q+Wu(i) = minq fTu+nq ; u= 1; : : : ;n (2.38)

    18

  • 2.4

    2(n+1)

    A(i)q b(i); (2.39)qWu(i) q q+Wu(i); 8u 2 f1; : : : ;ng (2.40)

    fu u f = [Inn; Inn], I n n A(i) = [fm(i); fm(i)]T b(i) = [ym(i)+ emax(i); ym(i)+ emax(i)]T , S(i) = Sp(i), A(i) =

    fA(i); fB(i)T b(i) = ym(i)+ emaxy ; ym(i)+ emaxT , S(i) = Snp(i). W(i) 2.3.

    S

    S

    (a) (b)

    2.3: W(i) : ) ) (n=2)

    2.4.2

    Q(i) :

    Q(i) = argQ

    hmin

    nvol(Q) : Q

    hQ(i)

    \S(i)

    ioi; (2.41)

    Q(i) , [54], [55]:

    Q(i) = argQ

    [minfvol(Q) : q(i1)+w(i) 2Q;q(i1) 2Q(i1); w(i) 2Qw)g] : (2.42)

    Qw , Qw Ww. Q(i)

    Optimal Volume Ellipsoid (OVE) [51], [56]. Q(i) Q(i)TSp(i) 2.4.

    19

  • 2.

    1

    2

    1 ( )pS i

    2 ( )pS i

    ( )i

    ( )i

    ( 1)i

    ( ) i

    ( 1) i

    ( )F i

    2.4: - (n=2)

    Q(i)

    OVE. -

    Q(i) 2.5. ,

    , OVE

    , 2.5 2.5.

    1 1

    2 2

    2 ( )npS i

    1 ( )npS i

    (a) (b)

    12 ( )h i

    ( )i

    2 ( )npS i

    1 ( )npS i

    12 ( )h i

    21( )h i ( )i

    22 ( )h i

    11( )h i1

    2

    2 ( )npS i

    1 ( )npS i

    (c)

    21( )h i

    ( )i ( )i

    ( )i ( )i

    ( ) i

    ( ) i ( ) i

    2.5: - (n=2)

    20

  • 2.5

    2.5

    2.5.1

    ,

    w(i) = [w1(i); : : : ;wn(i)]T = [0; : : : ;0]T ; (2.43)

    q (i) = q (i1) = q (0) = q ; 8 i; (2.44)

    y(i) = f(i)Tq : (2.45)

    :

    Q(i) = Q(i1); (2.46)W(i) = W(i1): (2.47)

    , Q(i1) W(i1). , sgn(q u (i)) = sgn(q u (i1)) = sgn(q u ) ; 8 i; u.

    2.5.2

    - , / :

    ym(i) = f(i)Tq (i)+ e0y(i) (2.48)

    e0y(i) e0maxy ; (2.49) e0maxy .

    21

  • 2.

    2.6

    , - . - , - . , - , . , (-), . - n 2(n+ 1). - . - Optimal Volume Ellipsoid(OVE), - . - .

    22

  • 3

    3.1 -

    , :

    y(i) = f(i)Tq (i); (3.1)q (i) = q (i1)+w(i)+ Dq (i)Dq i f j ; i f j < i i f j+1 ; (3.2)

    y(i) 2 R , f(i) 2 Rn - , q (i)2Rn , Dq (i)2Rn , i f j , f j . , (2.3) (2.4), (2.5), (2.6) (2.7). -,

    Lf j = argLf j

    nLf j = i

    f j+1 i f j :

    Dq i f j + iDq i f j

    = 0; i 2 n0; : : : ;Lf j 1oo : (3.3) Lf j , - Dq

    i f j 8 i f j Lmin

    f jLf j .

    3.1 n= 2.

    23

  • 3.

    0

    1( )i

    i

    ( )11 fi

    ( )31 fi

    ( )51 fi

    0

    2 ( )i

    i1fi

    ( )12 fi

    ( )32 fi

    ( )22 fi

    2fi 3fi 4fi 5fi

    L L L L L

    3.1: (n= 2).

    -:

    q u (i) 2qminu ;qmaxu

    ;8i; u= 1; : : : ;n: (3.4)

    q u (i) u q (i). / q u (i) , -. (3.4), 8 u 2 f1; : : : ;ng

    Dqu (i)Dqui f j

    = q (i)q (i1)w(i) 2 gminu ;gmaxu ; 8 i f j (3.5)gminu = qminu qmaxu wmaxu ; (3.6)gmaxu = qmaxu qminu wminu : (3.7)

    3.2

    .

    24

  • 3.2

    1 ym(id j); fm(id j),

    Zid j\

    Sid j= /0; (3.8)

    id j , d j -, S

    id j ( ) Z

    id j

    id j , id j1 < i f j id j . - 3.2 3.3, .

    2

    ()jd

    np

    Si

    2

    1 1

    ( )jd

    pS

    i +

    +

    +

    +

    +

    ( ) jdi( ) jdi

    ( ) jdi

    ( ) jdi ( ) jdi

    (a) (b)

    3.2: : ) , ) (n= 2).

    2

    ()jd

    np

    Si

    2

    1

    ( ) jdi ( ) jdi

    1

    ( ) jdi

    ( ) jdi

    ( ) jdi

    ( )jd

    pS

    i +

    +

    +

    +

    +

    (a) (b)

    3.3: : ) , ) - (n= 2).

    25

  • 3.

    3.3

    , - . , Z

    id j

    Sid j ,

    Zid j

    ! Zrid j; (3.9)

    Sid j

    ! Srid j; (3.10)

    q id j 2 Zr id j

    q id j 2 Sr id j

    9=;) Zrid j\Srid j 6= /0: (3.11) q

    id j .

