Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18...

52
RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1: Main rings of Saturn; the image is registered along its top edge with a radial profile of the ring optical depth from a Cassini UVIS stellar occultation. The optical depth (usually denoted τ ) is the vertical integral through the ring layer of the particle number density times its cross-sectional area, times extinction efficiency (for the plot above, the efficiency is unity). The B ring – especially its central part – has the highest optical depth, but the highest values shown are just noise limits. Unlabeled regions mentioned in the following text include the series of “plateaus” in the outer C ring, centered on the Maxwell gap near 87500km, which contains an elliptical ringlet. The Encke gap is visible in the outer A ring, around 133600km. The narrow, stranded F Ring is just off the figure at right. Figure from Colwell et al 2009. RWG Executive Summary: Cassini has rewritten the textbooks regarding our understanding of Saturn's Rings, a full generation after Voyager first revealed their complex structure. In fact, Cassini studies of Saturn’s rings have already been thoroughly reviewed in two sets of review chapters and articles; In the first major review volume “Saturn after Cassini-Huygens”, very thorough reviews are given by Colwell et al 2009, Charnoz et al 2009, Cuzzi et al 2009, Horanyi et al 2009, and Schmidt et al 2009, which remain largely valid as of this writing even if they predate many important results. A short, nonspecialist review is given by Cuzzi et al (2010). More recent, complete reviews can be found in the Cambridge “Planetary Rings” book, including Cassini’s results prior to the Ring-Grazing and Grand Finale orbits (Charnoz et al 2018, Cuzzi et al 2018, Estrada et al 2018, Hedman et al 2018, Murray and French 2018, Nicholson et al 2018, Spahn et al 2018, and Spilker et al 2018). Finally, all the instrument-based chapters in this volume update the story to the very end of the mission, including results from Cassini’s last moments, and some provide exhaustive bibliographies as well. We will attempt to cover the highlights of ring science from beginning to end of the mission as organized by our own goals and objectives, and, in a readable way, provide a thread of continuity connecting Cassini’s vast accomplishments to

Transcript of Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18...

Page 1: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

1

Volume1:CassiniFinalReport,RingsDisciplineWorkingGroup

Figure1:MainringsofSaturn;theimageisregisteredalongitstopedgewitharadialprofileoftheringopticaldepthfromaCassiniUVISstellaroccultation.Theopticaldepth(usuallydenotedτ )istheverticalintegralthroughtheringlayeroftheparticlenumberdensitytimesitscross-sectionalarea,timesextinctionefficiency(fortheplotabove,theefficiencyisunity).TheBring–especiallyitscentralpart–hasthehighestopticaldepth,butthehighestvaluesshownarejustnoiselimits.Unlabeledregionsmentionedinthefollowingtextincludetheseriesof“plateaus”intheouterCring,centeredontheMaxwellgapnear87500km,whichcontainsanellipticalringlet.TheEnckegapisvisibleintheouterAring,around133600km.Thenarrow,strandedFRingisjustoffthefigureatright.FigurefromColwelletal2009.RWGExecutiveSummary:

CassinihasrewrittenthetextbooksregardingourunderstandingofSaturn'sRings,afullgenerationafterVoyagerfirstrevealedtheircomplexstructure.Infact,CassinistudiesofSaturn’sringshavealreadybeenthoroughlyreviewedintwosetsofreviewchaptersandarticles;Inthefirstmajorreviewvolume“SaturnafterCassini-Huygens”,verythoroughreviewsaregivenbyColwelletal2009,Charnozetal2009,Cuzzietal2009,Horanyietal2009,andSchmidtetal2009,whichremainlargelyvalidasofthiswritingeveniftheypredatemanyimportantresults.Ashort,nonspecialistreviewisgivenbyCuzzietal(2010).Morerecent,completereviewscanbefoundintheCambridge“PlanetaryRings”book,includingCassini’sresultspriortotheRing-GrazingandGrandFinaleorbits(Charnozetal2018,Cuzzietal2018,Estradaetal2018,Hedmanetal2018,MurrayandFrench2018,Nicholsonetal2018,Spahnetal2018,andSpilkeretal2018).Finally,alltheinstrument-basedchaptersinthisvolumeupdatethestorytotheveryendofthemission,includingresultsfromCassini’slastmoments,andsomeprovideexhaustivebibliographiesaswell.Wewillattempttocoverthehighlightsofringsciencefrombeginningtoendofthemissionasorganizedbyourowngoalsandobjectives,and,inareadableway,provideathreadofcontinuityconnectingCassini’svastaccomplishmentsto

Page 2: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

2

thebigpictureofringoriginandevolution.Insummary-theringsarechangingbeforeoureyesdynamically,andtheyaremuchyoungerthanthesolarsystemcompositionally.

Wavesandcollectivedynamics:SpiraldensityandbendingwaveswerediscoveredbyVoyager.Theyaredrivenatorbitalresonanceswithvarioussatellites,blankettheAring,andaresprinkledthroughouttheBandCRings.Improvedanalysistoolshaveallowedeventheweakestofthesefeaturestobestudiedindetail,andtheyprovidepowerfulconstraintsontheunderlying,localsurfacemassdensityonseveral-kmspatialscales.AboutadozenspiraldensityandbendingwavesintheCringhavebeenshowntobecausedbygravitationalandpressuremodesinsidetheplanet,potentiallyconstrainingtheinteriorstructureofSaturnanditsrotationrate.

Ringmicrostructureonsub-kmscalesisseeneverywherebystellarandradiooccultations,andvariesonshorttimescales.Ubiquitoustransientgravitationalinstabilitiescalledself-gravitywakesarise,andaretornapartbydifferentialrotation.Thesewakesvaryinconfigurationacrosstherings,andtheirpropertiesimplyaringverticalthicknessoftensofmetersorless.Anunrelated,axisymmetrickindofmicrostructure,duemoretoviscousforcesthanself-gravity,canalsobeseenatvariousplacesinthedenserpartsoftherings.Imagestakenfromcloseorbits,withsub-kmresolution,showthatfine-scalestructureiswidespreadinopticallythickregions,someofitgranularandsomeaxisymmetricorstreaky.Denseclumpscalled“straw”,eachthesizeofaconvoyofaircraftcarriers,areseeninbetweenthedensecrestsofstrongspiraldensitywaves,probablycompactedasparticlespassthroughthecrests,andsubsequentlybrokenapartbycollisions.