    . , - .

    3.3.1 q id j 1+wid j 2 Wid j, q id j 2Wr id j,

    Wrid j=

    8>>>:q :2664q rW1

    id j

    ...

    q rWnid j37754 q 4

    2664q r+W1

    id j

    ...

    q r+Wnid j37759>>=>>; (3.12)

    q rWuid j

    = qWuid j+ gminu ; (3.13)

    q r+Wuid j

    = q+Wuid j+ gmaxu ; (3.14)

    qWuid j, q+Wu

    id j -

    Wid j.

    . - .

    26

  • 3.3

    3.3.2 q id j 1+wid j 2 Qid j, q id j 2 Qr id j,

    Qrid j :

    q crid j

    = q cid j

    (3.15)

    Prid j

    = Uid jSrid jUT

    id j; (3.16)

    Srid j

    = Sid j+2gS

    id j1=2

    + g2I; (3.17)

    Pid j

    = Uid jSid jUT

    id j; (3.18)

    g =

    sn

    u=1

    max(jgminu j ; jgmaxu j): (3.19)

    . Sid j=

    Spid j Sr

    id j ,

    (2.21). emaxid j,

    ,

    emaxid j= emaxy +

    n

    u=1

    emaxfu maxq rWu id j ; q r+Wu id j (3.20)

    q rWuid j,q r+Wu

    id j (3.13) (3.14), -

    ,

    ,

    emaxid j= emaxy +

    n

    u=1

    emaxfu maxq rWQu id j ; q r+WQu id j (3.21)

    q rWQu

    id j

    = rqou+n

    Qrid j (3.22)q r+WQu

    id j

    = rqouQrid j (3.23)

    qou; qou+n (2.16).

    Sid j= Snp

    id j,

    qminu 0 qmaxu 0; 8 u, , Sr

    id j= Snp

    id j,

    27

  • 3.

    qminu < 0< qmaxu

    sgnq rWu

    id j

    = sgnq r+Wu

    id j

    ; 8 u; (3.24)

    sgnq rWQu

    id j

    = sgnq r+WQu

    id j

    ; 8 u; (3.25)

    Srid j= Snpr

    id j, Snpr

    id j (2.25)(2.27),

    (3.24) (3.25) sgnq id j.

    u qminu < 0< qmaxu (3.24) (3.25), Snpr

    id j

    (2.21) (3.20) (3.21).

    () - , - () 3.4 ( 3.5).

    ( ) ( )

    ( ) S

    ( ) }( ) S

    ( )

    }

    3.4: - (n= 2).

    3.3.1

    , - ( ) , [57].

    28

  • 3.3

    ( ) jdr i

    ( ) jdi

    ( ) ( )1j jd di w i +

    ( ) ( )1j jf fi i

    ( ) jdi

    ()j

    dp

    r iS

    ( )jdi

    ( )jd

    pi

    S

    3.5: - (n= 2).

    3.3.1.1

    3.3.1 u -, iu,

    Wuiujid j 1

    \Wu (iu) = /0: (3.26)

    Wuiujid j 1 Wu iujid j 1.

    3.3.2 u , iu

    Wuiujid j 1

    \Wu (iu) =Wu (iu) : (3.27)

    Wuiujid j 1 Wu iujid j 1.

    Wuiujid j 1 :

    Wiujid j 1

    = arg

    W

    nW :W=Wd iW

    id j 1

    o; (3.28)

    d i= iu id j 1 ; d i 1 Wd i =WwWw : : :Ww| {z }d i

    .

    29

  • 3.

    3.3.1.2

    3.3.3 u - iu

    WQuiujid j 1

    \WQu (i

    u) = /0; (3.29)

    WQuiujid j 1 Qiujid j 1.

    3.3.4 u iu

    WQuiujid j 1

    \WQu (i

    u) =WQu (iu) ; (3.30)

    WQuiujid j 1 Qiujid j 1.

    Qiujid j 1

    Qid j 1 Qd i=Qwd i wc;d i2 Pw, d i= iuid j 1 ; d i

    1 wc;Pw - Qw.

    3.3.2

    3.3.2.1

    u (u = 1; : : : ;n) - , , Dqu

    i f jDqu i f j1,

    dqu(iu) = q cWu (i

    u)q cWu

    id j 1

    +d i

    wmaxu +wminu

    2

    ; (3.31)

    d i= iu(id j1), iu u .

    3.3.2.2

    u (u = 1; : : : ;n) - , , Dqu

    i f jDqu i f j1,

    dqu(iu) = q cu (iu) q cu

    ijid j 1

    : (3.32)

    d i= iu(id j1), iu u .

    30

  • 3.4 :

    3.4 : -

    , , :

    y(i) = f(i)Tq +Dq

    i f j1

    ; for i f j1 i< i f j ;

    y(i) = f(i)Tq +Dq

    i f j

    ; for i f j i< i f j+1 ; (3.33)

    ,

    q u +Dqui f j 2 qminu ;qmaxu ; 8 i f j ;u= 1; : : : ;n (3.34)

    Dqui f j 2 gminu ; gmaxu ; 8 i f j ; (3.35)

    gminu = qminu qmaxu ; (3.36)gmaxu = qmaxu qminu =gminu : (3.37)

    3.4.1

    , - (3.8) :

    Zid j 1

    \Sid j= /0; (3.38)

    Zid j 1 Wid j 1 Qid j 1,

    . -

    , . :

    X(i) =i\

    t=1

    WQ(t); (3.39)

    ,

    X(i) = X(i1)\WQ(i): (3.40)

    X(i) - :

    Xu (i) = proju

    (X) =nqu : qu 2

    hqXu (i) ;q

    +Xu

    (i)io

    (3.41)

    31

  • 3.

    :

    q cXu(i) =q+Xu(i)+q

    Xu(i)

    2; u= 1; : : : ;n: (3.42)

    X(i) :

    q cX(i) =q cX1(i); : : : ;q

    cXn(i)T

    : (3.43)

    - [58].

    2 ym(id j); fm(id j),

    Xid j= X

    id j 1

    \WQ

    id j= /0: (3.44)

    id j , d j id j , id j1 < i f j id j .

    Qid j 1

    \Sid j= /0: (3.45)

    - 3.6, (3.44) 3.7.

    3.4.2

    3.3 - .

    : ) Zid j 1!

    Zrid j 1, ) Sid j 1! Sr id j 1

    q +Dqi f j 2 Zr id j

    q +Dq

    i f j 2 Sr id j

    9=;) Zrid j\Srid j 6= /0: (3.46)

    32

  • 3.4 :

    ( )3 jfi

    ( )3 jfi ( )2 jfi

    ( )2jfpS i

    ( )2X jfi( )2 jfi

    ( )1jfpS i

    ( )1X jfi

    ( )1 jfi

    ( )1 jfi

    3.6: (n= 2).

    ( )1 + jfi

    ( )1X jfi

    ( )1 jfi( ) jfi( ) + jfi

    ( ) jfi

    3.7: - id j = i f j (n= 2).

    33

  • 3.

    . - , W

    id j 1

    .

    3.4.1 q +Dqi f j1

    2Wid j 1, q +Dq i f j2Wr id j 1, Wrid j 1

    =

    8>>>:q :2664q rW1

    id j 1...

    q rWnid j 1

    37754 q 42664q r+W1

    id j 1...

    q r+Wnid j 1

    37759>>=>>; (3.47)

    q rWuid j 1

    = qWu

    id j 1

    2gmaxu ; (3.48)

    q r+Wuid j 1

    = q+Wu

    id j 1

    +2gmaxu : (3.49)

    . - , - .

    3.4.2 q +Dqi f j1

    2Qid j 1, q +Dq i f j2Qr id j 1, Qr

    id j 1 :

    q crid j 1

    = q c

    id j 1

    ; (3.50)

    Prid j 1

    = U

    id j 1

    Srid j 1

    UT

    id j 1

    ; (3.51)

    Srid j 1

    = S

    id j 1

    +4gS

    id j 1

    1=2+4g2I; (3.52)

    Pid j 1

    = U

    id j 1

    Sid j 1

    UT

    id j 1

    ; (3.53)

    g =

    sn

    u=1

    jgmaxu j: (3.54)

    Qrid j 1

    .

    3.4.3 q +Dqi f j1

    X

    id j 1

    Qid j 1, q +Dq i f j Xr id j 1

    34

  • 3.4 :

    and Qrid j 1, Xrid j 1

    =

    8>>>:q :2664q rX1

    id j 1...

    q rXnid j 1

    37754 q 42664q r+X1

    id j 1...

    q r+Xnid j 1

    37759>>=>>; (3.55)

    q rXuid j 1

    = qXu

    id j 1

    2gmaxu ; (3.56)

    q r+Xuid j 1

    = q+Xu

    id j 1

    +2gmaxu (3.57)

    Qrid j 1

    = arg

    Q

    hmin

    nvol(Q) : Q Xr

    id j 1

    oi; (3.58)

    Lwner-John Xrid j 1 [59].

    . - 3.3. - Wrid j 1,Qr id j 1 ;Xr id j 1,

    Sprid j Snpr

    id j.

    3.8.

    3.4.2.1

    - :

    q 2 Xid1 1 Wid1 1, q +Dq

    i f j 2 Xid j + i Wid j + i, 8 i 2 0; id j+1 id j

    X(i1) X(i); (W(i1)W(i)) 8 i.

    3.4.1 u -, iu

    Zu

    id1 1

    \Zu (iu) = /0;

    iu id j

    ; (3.59)

    35

  • 3.

    ( )jfi + ( )1jfi +

    ( )jdiX

    max

    12

    ( )1jr di X

    ( )1jr di

    ( )jdi

    ( )jdi

    ( )1jdi X

    max

    12

    max

    22

    max

    22

    ( )jdiS

    ( )jr diS

    3.8: (n= 2)

    Zu(i) = Xu(i) - Zu(i) = Wu(i) .

    3.4.2 u(u= 1; : : : ;n) - , iu

    Zu

    id1 1

    \Zu (iu) = Zu (iu) ;

    iu id j

    ; (3.60)

    Zu(i) = Xu(i) - Zu(i) = Wu(i) .

    3.9, , , q2 - -, . -, q1 .

    3.4.2.2

    u -, Dqu

    i f j

    dqu(i) = qcZu(iu+ i)q cZu

    id1 1

    ; (3.61)

    36

  • 3.5

    2

    1

    ( )1 1 di

    2

    1

    2

    1

    ()

    *

    2

    i ( )* i

    ()

    12

    1

    d i

    ( )11 1 di

    ( )*1 i

    1d

    2d

    ( )1 1 di

    ( )* i

    ( )11 1 di

    ( )*1 i

    ()

    *

    2

    i(

    )1

    21

    d i

    ()

    *

    2

    i(

    )1

    21

    d i

    ( )11 1 di

    ( )*1 i

    ( )* i

    ( )1 1 di

    (a) (b) (c)

    3.9: (n= 2)

    0 i < id j+1 iu q cZu(i) = q cXu(i) q cZu(i)= q

    cWu(i) -

    . q cXu(i), qcWu(i)

    (3.42) (2.10), .

    3.5

    3.5.1

    , - . q +Dq

    i f j2Zi f j + ` ; `= 0; : : : ;L,

    Z(i) .