Embeddedmoonlets:AnalysisofCassiniimageshavenowshownthatskirted,embedded10-kmsizemoonletsareresponsibleforopeningboththeEnckeandKeelergapsintheARing(seealsochapterbytheIcySatellitesWorkingGroup).Ingeneral,thesmallringmoonslyingwithinandneartotheringshaveverylowdensitiesandarelikelyrubblepileswithdensecores.However,moonletshavenotbeenfoundinsimilargapsintheCassiniDivisionorCringwiththe~1kmsizespreviouslythoughtnecessarytoclearthem.

Flocksofsmaller“propeller”objectsof100-200msize,detectableonlyintheirdisturbanceofnearbyringmaterial,occupythreeradialbandsintheARing.Adozenorsoofthelargestoftheseobjects,0.1-1kminsize,wanderinsemimajoraxis,perhapsbecauseofgravitationalscatteringbytheclumpyringmaterialtheyinteractwith.Discretekm-sizeobjectshavealsobeeninferredfromdisturbancesattheouteredgesoftheAandBringsandintheHuygensringletoftheCassiniDivision.OnesuchobjecthasbeenimagedintheBring.Someoftheseobjectsseemtodisaggregateandperhapsreaggregateinplace,ontimescalesofmonthsoryears,suggestingongoingrecyclingofmaterialdrivenbysatelliteforcing,self-gravity,andcollisions.

Ringsin3D:Cassinidiscovereddramaticverticaldistortionsoftherings,inadditiontothewell-knownspiralbendingwaves,nearEquinoxwhenthesun'silluminationwasatagrazingangle.TheedgesoftheKeelergaparenoticeablywarped,consistentwiththesmallinclinationofitscentralringmoonDaphnis,butthoseoftheEnckegaparenot.TheouteredgeoftheBringshowedalpen-like,spikypeaksandshadows.TheouteredgeoftheARingshowedaveryclumpystructure,lackingdistinctpeaksbutwithshadowssuggestingverticalrelief.

RingParticleproperties:Voyagershowedthatthemainringparticlesizedistributionstendtowardspowerlawsrangingbetweencm-mradii.Cassinihasshownthattheslopeandthe

Page 3: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

3

minimumandmaximumsizesofthesepowerlawsvaryacrosstherings.Enhancedcollisionsinspiraldensitywavescreateblizzardsofsmallparticles,whichseemtoaffectthebrightnessandcolorofthesurroundingregion.AsshownbycomparisonofoccultationsatUV,nearIR,mid-IR,andradiowavelengths,andbytheringspectraandcolor,thiseffectisespeciallysignificantintheoutermostARing,theregionmoststronglystirredbyspiraldensitywaves.

Acombinationof10-400µmthermalemissionandscattering,and2.2cmradiometry,suggeststhatringparticlesprobablyhavealowdensitymantle–ie,areporousaggregates-butmayalsohavemoredensecores.Therings'thermalemissionsuggestsaregolithofnearlypurewatericegrainsof10-100μmsize.Cassini2.2cmradiometrydetectsafractionofapercentofnon-icymaterialthroughtheAandBrings,greatlyimprovingonpre-Cassinimicrowaveobservationswhichcouldconstrainthetotalnon-icymaterialonlytolessthanafewpercentrelativeabundance.However(whencombinedwithspiraldensitywavesurfacedensities/opacities),2.2cmradiometryhasalsorevealedwhatlookslikeaburiedsilicate-richrubblebeltinthemidCRing–possiblytheremainsofthecoreoftheringparent.

VIMSspectrashowthatAandBringcompositionisnearlypurewatericewithoutanyotheridentifiableicessuchasCO,CO2,NH3,CH4,butthereisastrongUVabsorptionmakingtheringsunusuallyreddish,thatvariesinstrengthfromplacetoplace.Theredcoloroftheringsisstrongestwherethewatericeabsorptionbandsaredeepest,suggestingthattheredmaterialresideswithintheicyregolithgrains,andincreasesradiallyinwardsatasteadyrate.Athird,more“neutral”non-icymaterialhasacompletelydifferentradialdistribution.Theverylowmassfractionofnonicymaterial(exceptperhapsintheCRingrubblebelt)providesourstrongestconstraintontheageandoriginoftheRings,asdiscussedbelow.Therings’redcolorintheUV-visibleregionmaybeexplainedbyfragmentsofcarbon-bearingtholins(perhapssimilartomaterialblanketingthesurfaceofcometCGasobservedbyRosetta),or(someargue)bytinyiron-richparticles,embeddedinthedominantwaterice.RecentCassiniin-situresultsandremotesensinganalyses,andHST-STISobservations,favortheorganics.

NewinsitudatafromCDAandINMSontheRing-Grazing(henceforthRG)andGrandFinale(henceforthGF)orbitshavegreatlyenrichedtheringcompositionstory.Abundant,Fe-poorsilicatesandorganicmoleculesareassociatedwiththeinnermostDandperhapsCRings.EvidencefororganicsisalsofoundoutsidetheringsbyINMS.Reconciliationoftheseinsituresultswithremotesensingisonlybeginning.

Ringvariabilitywithtime:TheouteredgesofthedenseAandBringsvaryincomplexwayswithbothlongitudeandtime,indicatingtheinterferenceofmultiplefreeor“normal”modes–possiblytheresultoflarge-scale,nonaxisymmetricviscousoverstabilities--withtheexpectedsatellite-drivenforcedmodes.Theouter100kmoftheBringshowscomplex,fine-scalebrightnessvariationspossiblycausedbythesedeformations.GravitationaleffectsofthemodesmightevenplayaroleinsculptingthenarrowergapsintheCassiniDivision,sofarfoundtobefreeofsmallmoonlets.