    3.5.1.1 -

    3.5.1 q +Dqi f j 2 Wi f j + ` ; ` = 0; : : : ; i f j+1 i f j

    q +Dqi f j 2Wi f j 1.

    3.5.1.2 -

    -, q +Dq

    i f j 2 Qi f j + ` ; ` =

    0; : : : ; i f j+1 i f j , q +Dq i f j 2 Qi f j 1, 3.10.

    37

  • 3.

    ( )1jfi +( )1 jfi

    ( )jfp iS

    ( )jfi

    ( )jfi +

    3.10: Undetected fault case (n= 2).

    3.5.1 q +Dqi f j 2Qi f j

    q +Dqi f j1

    2 Qi f j 1 ; and

    Dq i f jDq i f j1

    a2+

    qa22 4a1a32a1

    ; and

    a3 < 0;

    a2 = 2 s(i f j )d (i f j )s(i f j )pG(i f j )

    fT (i f j )q1p

    G(i f j )

    + d (i

    f j )t(i f j )s(i f j )

    pG(i f j )

    f(i f j)

    +2qlmax[P(i f j1)]lmin[P(i f j1)]

    ,

    a3 = 1+ d (if j )

    s(i f j )

    f(i f j )T q1p

    G(i f j ) t(i f j)

    2 d (i f j), q1 = q + Dq

    i f j1

    qc i f j 1, a1 =d (i f j )

    lmin[P(i f j )].

    3.5.2

    id j - i f j [60]. - id j+1 . id j+1 id j < L, - L- - . , id j . .

    q +Dqi f j1

    2 Wi f j 1 ( ) - i f j Dq

    i f jDq i f j1= [d1;0]T , ( (3.11))

    L= 3.

    38

  • 3.5

    q +Dqi f j W

    i f j 1, -

    Snpi f j( )

    Wi f j 1. ,

    Wi f j( ) ,

    q +Dqi f j q +Dq

    i f j1

    .

    id j = i f j +1, Snpi f j +1

    TWi f j 6= /0, Snp i f j +1 -

    . - Wr

    i f j( ), -

    (3.4.1), Wi f j +1

    .

    , Snpi f j +2

    ( )

    Wi f j +1

    id j+1 = i f j + 2 < i f j + 1+L = id j +L. , id j = i f j + 1 . - , .

    ( )1

    max2

    ( ) ( )1 + jfi ( ) +

    jfi

    ( ) ( )S

    ( )S +

    ( )S +

    ( ) +

    2

    max2

    3.11: (n= 2).

    , id j , id j = id j 1 - W

    id j1 Wr id j1. -

    id j; : : : ; id j+1

    , Snp

    id j+1

    W

    id j+1 1.

    , id j =

    id j 2; : : : ; id j L,

    . (3.12) . , ,

    39

  • 3.

    , id j = id j 1, S

    id j+1

    TWid j+1 1 6= /0.

    ( )

    ( ) ( )1 +

    jfi ( ) + jfi

    ( )

    ( ) +

    ( )S

    ( )S +

    ( )S +

    3.12: (n= 2).

    3.6

    , - . - , , . , - , - . , - . , -. , - - . . .

    40

  • 3.6

    - , - . , - . , ) , ) - , .

    41

  • 3.

    42

  • 4

    4.1 -

    4.1, -. , . V . -- . 4.1.

    :

    mz+ cz+ kz=eaAV 2

    2(z zmax)2= Fel : (4.1)

    z , zmax - , m , k , c , A , ea Fel .

    43

  • 4.

    (a) (b)

    Serpentine

    springs

    fuses

    X

    X

    X

    X

    Movable plate

    V electronics

    Actuator

    electrode

    Sensor

    electrode

    V

    maxzz

    k c

    substrate

    m

    elF

    4.1: ) , ) -- .

    :

    Fel(i) = [z(i); z(i);z(i)]

    24 mck

    35) y(i) = fT (i)q : (4.2) q = [q 1 ;q 2 ;q 3 ]

    T = [704:96 mNmsec2

    mm ;10mNmsecmm ;

    0:8 mNmm ] . ym(i);fm1 (i);fm2 (i); fm3 :

    ym(i) = Fmel (i) = Fel(i)+ ey(i); jey(i)j emaxyfm1 (i) = zm(i) = z(i)+ ef1(i);

    ef1(i) emaxf1fm2 (i) = zm(i) = z(i)+ ef2(i);

    ef2(i) emaxf2fm3 (i) = zm(i) = z(i)+ ef3(i)

    ef3(i) emaxf3 ;(4.3)

    ey(i); efu(i);u = 1;2;3 emaxy ; e

    maxfu -

    SNR=55dB. [47],

    , , 4.1. gmax1 = 30%q 1 , gmax2 =40%q 2 gmax3 = 30%q 3 , L= 500.

    - 4.1, -:

    44

  • 4.1

    4.1: -

    i f j 2001 3001 4001 5001 6001 7001j 1 2 3 4 5 6Dmm 0.05 0.10 0 0 0 0Dkk 0 0 0.05 0.1 0 0Dcc 0 0 0 0 0.3 0

    (A) ,

    (B) ,

    (C) ,

    (D) ,

    q +Dqi f j; j= 1; : : : ;6

    id j j = 1; : : : ;6, 4.2.

    4.2:

    j 1 2 3 4 5 6i f j 2001 3001 4001 5001 6001 7001

    ((A) (D)) id j 2001 3001 4001 5004 6001 7003

    4.2, 4.3 and 4.4 [] (A)q+Wu(i) [q

    Wu(i)] (() [] ), (B)q

    +Wu(i) [q

    Wu(i)] ((-

    ) [] ), (C)q+Xu(i) [qXu(i)] (()

    [] ), (D)q+Xu(i) [qXu(i)] (() [] ),

    u= 1;2;3. q u +Dqui f j

    id j - .