ChannelsopenandcloseinSaturn'sFringstrands,inresponsetocloseapproachesbyPrometheus,andtheseeffectsvaryastheorbitsofPrometheusandtheFringmutuallyprecess,leadingtostrongerandweakergravitationalinteractions.Kinksand“mini-jets”comeandgointheFringcore,excitedbysmallunseenobjectsatlowrelativevelocities,andmoredramaticjetsofmateriallastingmonthsaretriggeredbyobjectseccentricenoughtocrashthroughtheringathighrelativevelocities.TheseviolentcollisionscontinuebecausetheentireFringregion

Page 4: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

4

isdynamicallychaotic,mostlybecauseofPrometheus,andforthisreasonthelong-termstabilityoftheFRingcorehasbeenproblematic.TheFRinghasanarrow``truecore"oflargeparticles,ascharacterizedbestbyRSS,confinedandstabilizedbyanewkindofdynamicaltrappingdueonlytoPrometheus.ThefinedustseeninimagesandstellaroccultationsisatinyfractionoftheFRingtotalmass.ClumpactivityhasvarieddramaticallybetweenVoyagerandCassini.

Verticalripplesorwarpscoveringtheinnerpartoftherings,whichhavechangedevenoverthedurationofthemission,suggestthatSaturn'sDandinnerCringsweretippedrelativetoitsequatorseveraltimesoverthelastmillennium,andasrecentlyasafewdecadesago.Impactsbyrubblestreamsproducedbydisruptedobjectsarethemostlikelycause.Severalimpactsbyindividualm-sizeprojectileshaveactuallybeenseenandcatalogued.

Diffuseringsdominatedbytinydustgrainsareaffectedbysunlightandmagneticfields:ThesourceoftheERingparticleshasbeenconfirmedasthesouthpolarjetsofEnceladus(seesectiononIcySatellites,thisvolume).Severalnewarcsandringletsareassociatedwitherosionofsmallembeddedmoons.TheERingandotherdiffuseringsandringlets(suchasthoseintheEnckegap)areaffectedbysunlightandelectromagneticforcesaswellasbygravity,andthusshowseasonalvariationsintheirstructure.Somediffuserings,notablytheDRingandthefaintmaterialbetweentheAandFRings,aremodulatedbyazimuthalvariationsinSaturn'smagneticfield.

Thedurationandbehaviorofthe“spokes”VoyagerdiscoveredintheBringhavebeenfurtherconstrained,thoughtheirultimatecauseortriggerremainsunknown.Cassinifoundthattheyseasonallyappearanddisappear,probablyduetovariablephotochargingofthemainringlayer,andtheirtemporalperiodicitiesmatchbestthatofthenorthernhemisphereSaturnKilometricRadiation(SKR)duringthe2008/2009timeframe,thoughcontributionsfromthesouthernSKRsourcecouldnotberuledout.AnyassociationwiththeSaturnElectrostaticDischarges(SEDs)wasruledout.

Ringmass:Voyager-eraestimatesoftheringmasswereroughly0.7-0.8Mimasmasses.Itwassincesuggestedthatthebreakdownoftheringlayerintoopaqueclumps(theself-gravitywakes),separatedbynearlyemptygaps,couldallowalotofmasstobe“hidden”intheclumps.ModelingofdozensofspiraldensityandbendingwavesoverCassini’sfirstdecadehadconstrainedthemassoftheA,C,andinnerBrings,soanyhiddenmasshadtoresideinthedensestpartsoftheBring.IntheGrandFinaleOrbits,theCassiniRSSteamtrackedthespacecrafttoconstraintheringmassbyitsperturbationonCassini'sorbit,andconcludedthattheringmassisnotverydifferentfrom,andlikelylowerthan,ourVoyager-eraexpectations.

OriginandAgeoftheRings:Thestrongestconstraintonringageisprovidedbythegradualdarkeningandrestructuringoftheringswithtimebyinfallingmeteoroids.Inferringtheactualringagerequiresknowledgeofthecurrentmassfractioninnonicy“pollutant”,aswellasboththeincomingmeteoroidmassfluxandthetotalmassoftherings.TheCassiniDustAnalyzerexperimenthasdetermined,cumulativelyovertheentiremission,theinfallingmeteoroidmassfluxanddynamicalpopulation.Themassfluxfarfromtheplanetisnottoodifferentfrompre-Cassiniestimates.However,thedynamicalpopulationislikethatofKuiperBeltobjects,sohasalowerencountervelocityandismorestronglyfocussedbySaturn'sgravitythanthoughtpreviously.Thismeansthatthefluxofmeteoriticmaterialactuallyhittingtheringsisprobablyevenlargerthanpreviouslythought.CombiningtheringmasswiththeCDA-

Page 5: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

5

determinedmeteoroidmassflux,andestimatesofnonicy“pollution”currentlyintherings,leadstoaringexposureageof100-200Myr,perhapsevenalittleyoungerthanVoyager-era“young-ring”scenarios.

Theassociatedpuzzlesof“WhyisSaturntheonlygiantplanetwithrings?”and“Istheringsystemyoung?”havebeen,ifnotyetexplained,atleastilluminatedbyanemerginghypothesisinvolvingaclosely-coupledtidalevolutionofthemid-sizedicymoonsleadingtoaSaturn-specificdynamicalinstabilityoftheinnersatellitesystem,withpossibledisruptionsandreaccretion,ontheorderof100Myrago.Constraintsfromsatellitesurfacegeologywillneedtobefoldedintoevaluatetheplausibilityofthescenario.(1)OverallAssessmentofRingandDustScience

NotonlywereallkeyscienceobjectiveslistedintheAOandSolsticeTraceabilitymatrixsuccessfullyaccomplishedoverthecourseoftheCassinimission,butanumberofnewscienceobjectiveswereformulatedandaddressedalongtheway,eitherinresponsetounexpectedresultsorcapitalizingonobservationalopportunities(bothsomenotoriginallyenvisioned,andsomeingreaternumbersthanenvisioned).Whenthemissionwasapproved,theAOObjectivesreflecteda4-yearbaselinetourwithonly59orbits,allowingatmost16Radiooccultations,andofcoursedidnotincorporatetheRingGrazing(henceforthRG)orGrandFinale(henceforthGF)observinggeometries.Bytheendofthemission,eventhefour-yearbaselinetourhadbeenoptimizedtoinclude74(generallyshorter)orbits,wastinglesstimefarfromtheplanet,andhadalsobeenextendedbynineyears,triplingthetotaltimebaselineforobservationsrelativetotheAO.Thefinaltourlasted13years,samplingthreedifferentseasonsandreachingNorthernSummerSolstice(themaximumopeningangleoftheringsasseenfromEarthandthesun)whichallowedtheradiooccultationstobetterpenetratetheopticallythickestpartsoftheBRing.Themissionincluded282orbitscapturingmanynewcombinationsofilluminationandviewingangles–importantforimaging,VIMSandUVISspectralreflectancemapping,andCIRSthermalmapping.Datasetsreturnedincluded135ringradiooccultations(eachat3wavelengths),170,000ringimages(manyat<1km/pxl),over200UVstellaroccultations,170near-IRstellaroccultations,30solaroccultations,andevenafewoccultationsatthermal,mid-IRwavelengths.Thestellaroccultationsmadeuseofdozensofstarswithdifferentelevationanglerelativetotherings;low-opticaldepthringsarebeststudiedbylow-elevationstars,andhighopticaldepthringsbyhigh-elevationstars.Inaddition,severalcomplete2.2cmmicrowaveemissionmapsorradialscancombinationswereobtainedindifferentgeometriesandresolutions,and3activeradarbackscatteringscanswereobtainedintheRGandGForbitswhenthespacecraftwascloseenoughtoovercomethefourth-powerdependenceofradarsensitivityondistance.Moreover,theRGandGForbitsprovidedIn-situringparticlecompositionsamplingopportunitiesforCDA,INMS,andMIMIthatwerenotpartoftheAOplan,andenableddirectdeterminationoftheringmassfromspacecrafttrackingoftheRSSsignal.VIMSstellaroccultationswerenotevenenvisionedintheAO,butwereaddedafterselectionoftheinstruments.ThisnewstellaroccultationcapabilityprovidedaveryusefulwavelengthdifferencecomparedtoUVIS,andanentirelydifferentangulardistributionofsourcesonthesky.UsingtheRadarasapassive,pencil-beammicrowaveringbrightnessmapper,ortoobtainactiveradarbackscatteringradialprofilesfromtherings,werealsonotpartoftheoriginalplan.

Page 6: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

6

TheoverallsciencedatavolumereturnofCassiniwasmorethan100timesthatofVoyagerintheinstrumentstheybothcarried,nottomentiontheroughly200timeslongertimebaselineatinterestingresolution,andthenumerousuniquenewremoteandin-situobservationsprovidedbyCassini.ThereisnoquestionthatthesciencereturnofCassinivastlyexceededtheexpectationsasdescribedintheAO.(2)SummaryofKeyOpenQuestions

Overall,CassinihasansweredmanyofthequestionsraisedbyVoyager,raisednewones,andleavesuswithalargelyuntappedreservoirofdatawithwhichtoanswerthemall.Theseandothersarediscussedinmoredetailinsection6.

Theoverallringmassisknownnow,butwithlowprecisionandnoradialresolution.IstheBringmassuniformlydistributedaccordingtoopticaldepth,orisitevenmorestronglyconcentratedinthestillnearlyopaquecentralregions?DoestheCRingcontainarockyrubblebelt?Futuremissionswithtrackingcapabilityandmultipleclosepasseswillbeneeded,andshouldbeplannedtoalsoprovideabetterunderstandingofwhySaturn’sowninteriorissodifferentfromJupiter’s.

Mostringstructureisstillapuzzle!TheirregularstructureblanketingtheentireBRing,withlengthscalesnarrowlyconcentratednear80kmintheinnerBRingbutcoveringawiderrangeofscalesfromtheresolutionlimittoseveralhundredkminthemid-andouterBRing,remainsamystery.Intheinner-midBRingthereareverysharpoptical-depthjumps(butnottoemptyspace)thatarebarelyexploredandremainunexplained.

Theentireensembleofso-called“plateaus”intheouterCRing,symmetricallyplacedaroundtheMaxwellgapintheCRing(whichisknowntobecausedbystructureinSaturn’sinterior)andincorporatingsomeotheremptygaps,Isnotunderstood.Theplateausalsocontainauniquekindof“streaky”microstructurenotseenelsewhere,thatwasonlyseeninalimitedwayduringthefinalorbits.

Thereareseveralsignificantfeatures(Aringinneredge,CRingplateaus)whichhavesharp,well-definedboundariesthataredefinedonlybychangesintheparticlesizedistribution,acrosswhichthesurfacemassdensitydoesnotchange.Thisstructuralcontrolofparticlesizedistribution,orviceversa,isnotunderstood.

ThemerepresenceoftheCassiniDivisionisanunsolvedproblem,althoughitisplausiblethatastrongdensitywavedrivenbythe2:1resonancewithMimashadaroleincreatingitwhentheringsweremoremassiveandmaterialfilledtheregion.Theapparentlackofmoonletscapableofclearingthe13gapsintheCassiniDivisionandCring,especiallythe5-6thathavenoembeddedringlets1,isapuzzle.Acluemaybefoundintheapparentlynon-randomspacingsoftheedgesoftheCassiniDivisionbandsandgaps,perhapssomehowmanifestinggravitationalinfluenceoftheBRingouteredge.

Theunusually“red”coloroftheAandBrings,whicharemorethan95%waterice,seemstobeduetoorganicmaterial,basedonacombinationofremoteandinsitumeasurements.However,compositionvariesfromplacetoplaceandonarangeofscales.1CassiniDivisiongapswithringlets:Huygens,Herschel,Laplace;andwithoutringlets:Russell,Jeffreys,Kuiper,Bessel,Barnard;Cringgapswithringlets:G1,Colombo,Maxwell,Bond;andwithoutringlets:Dawes

Page 7: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

7

Modelscapableofinterpretingcolorandspectraldataquantitativelyintermsofunderlyingcompositionareinadequate,andneedimprovement.Thehintofarubblebeltofnonicymaterialburiedinthemid-CRingisintriguing,butremoteobservationsareambiguousandtheanalysisofinsituobservationsisonlygettingunderway.Whetherornotorganicsexplainthesimilar,butrelativelyweak,UVabsorptionseeninmostoftheicymoonsisnotyetknown(thedarksideofIapetushasbeenfitbycarbon,nano-iron,andmetaloxides).WhyistheGRingparentbody,soclosetotheicymainrings,sodark?