    45

  • 4.

    2001 3001 4001 5004 6001 7003

    704.96

    740.208

    775.456

    iterations

    1(

    Ns

    ec2/

    m)

    (A)-+1

    (i)

    (A)-1

    (i)

    (B)-+1

    (i)

    (B)-1

    (i)

    (C)-+X1

    (i)

    (C)-X1

    (i)

    (D)-+X1

    (i)

    (D)-X1

    (i)

    4.2: q 1 , - .

    2001 3001 4001 5004 6001 7003

    10

    13

    iterations

    2(

    Ns

    ec/

    m)

    (A)-+2

    (i)

    (A)-2

    (i)

    (B)-+2

    (i)

    (B)-2

    (i)

    (C)-+X2

    (i)

    (C)-X2

    (i)

    (D)-+X2

    (i)

    (D)-X2

    (i)

    4.3: q 2 , - .

    46

  • 4.1

    2001 3001 4001 5004 6001 7003

    0.8

    0.84

    0.88

    iterations

    3(

    N/

    m)

    (A)-+3

    (i)

    (A)-3

    (i)

    (B)-+3

    (i)

    (B)-3

    (i)

    (C)-+X3

    (i)

    (C)-X3

    (i)

    (D)-+X3

    (i)

    (D)-X3

    (i)

    4.4: q 3 , - .

    47

  • 4.

    4.2

    -

    . 4.5. , (Lc: , bc: , hc: ) (Rt : , lt : ) , .

    -

    , yin. , -

    ,

    .

    Split-diode

    photodetector

    Mirror

    Mirrored Prism

    Diode laser &lens

    PZT tube scanner

    Sample

    Cantilever

    Piezo

    Holder

    ( )in t

    tsFtip

    ( ),ct L t

    4.5:

    :

    y t(Lc; t)+Cy y t(Lc; t)+Kyy t(Lc; t) =1 4

    p

    yin(t)+

    w1Qc

    yin(t)+w21yin(t) (4.4)

    48

  • 4.2

    Cy =w1Qc

    +2cllt2

    rIrLc; (4.5)

    Ky = w21 +2kllt2

    rIrLc: (4.6)

    w1 , Qc - , r , Ir , kl; cl - . kl ,kl = 8G

    pRt (a0d0), G , a0

    d0 .

    :

    y t(Lc; i)U(i) =y t(Lc; i) y t(Lc; i) Cy(i)Ky(i)

    )

    y(i) = fT (i)q (i); (4.7)

    U(i) =1 2b1Lc

    yin(i)+ w1Qc yin(i)+w

    21yin(i), i2 [1; : : : ;10000]

    :

    q 1 (i) =w1Qc

    +2lt2

    rIrLccl(i) = b1+b

    2cl(i); (4.8)

    q 2 (i) = w21 +16G

    p(a0d0)lt2rIrLc

    pRt(i) = b3+b

    4

    pRt(i); (4.9)

    . ym(i)=y t(Lc; i)+e1(i), ym(i)= y t(Lc; i)+

    e2(i), ym(i) = y t(Lc; i)+ e3(i), eq(i); q = 1;2;3 -, emaxq SNR=55dB. , cl Rt :

    cl(i) = cl(i1)+wcl (i); jwcl (i)j 0:0005cl(0)| {z }wmaxcl

    Rt(i) = Rt(i1)+wRt (i); 0 wRt (i) 0:0001Rt(0)| {z }wmaxRt

    :(4.10)

    cl(i) 2cminl ;c

    maxl

    = [4 107Nsec/m;12

    107Nsec/m] Rt(i) 2Rtmin;Rtmax

    = [10nm;30nm], 8 i.

    49

  • 4.

    - [61], Rt i f1 = 3501 and i f2 = 6501 Rt

    i f1=

    Rti f1 1+wRt i f1+0:4Rt i f1 1 Rt i f2=Rt i f2 1+wRt i f2+0:25Rt i f2 1.

    4.1 (4.7) q (i) - q 1 (i); q 2 (i). 4.3.

    4.3: -

    j i f j (A)&(B)-id j (C)&(D)-id j

    1 3501 3501 3519

    2 6501 6501 6518

    q 1 (i); q 2 (i) cl(i),Rt (i), - (B) (D).

    4.6(a) cl(i) ( ), (B)[(D)]c+l (i), (B)[(D)]c

    l (i) (

    [], ) - (B)[(D)]c+l (ijid j 1), (B)[(D)]cl (ijid j 1) ( [], ). , 4.6(b) Rt(i) ( ), (B)[(D)]R+t (i), (B)[(D)]R

    t (i) (

    [], ) - (B)[(D)]R+t (ijid j 1), (B)[(D)]Rt (ijid j 1) ( [], ).

    4.3

    - - . , ,

    50

  • 4.3

    3501 65011.5

    1

    0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3x 106

    iterations

    c l(K

    gr/se

    c)

    cl(i)

    (B)-c+l

    (i)

    (B)-cl

    (i)

    (B)-c+l

    (i|idj 1)

    (B)-cl

    (i|idj 1)

    (D)-c+l

    (i)

    (D)-cl

    (i)

    (D)-c+l

    (i|idj 1)

    (D)-cl

    (i|idj 1)

    (a) cl(i)

    3501 6501

    10

    15

    20

    25

    30

    X= 3500Y= 11.7622

    iterations

    Rt

    (nm

    )

    X= 6500Y= 17.9528

    Rt(i)

    (B)-R+t

    (i)

    (B)-Rt

    (i)

    (B)-R+t

    (i|idj 1)

    (B)-Rt (i|idj 1)

    (D)-R+t

    (i)

    (D)-Rt

    (i)

    (D)-R+t (i|idj 1)

    (D)-Rt

    (i|idj 1)

    (b) Rt(i)

    4.6: (B) (D)

    51

  • 4.