AretheA(andB)ringpropellerobjectstheshardsleftoverfromtheringparent?Whydothedozenorso“giantpropellers”foundonlyoutsideoftheEnckegapwanderinsemimajoraxis,andwhat(ifany)patternsarepresentintheevolution?Aretherecyclic,self-limitingprocessesofgrowthanddisruptionofsub-kmsizedobjectsintheouterA(andB)rings?TheFRingcoreisstabilizedbyPrometheus,butwhatcausesitsuniformlyprecessingeccentricity?DorelativelylargeobjectsforminregionscompressedbyPrometheusandgoontocrashthroughthecore,creatingclumpsandstrands?

TheringsseemtobemuchyoungerthantheSolarSystem,basedonnominalresultstodate,andthereisoneencouraginghypothesis(a200Myr-agosystem-wideinstability)providingthepropercontext,butquestionsremainincludingconsistency(orlackofit)oftheobservedicymooncrateringdistributionswithreaccretionofmostoftheinnericymoonsonthatsametimescale.

Page 8: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

8

(3)KeyObjectivesoftheRingsWorkingGroup TheoriginalringobjectivesfromtheAO,andthoseaddedfortheextendedCassiniSolsticeMission,aregivenbelow.AscanbeseenintheTable,WeassessCassiniasfullysuccessfulatleast,inallregards.Itcannotbeemphasizedenoughthatinalmostallcases,therehasbeenfarmoredataobtained,reduced,andarchivedthantheteamshavehadtimetoanalyzeandinterpret.

RWGScienceAssessment,matrixformat

RWG Science Objectives

AO and TM

Science Objectives

RWG Science Assessment

Comments if yellow (partially fulfilled)

Ring Structure and Dynamics R_AO1 Ring Particle Composition and Size R_AO2 Ring-Satellite Interactions R_AO3 Dust and Meteoroid Distribution R_AO4 Ring-Magnetosphere-Ionosphere Interaction R_AO5 Changing Rings RC1a Ring Temporal Variability RC1b F Ring RC2a Ring Age and Origin RN1a Ring Composition RN1b Ring Structure RN1c Ring Microstructure RN2a New Ring Structures RN2b Theseobjectivesarediscussedbelowinmoredetail.

Page 9: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

9

(4)RWGScienceResults4.1PrimeMission(AO)OriginalObjectives(Highest,top-levelresults)4.1.1RingStructureandDynamics(R_AO1)-Studyconfigurationoftheringsanddynamicalprocesses(gravitational,viscous,erosional,andelectromagnetic)responsibleforringstructure.

Thisobjective–perhapsthebroadestanddeepest-wassatisfiedbeyondourinitialexpectations.Stellarandradiooccultationsarethemostpowerfultoolforexploringstructureathighresolution.Duringinitialplanningsessions,theUVISteamwasconsideringdozensofstellaroccultationsasanoptimisticgoal,andendedupwithover200,includingthenovel“turnaround”occultationsinwhichthelineofsighttothestarmovesparalleltotheparticleorbits,atverylowvelocity,allowingazimuthalstructuretobedeterminedathighresolutioninperhapsadozenradiiandstructureonthescaleofaringthicknesstobeaddressedstatistically.Moreover,VIMSdevelopedastellaroccultationcapabilityoftheirownthatwasnotpartoftheoriginalplan,andwentontoproducealmost200occultationsoftheirowningeometriesthatwereindependentofandcomplementarytothoseavailabletoUVIS,becausetheyobservedadifferentsetofstars.AllthesestellaroccultationsresideontheRingsPDSnodein1and10kmresolutionformat.Inaddition,RSSconducted135occultationsatthreeradiowavelengths(0.94,3.6,and13cm),whichallresideontheRingsPDSnodein1and10kmresolutionformat,andforwhichfurtherprocessing(bydiffractioncorrection)cangenerallyprovide100morevenbetterradialresolution.Moreanalysisofthesedatawillprovideadditionalsurprisesandconstraints.ReviewchaptersbyColwelletal(2009)andCuzzietal(2018)coverthemajoradvancesregardingobservedringstructure;Schmidtetal(2009)reviewadvancesinthetheoryofdenseringstructure,andHoranyietal(2009)reviewadvancesinthetheoryofelectromagneticinfluences(mostsignificantontinydustgrains).

(a)Configurationoftherings:The``GrandStructureoftherings”(Figure1)waselucidatedforthefirsttimebyVoyager(reviewedbyOrtonetal2009andColwelletal2009).Inthissectionwewilldiscusstheso-called“Mainrings”–theA,B,andCringandtheCassiniDivision,allofwhichhaveopticaldepthgreaterthanabout0.1(Figure1).TheAringisthebestunderstoodbyVoyager-eratheory-blanketedbyspiraldensityandbendingwavesfromnearbymoons,withembeddedmoonletsthatcarveemptygapsbytheprocessofgravitationalshepherding,andaubiquitousnonaxisymmetric“microstructure”havingscalescomparabletotheringthicknessduetolocalgravitationalinstabilities.AllofthesestructuralpropertieshavebeencloselyobservedbyCassini,ingreaternumbers,withgreaterradialcoverage,inmoregeometries,infinerdetail,andatbettersensitivitythaneverbefore.TheBandCringscontainafewofthesewell-understoodfeaturestoo,butareoverwhelminglydominatedbystructureonallscalesthatissimplynotunderstoodatpresent(seesubsectione,below).Theso-called“Diffuse”D,E,andGrings,anddustyringsassociatedwithvariousmoonlets,haveopticaldepthsmuchlessthanunityandareaseparateclassofstructurediscussedinsection4.1.4-4.1.5.Thenarrow,kinkyFRinglyingjustoutsidetheARinghascapturedanicheofitsownandisdiscussedmostlyinsection4.2.3.