    - - . -, , , - . , - , .

    52

  • 5

    , , . , . , : ) - , ) .

    , - , , , . H - . . - , -, - . .

    53

  • 5.

    , . , - , .

    - , . , - , . , , - . , , . , - . - - , - , . , . , - , .

    - (), - . -, - , , ., - , . , - . ,

    54

  • , - . , , , , - , . , - . , - .

    , . 2, - . , -. .

    - . , , 1 [62]. , , , . , y(i) 2 R f(i) 2 Rn. - y(i) 2 Rr1 f(i) 2 Rrn [63].

    3, - . , - , - / . [64].

    55

  • 5.

    [65], [66] - . [67]. , .

    , 5, - - . , - , . , , -, .

    56

  • [1] R. Isermann, Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Springer

    Verlag, 2006.

    [2] J. Gertler, Fault detection and diagnosis in engineering systems. Marcel Dekker, New York, 1998.

    [3] M. Basseville and I. Nikiforov, Detection of abrupt changes: Theory and application. Prentice Hall

    Inc, 1993.

    [4] C. Jiang and D. Zhou, Fault detection and identication for uncertain linear time-delay systems,

    Computers and Chemical Engineering, vol. 30, no. 2, pp. 228242, 2004.

    [5] P. Smith, C. Furse, and J. Gunther, Analysis of spread spectrum time domain reectometry for

    wire fault location, IEEE Sensors Journal, vol. 5, no. 6, pp. 14691478, 2005.

    [6] I. Izadi, S. Shah, D. Shook, and T. Chen, An Introduction to Alarm Analysis and Design, in

    Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes,

    Barcelona, Spain, 2009, pp. 645650.

    [7] K. Huang and N. EvaWu, Change Detection for the NASA Generic Transport Aircraft Model,

    in Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical

    Processes, Barcelona, Spain, 2009, pp. 277282.

    [8] Y. Tharrault, G. Mourot, and J. Ragot, WWTP diagnosis based on robust principal component

    analysis, in Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of

    Technical Processes, Barcelona, Spain, 2009, pp. 13421347.

    [9] J. Vanlaer, G. Gins, and J. Van Impe, Comparison of MPCAV, ARPCA, and BDPCA fault detec-

    tion performance in a fed-batch penicillin fermentation process, in Proceedings of the 7th IFAC

    Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, 2009,

    pp. 840845.

    [10] W. Zanardelli, E. Strangas, and S. Aviyente, Identication of Intermittent Electrical and Me-

    chanical Faults in Permanent-Magnet AC Drives Based on Time-Frequency Analysis, IEEE

    Transactions on Industry Applications, vol. 43, no. 4, pp. 971980, 2007.

    [11] F. Previdi and T. Parisini, Model-free actuator fault detection using a spectral estimation ap-

    proach: the case of the DAMADICS benchmark problem, Control Engineering Practice, vol. 14,

    no. 6, pp. 635644, 2006.

    [12] M. Galvez-Carrillo and M. Kinnaert, Fault detection and isolation in current and voltage sensors

    of doubly-fed induction generators, in Proceedings of the 7th IFAC Symposium on Fault Detection,

    Supervision and Safety of Technical Processes, Barcelona, Spain, 2009, pp. 13601365.

    57

  • [13] R. Isermann, Model-based fault-detection and diagnosisstatus and applications, Annual Reviews

    in control, vol. 29, no. 1, pp. 7185, 2005.

    [14] S. Rajakarunakaran, P. Venkumar, D. Devaraj, and K. Rao, Articial neural network approach

    for fault detection in rotary system, Applied Soft Computing Journal, vol. 8, no. 1, pp. 740748,

    2008.

    [15] C. Edwards, S. Spurgeon, and R. Patton, Sliding mode observers for fault detection and isolation,

    AUTOMATICA OXFORD, vol. 36, pp. 541553, 2000.

    [16] G. Hendeby and F. Gustafsson, Fundamental fault detection limitations in linear non-Gaussian

    systems, in Proceedings of the 44th IEEE Conference on Decision and Control, Seville,Spain, 2005,

    pp. 338343.

    [17] J. Sakellariou and S. Fassois, Vibration based fault detection and identication in an aircraft

    skeleton structure via a stochastic functional model based method, Mechanical Systems and Signal

    Processing, vol. 22, no. 3, pp. 557573, 2008.

    [18] L. Hartert, M. Sayed Mouchaweh, and P. Billaudel, Dynamic Fuzzy Pattern Matching for the

    monitoring of non stationary processes, in Proceedings of the 7th IFAC Symposium on Fault Detec-

    tion, Supervision and Safety of Technical Processes, Barcelona, Spain, 2009, pp. 516520.

    [19] V. Sugumaran, V. Muralidharan, and K. Ramachandran, Feature selection using Decision Tree

    and classication through Proximal Support Vector Machine for fault diagnostics of roller bearing,

    Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 930942, 2007.

    [20] S. Pirooz Azad, Bahrampour, B. S., Moshiri, and K. Salahshoor, New Fusion Architectures for

    Performance Enhancement of a PCA-Based Fault Diagnosis and Isolation System, in Proceedings

    of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona,

    Spain, 2009, pp. 852857.

    [21] C. Isaza, A. Orantes, T. Kempowsky-Hamon, and M.-V. Le Lann, Contribution of fuzzy classi-

    cation for the diagnosis of complex systems , in Proceedings of the 7th IFAC Symposium on Fault

    Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, 2009, pp. 11321139.