Page 10: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

10

Thelocal“ringthickness”wasaperennialtopicofdiscussionbeforeVoyager,andmeasurementsofkilometerswerereported(nowknowntobebetterexplainedbyverticalcorrugationsand/ortheinclinedFRing).ThesingleVoyagerstellarandRadiooccultationsshowedthatringedgesweresosharpthatthelocalthickness-atleastatedges-couldbenomorethantensofmeters.Cassini’shundredsofstellarandradiooccultationshaveextendedthisknowledgetonearlyalllocationsexcepttheopaquecentralBring(Colwelletal2006,2009;Hedmanetal2007;seealsoTiscarenoetal2007).Thissmallverticalthicknessmeansthattheringsarenotthe“manyparticlethick”classicallayerenvisionedevenintheVoyagerera,andhaveamoderatevolumedensityof0.01-0.1(SaloandFrench2010)orevenlarger.Thereareimplicationsofhighvolumedensityforringviscosity(see(c)below).Anotherindicationofvolumedensity(andthuslocaldynamics)comesfrommutualshadowing.Visualbrightnessobservationshavelongshownasharp“oppositionpeak”thatwastraditionallyinterpretedintermsofshadowinginamany-particle-thicklayer;howeverdynamicalconstraints,andtheincreasedrecognitionoftheimportanceofcoherentbackscatteringingrainyparticleregoliths(seeCuzzietal2009forareview)complicatethisinterpretation(SaloandFrench2010).CIRSobservationsshowamuchbroaderphaseeffectinparticletemperatures,however,thatisplausiblyshadowing-related,unlikelytobecontaminatedbycoherentbackscattering,andconsistentwithnonclassicalrings(Altobellietal2007,2009;Reffetetal2015,Morishimaetal2017).Thesethermalstudiesleadtomidplaneparticlevolumedensitiesaslargeas0.3-0.4intheBring.Finally,analysisof2.2cmradiometryisbestfitbymodelingcloselypacked,cm-msizeparticlesinthenear-fieldscatteringregime(Zhangetal2017b).

Therehasbeenastarttakenonmodelingofimagingobservationsoftheringsoverawiderangeofgeometries,withanemphasisonunravelingoppositioneffectsofdifferentkindsusingclassicalradiativetransfermodels,(Deauetal2013,2018;Deau2015).However,interpretingUV,visual,andnear-IRobservationsusingrealisticmodelsofcloselypackedparticleswithrough,shadowedsurfaces,whichmightprovidemoreinsightintoradialvariationsoflocalparticlevolumedensityandthuslocaldynamics,remainsinitsinfancy(seePorcoetal2008fortheonlyexample).

(b)Gravitationalprocesses(self-gravitywakes,spiralwaves,andshepherdingtorques):Probablythelongest-knownandmostwidespreadgravitationalprocessleadstothe“self-gravitywakes”,causedbylocal,transient,incipientgravitationalinstabilitieswhicharestretchedintotrailingclumpsofscalecomparabletotheringthickness(indeeddefiningtheringthickness)byKeplerianshear,keepingtheringinaconstantstateoffrustratedsatelliteformation(Ortonetal2009,Schmidtetal2009,Colwelletal2009).ImagingobservationshavecharacterizedtheeffectintheAring,usingtheazimuthalbrightnessasymmetryknownfordecades,butfindingtheparticlecollisionalelasticitytobesmallerthanthought–indicatingeitheraroughsurfaceoraporousregolith(Porcoetal2008).TheeffecthasalsobeenobservedandmodeledinthethermalIR(Leyratetal2008,Ferrarietal2009,Morishimaetal2014;seesection4.2ofFlasaretal,thisvolume,andSpilkeretal2018).A“CAT-scan”techniqueofcharacterizingthehorizontalandverticalscalesofthesestructuresaswellastheiranglerelativetotheorbitdirectionwasdevelopedbasedonstellaroccultationsfromavarietyofslantdirections.Thesemodelsofthedensegravitationalwakesasopticallythick“granolabars”orellipticalcylinders(Colwelletal2006,2007;Hedmanetal2007a,NicholsonandHedman

Page 11: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

11

2010,seeColwelletal2009forareview)providevaluablemeanvaluesoftheorientation,width,height,andseparationofdenseclumpsforuseinmodelsofringbrightness.Thepitchangleofthewakes,relativetotheorbitdirection,decreasesradiallyinwardsasdifferentialrotationbecomesstronger.

Perhapsthemostobvious,beautiful,andusefulgravitationalringstructuresarespiraldensityandbendingwavesatisolatedsatelliteresonances.Thesestrikingfeaturessharethephysicsofthearmsofspiralgalaxiesbutaretightlywrappedlikewatchsprings(Shu1984;Schmidtetal2009).Theypropagateawayfromtheirdrivingresonancewithadecreasingwavelength–densitywavesmoveoutwardsandbendingwavesinwards.Thewavelengthitselfisdiagnosticoftheunderlyingsurfacemassdensityonscalessmallerthanawave.Thus,spiraldensitywavemeasurementsprovideourbestideaoftheradialprofileofmassdensity,inregionswheretheyarefound.Thispropertyisextremelyimportant,becausethealmostubiquitousclumpingduetoself-gravitywavesbreakstheringsintoasetofopaqueregionsseparatedbynearlyemptygaps,forwhich“theopticaldepth”(seefigure1)isofquestionablebasicvalue.