    [22] A. Barner, J. Bredau, and F. Schiller, Ecient Fault Detection in Safety-related Pneumatic Con-

    trol by Conceptual Encapsulation, in Proceedings of the 7th IFAC Symposium on Fault Detection,

    Supervision and Safety of Technical Processes, Barcelona, Spain, 2009, pp. 11681173.

    [23] E. Nemeth, R. Lakner, I. Cameron, and K. Hangos, Fault diagnosis based on hazard identication

    results, in Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of

    Technical Processes, Barcelona, Spain, 2009, pp. 15151520.

    [24] R. Razavi-Far, H. Davilu, V. Palade, and L. Caro, Neuro-Fuzzy based Fault Diagnosis of a Steam

    Generator, in Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of

    Technical Processes, Barcelona, Spain, 2009, pp. 11801185.

    [25] V. Puig, J. Quevedo, T. Escobet, and B. Pulido, On the integration of fault detection and isolation

    in model-based fault diagnosis, in Proceedings of the 16th International Workshop on Principles of

    Diagnosis (DX-05), Pacic Grove, CA, USA, 2005, pp. 227232.

    [26] J. Meseguer, V. Puig, and T. Escobet, Fault Diagnosis using a Timed Discrete Event Approach

    based on Interval Observers, in Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008,

    pp. 69146919.

    58

  • [27] D. Panescu, Mems in medicine and biology, IEEE Engineering in Medicine and Biology Magazine,

    vol. 25, no. 5, pp. 19 28, 2006.

    [28] J. Leclerc, Mems for aerospace navigation, IEEE Aerospace and Electronic Systems Magazine,

    vol. 22, no. 10, pp. 31 36, 2007.

    [29] N. de Rooij, S. Gautsch, D. Briand, C. Marxer, G. Mileti, W. Noell, H. Shea, U. Staufer, and

    B. van der Schoot, Mems for space, in Proceedings of the 15th International Conference on Solid-

    State Sensors, Actuators and Microsystems, Denver, Colorado, USA, 2009, pp. 17 24.

    [30] J. Hilbert, Rf-mems for wireless communications, IEEE Communications Magazine, vol. 46, no. 8,

    pp. 68 74, 2008.

    [31] J. Wang, G. Li, , Y. Lu, X. Gao, Y. Zhang, and K. Tao, Vehicle supervision system based on mems

    geomagnetic sensor, in Proceedings of the 4th International Conference on Nano/Micro Engineered and

    Molecular Systems, Shenzhen, China, 2009, pp. 331 334.

    [32] E. Eleftheriou, T. Antonakopoulos, G. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Durig,

    M. Lantz, H. Pozidis, H. Rothuizen, and P. Vettiger, Millipede - a mems-based scanning-probe

    data-storage system, IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 938 945, 2003.

    [33] D. Sahoo, W. Haberle, A. Sebastian, H. Pozidis, and E. Eleftheriou, High-throughput intermittent-

    contact scanning probe microscopy, Nanotechnology, vol. 21, pp. 17, 2010.

    [34] M. Dardalhon, V. Beroulle, L. Latorre, P. Nouet, G. Perez, J. Nicot, and C. Oudea, Reliability

    analysis of CMOS MEMS structures obtained by Front Side Bulk Micromachining,Microelectronics

    reliability, vol. 42, no. 9-11, pp. 17771782, 2002.

    [35] S. Lee, R. Ramadoss, M. Buck, V. Bright, K. Gupta, and Y. Lee, Reliability testing of exible

    printed circuit-based RF MEMS capacitive switches, Microelectronics Reliability, vol. 44, no. 2, pp.

    245250, 2004.

    [36] Z. Tao and B. Bhushan, Surface modication of AFM silicon probes for adhesion and wear

    reduction, Tribology Letters, vol. 21, no. 1, pp. 116, 2006.

    [37] S. Mir, Integrated circuit testing: From microelectronics to microsystems, in Proceedings of the

    5th IFAC Symposium on Fault detection, supervision and safety of technical processes, Washington, DC,

    USA 2003, pp. 1324.

    [38] A. Kolpekwar, T. Jiang, and R. Blanton, CARAMEL: Contamination and reliability analysis of

    MicroElectromechanical layout, Journal of Microelectromechanical Systems, vol. 8, no. 3, pp. 309318,

    1999.

    [39] R. Rosing, A. Lechner, A. Richardson, and A. Dorey, Fault simulation and modelling of micro-

    electromechanical systems, Computing & Control Engineering Journal, vol. 11, no. 5, pp. 242250,

    2000.

    [40] M. Lubaszewski, E. Cota, and B. Courtois, Microsystems testing: an approach and open prob-

    lems, in Proceedings of the Design, Automation and Test in Europe, Paris, France, 1998, pp. 524529.

    [41] B. Caillard, Y. Mita, Y. Fukuta, T. Shibata, and H. Fujita, A highly simple failure detection

    method for electrostatic microactuators: application to automatic testing and accelerated lifetime

    estimation, IEEE Transactions on Semiconductor Manufacturing, vol. 19, no. 1, pp. 3542, 2006.

    [42] A. Dhayni, S. Mir, L. Rufer, A. Bounceur, and E. Simeu, Pseudorandom BIST for test and char-

    acterization of linear and nonlinear MEMS, Microelectronics Journal, vol. 40, no. 7, pp. 10541061,

    2009.

    59

  • [43] B. Charlot, S. Mir, F. Parrain, and B. Courtois, Generation of electrically induced stimuli for

    MEMS self-test, Journal of Electronic Testing, vol. 17, no. 6, pp. 459470, 2001.

    [44] R. Asgary and K. Mohammadi, Initialized RHPNN for fault detection in MEMS, in Proceedings

    of the 8th International Conference on Pattern Recognition and Information Processing, Minsk, Russia,

    2005, pp. 449453.

    [45] J. Tanha and R. Asgary, An Intelligent BIST Mechanism for MEMS Fault Detection, in Proceedings

    of MEMSTECH 2007 International Conference on the Perspective Technologies and Methods in MEMS

    Design, Lviv, Ukraine, 2007, pp. 1214.

    [46] A. Izadian and P. Famouri, Fault Diagnosis of MEMS Lateral Comb Resonators Using Multiple-

    Model Adaptive Estimators, IEEE Transactions on Control Systems Technology, vol. PP, no. 99, pp.

    18, 2010.

    [47] A. Izadian, P. Khayyer, and P. Famouri, Fault Diagnosis of Time-Varying Parameter Systems

    With Application in MEMS LCRs, IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp.

    973978, 2009.

    [48] H. Nguyen, C. Berbra, S. Lesecq, S. Gentil, A. Barraud, and C. Godin, Diagnosis of an Inertial

    Measurement Unit Based on Set Membership Estimation, in 7th Mediterranean Conference on

    Control and Automation, Thessaloniki, Greece, 2009, pp. 211216.

    [49] A. Kurzhanskiy and P. Varaiya, Ellipsoidal Toolbox (ET), in Proceedings of the 45th IEEE

    Conference on Decision and Control, San Diego, CA, USA, 2006, pp. 14981503.

    [50] T. Clement and S. Gentil, Reformulation of parameter identication with unknown-but-bounded

    errors, Mathematics and Computers in Simulation, vol. 30, no. 3, pp. 257270, 1988.

    [51] J. Gassman and S. Yurkovich, An ellipsoid algorithm for parameter set estimation, in IEEE

    Conference on Control Applications, Dayton, OH, USA, 1992, pp. 835840.

    [52] G. Belforte, Parameter identication for models with bounded errors in all variables, Systems

    and Control Letters., vol. 19, no. 6, pp. 425428, 1992.

    [53] V. Cerone and D. Regruto, Parameter bounds for discrete-time Hammerstein models with

    bounded output errors, IEEE Trans. on Automatic Control, vol. 48, no. 10, pp. 18551860, 2003.

    [54] F. Chernousko, Optimal Guaranteed Estimates of Indeterminacy With the Aid of Ellipsoids-Part

    I, Engineering Cybernetics, vol. 18, no. 4, pp. 19, 1980.

    [55] J. Watkins and S. Yurkovich, Parameter set estimation algorithms for time-varying systems,

    International Journal of Control, vol. 66, no. 5, pp. 711732, 1997.

    [56] M. Cheung, S. Yurkovich, and K. Passino, An optimal volume ellipsoid algorithm for parameter

    set estimation, IEEE Transactions on Automatic Control, vol. 38, no. 8, pp. 12921296, 1993.

    [57] V. Reppa and A. Tzes, Fault Detection and Diagnosis relying on Set Membership Identication

    for Time-Varying Systems, in Conference on Control and Fault-Tolerant Systems, Nice, France, 2010,

    pp. (to appear, Paper FrA1.2).

    [58] , Fault Detection and Diagnosis based on Parameter Set Estimation, IET Control Theory and

    Appl., 2010, (to appear).

    [59] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press, 2004.

    60

  • [60] V. Reppa and A. Tzes, Fault Detection and Diagnosis based on Parameter Set Estimation for

    Measurements corrupted by Bounded Noise, in 18th Mediterranean Conference on Control and

    Automation, Marrakech, Morocco, 2010, pp. 460465.

    [61] , Fault Detection relying on Set-Membership techniques for an Atomic Force Microscope,

    in 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona,

    Spain, 2009, pp. 11861191.

    [62] A. Ingimundarson, J. Bravo, V. Puig, T. Alamo, and P. Guerra, Robust fault detection using

    zonotope-based set-membership consistency test, International Journal of Adaptive Control and Signal

    Processing, vol. 23, no. 4, pp. 10991115, 2008.

    [63] V. Reppa and A. Tzes, Fault Detection based on Orthotopic Set Membership Identication for

    Robot Manipulators, in in the Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008,

    pp. 73447349.

    [64] , Application of set membership identication for fault detection of MEMS, in Proceedings

    2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 2006, pp.

    643648.

    [65] V. Reppa, M. Vagia, and A. Tzes, Fault Detection using Set Membership Identication for Micro-

    Electrostatic Actuators, in IEEE International Conference on Control Applications, Singapore, 2007,

    pp. 789794.

    [66] , Fault Detection and Diagnosis Enhanced by a Reconguration Control Scheme for a Micro-

    Electrostatic Actuator, in 18th Mediterranean Conference on Control and Automation, Marrakech,

    Morocco, 2010, pp. 477482.

    [67] K. Astrom and B. Wittenmark, Adaptive control. Addison-Wesley Longman Publishing Co., Inc.

    Boston, MA, USA, 1994.

    61

  • 62

    1 1.1 1.1.1 1.1.2

    1.2 1.3

    2 2.1 2.2 2.2.1 2.2.2

    2.3 2.3.1 2.3.2

    2.4 2.4.1 2.4.2

    2.5 2.5.1 2.5.2

    2.6

    3 3.1 3.2 3.3 3.3.1 3.3.1.1 3.3.1.2

    3.3.2 3.3.2.1 3.3.2.2

    3.4 : 3.4.1 3.4.2 3.4.2.1 3.4.2.2

    3.5 3.5.1 3.5.1.1 3.5.1.2

    3.5.2

    3.6

    4 4.1 4.2 4.3

    5