Forthisreason,Robbinsetal(2010)suggestedthatinferencesofringsurfacemassdensityfromacombinationofobservedopticaldepthandparticlesizedistributionmightgreatlyunderestimatetheringmass.ThisreasoningledtoadebateastowhethertheringmasscouldbemuchlargerthanVoyager-eraestimates,becausemostoftheBRing(whichcontainsmostofthemass)isunsampledbydiagnosticdensityandbendingwaves,withimplicationsforringage(seesection4.2.4).ThedebatetiltedinfavoroflowmasswhenHedmanandNicholson(2016)succeededinobtainingsomeBringdensitywavemeasurementsdespitethenoisybackground,andhasnowbeendefinitivelyresolvedinthatdirectionbytheRSStotalmassmeasurementsbasedongravitationaltracking(section4.2.4a).TheRSSgravitymeasurementshavelittleornoradialresolution,butusedAandCRingmassesasdeterminedfromthesewaves(Colwelletal2009,Tiscarenoetal2013)andassumedtheremainderofthemeasuredmasstobethatoftheBring.Theydosuggest,though,thatthesurfacemassdensitiesobtainedfromspiraldensitywavesareinsensitivetothesuggestedclumpingdifficulty. Oneimportantsurprisefrommeasuringsurfacemassdensityisthatseveralimportantstructuralfeatures,longseeninimagesandoccultations,actuallymanifestasdistinctstructuresnotbecausetheyhavehigherlocalmassdensity,aswasusuallyassumed,butbecausetheirlocalparticlesizedistributionchangesinadramaticway,makingthemmoreopaquethantheirsurroundingswithoutmuchchangeintheirunderlyingsurfacemassdensity.Thishappensbecausethesurface-to-massratioofaparticle,orofadistributionofparticles,increasesasparticlesizedecreases.TheeffectisseenattheinneredgeoftheAringandalloftheCRingplateaus–sharpopticaldepthjumpsareseenwherethereIsatmostagradualchangeinsurfacemassdensity(Tiscarenoetal2007,2013a;TiscarenoandHarris2018.Baillieetal(2011)andHedmanandNicholson(2014a)showsurfacemassdensitiesfortheplateausandbackgroundCring,andColwelletal.(2018)showdropsineffectiveparticlesizeintheplateaus,consistentwithasmallchangeinsurfacemassdensitydespitealargeincreaseinopticaldepth.Thisimportantphenomenonoflocallyabruptchangesintheparticlesizedistributionisnotcurrentlyunderstood,butisclearlyofcentralimportancetounderstandingtheformationofthesestructures.

Page 12: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

12

Anotherimportantcluefromdensityandbendingwavesisobtainedfromtheir(sparse)samplingoftheCRing,showingthatthesurfacemassdensityradialprofilediffersfromtheopticaldepthprofileinafashionmosteasilyexplainedifthelocalparticles,whosesizesarewellknownfromRSSoccultations,areseveraltimesmoredenseinthecentralCringthanelsewhereinit–possiblyhintingatburiedrocksinunusuallyhighabundance,andperhapstoahiddenrockyrubblebelt(Zhangetal2017a;seesection4.1.2onringorigin).SamplingoftheBRingisevenmoresparse,butgenerallypointstosurfacemassdensitiessomewhatlowerthanpreviouslythought(HedmanandNicholson2016,TiscarenoandHarris2018)

AninterdisciplinarybonuswastheconfirmationofthepredictionbyMarleyetal.(1987,1989),Marley(1990),andMarleyandPorco(1993)thatdensityfluctuationsinSaturn’sinteriorproducedbyplanetaryscaleacousticoscillations(modes)candrivespiraldensityandbendingwavessimilartothosedrivenbyanexternalsatellite.AnumberofunidentifiedwaveshadbeennotedbyRosenetal(1991)inVoyagerRSSoccultationdata.MarleyandPorcosuggestedseveralspecificassociationsbetweenpredictedresonancelocationsandthese“Rosenwaves”.Theyalsosuggestedthatthestrongestpredicted(two-lobed,orm=2)planetaryinteriorresonancemightbeassociatedwiththeunexplainedMaxwellgap,wheretherewasanunexplainedeccentric(m=1)ringlet.

Cassini,alongwithsubsequentimprovementsintheSaturninteriormodel,haveconfirmedMarleyandPorco’spredictions,puttingthestudyof“ringseismology”onfirmgroundandfindingintheprocessotherfeatureslikelyduetovariationsininternalstructurenotaccountedforinthesimple1993interiormodel.ThegreatadvantageofCassinidataismultiplicityandaccuracyofoccultationmeasurements,allowingboththenumberofspiralarmsandthepatternspeedofthewavestobedeterminedunambiguously,andthusfinerassociationstobemadewiththeoreticalpredictions(HedmanandNicholson2013,2014a,Marley2014).Initially,someRosenwaves,andnewlydiscoveredones(Baillieetal2011),werefoundtohavethesamevalueofm,somethingnotpredictedbyMarleyandPorco.However,Fulleretal(2016)showedthatallowingacompositionally-stratifiedlayerdeepinsideSaturncouldexplainthesemultiplicitiesbecausesuchagradualdensitytransitionwouldallowdifferenttypesofmodestomixinsidetheplanet.Next,atwo-armedspiraldensitywavewasdiscoveredwithinthe(m=1)Maxwellgapringlet(Frenchetal2016b),validatingtheassociationofthegapwiththestrongest(m=2)modeaspredictedbyMarleyandPorco(1993).Finally,Mankovichetal(2018)haverecentlyshownthatslightlychangingtheinteriorrotationperiodofSaturnallowsthedetailedpredictionsofMarleyandPorco(1993)tobeverywellmatchedacross16setsofwavesoverawiderangeofrelativestrengths,withthestrongestperturbationopeningtheMaxwellgap.Infact,thisexcellentagreementprovidesthebestconstraintyetonthedeepinteriorrotationperiodofSaturn–afundamentalpropertythathasbeenelusivebecauseofthealmostcompletelackofmagneticfieldazimuthalasymmetry(Doughertyetal2018,andtheMAPSDWGreport,thisvolume).Inaddition,anewclassofdensitywaveshasbeenfoundintheBandArings–wavesthataredrivenbydensitystructuresofunknownorigin,fixedtothebodyofSaturn(El-Moutamidetal2016a,b).Surprisingly,someofthesewavefeaturesareactuallyseentodriftradiallyinwardsintherings,indicatingtemporalchangesinSaturn’sinteriorstructureonadecadetimescale(Hedmanetal2014a,2017,2018b).So,ringpropertiesandphysicshaveledtothreenew,importantinsightsintothedeepinteriorofSaturn.

Page 13: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

13

Seealso4.1.3formorediscussionofinteractionsbetweensatellitesandmoonletswiththerings,whicharemostlygravitational.

(c)Viscousprocesses:Becauseoftheirinnumerableparticlesinaconstantstateofgentlecollisions,theringsactlikeagasorfluidandobeytheequationsoffluiddynamics,withlocalpressureandviscosity.Theyspreadradiallyduetoviscosity,animportantaspectoftheirevolutionthatcombineswithotherangularmomentumandmasstransportprocesseslikeshepherding,wavetorques,and“ballistictransport”ofmeteoroidejecta.Thetheoryofspiraldensitywavesismatureenoughthattherateatwhichtheiramplitudedampsastheypropagatecanbeusedtoconstrainthelocalringviscosity(Schmidtetal2009,2016;Colwelletal2009).

Asecondkindofso-called“ringmicrostructure”,calledaviscousoverstability,occursonscalesoftheringverticalthicknessandispartlydrivenbyviscosity(Schmidtetal2009).Inthiseffect,astable(non-growing)radialoscillationcandevelopthatcomprisesaxisymmetric,alternatingringletsofhighandlowdensity,thatpulsateontheorbitaltimescale.ThesestructuresarealignedwiththeorbitaldirectionandwerefirstdistinguishedbysubtleDopplereffectsinoff-axisscatteringduringCassiniRSSoccultations(Thomsonetal2007)buthavealsobeendetectedusingstatisticalanalysisofstellaroccultations(Colwelletal2009,Hedmanetal2014b).Theyarewidespreadacrosstheringsandgenerallyfoundwiththeexpectedlengthscales–comparabletoaringthickness-inregionswheretheopticaldepthismoderatetohigh.Self-gravityplaysonlyasmallroleinthesestructures.

Viscousoverstabilitiescantakeonnon-axisymmetricformsaswell.Forexample,inadenselypackedring,collectivebehaviorsakintothoseseeningranularflowcanoccur,andviscousstresscanactuallydecreasethedampingbetweenadjacentorbitalmotions,effectivelybylockingparticles,andthereforetheirorbits,together.Wherethereisalsotheopportunityfordoublereflectionofspiraldensitywaves,aswithinanarrow,isolatedringboundedbysharpedges,oraso-called“resonantcavity”,theycanbecomeamplified(Borderiesetal.1985),generatinglow-order(m=1,2,3,etc)modes.Them=1andm=2structureofthenarrow,sharp-edgedringsofSaturn(theMaxwellringletinparticular,exhibitsanm=2spiraldensitywaveforcedbyanm=2acousticmodewithinSaturn(seeSection4.1.1babove)butattainsanm=1overallstructure)andUranusmaybeexplainedinthisway.However,Cassinidiscoveredlarge-scale,unforcedor“free”modeswithm=1,2and3intheouterportionoftheBRing,inadditiontotheresonantm=2modeforcedbyMimasattheBring’sedge(SpitaleandPorco2010;section4.2.2).Thelarge-amplitudem=1mode,inparticular,woulddampquicklywithoutboththeoverstabilizingviscouseffectsdescribedaboveandtheamplificationaccompanyingmultiplereflectionswithintheresonantcavityformedbytheBringouteredgeandthemode’sownresonantradiussome250kminwards.Thediscoveryoftheseunforcedmodesisthefirstindicationofsubstantialwaveamplificationonlargescales,inbroadrings.Thesemodesmayhaveapplicationstoothercelestialdisks,suchasprotoplanetarynebulae(Laughlinetal.1997)andspiralgalaxies.

Viscosityandpressureduetoringparticlecollisionsdeterminestheabilityofringparticlestomovefromonefaceoftherings(saythelitface)totheother(unlit)face,andmodelshavebeenappliedtoCIRSthermalobservationstoaddressthisconstraint(Flandesetal2010,Pilorzetal2015,Morishimaetal2016).Anothermanifestationofparticlecollisionswouldbetopacksurfaceregolithstovaryingdegrees,dependingonlocaldynamics.CIRStried

Page 14: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

14

tomeasureradialvariationsinparticlethermalinertia(higherformorepackedparticlesurfaces),butthecomplexitiesofthemodels,thecomplicationsduetosmalland/orrapidlyrotatingparticles,andtheincompletenessoftheobservingphasespacehassofarprecludedmorethanabasicdeterminationthattheringparticleslooklikeotherfrostyoutersolarsystemobjects.ThechapterbyFlasaretalinthisvolumedescribeshowmodelsofringthermalobservationscanaddresstheseandotherissues,inmoredetail.

(d)Erosionalprocesses:“Pollution”ofthemostlyicyringmaterialbymeteoroidbombardment,erosionofringparticlesintoimpactejecta,andrestructuringoftheringsby“BallisticTransport”oftheejecta,werefirstsuggestedanddiscussedinthepre-Cassiniera(seeDurisenetal1989,1992;CuzziandEstrada1998;andsection4.2.4cformorediscussion).Theprocessisalittlesubtleandcounterintuitive(seemorerecentworkinCharnozetal2009andEstradaetal2015).Extrinsicmeteoroidshittheringsattensofkm/s,notonlydepositingtheirsubstantialamountofnonicymaterialbutejectingchipsofthetargetringparticleat1-100m/s;thesechipsgooffonorbitsthatre-impacttherings,wheretheybecomepartofanewringparticle.ExchangesoflossesandgainsofmassandangularmomentumcanresultinsignificantradialrestructuringoftheringsurfacemassdensityoveratimeshortcomparedtotheageoftheSolarSystem(givenwhatwenowunderstandaboutthemeteoroidflux;seesection4.1.4).

Signaturesofthisprocesscanbefoundbothinringstructureandringcomposition.Todate,intriguingpossiblecorrespondencestoobservedstructurehavebeenseen(amongstthemtheabruptinneredgesoftheAandBringsandtheoddlinearrampsinwardofthem,andthe80-kmscale“irregularstructure”intheinnerBandinnerArings),andagoodmatchisprovidedtothesmoothcompositionalprofilethataccompaniestheabruptBRing-CRingboundary.Theseindependentstructuralandcompositionalpropertiessuggesta“young”ringageofafewhundredmillionyears,extendingthesimpler“pollution”argumentrelyingondepositionofnonicymaterialalone(sections4.1.2),butthemodelshavemanyparametersandfacenewchallengesfromnewdiscoveriesofseveralkinds(seesection6).

(e)Electromagneticandradiativeprocesses:Particlesinthespaceenvironmenttendtoattainamaximumchargethatisonlylargeenoughtoaffectthedynamicsoftiny(atmost10micronsize)grains.Anentirebranchofringdynamicshastodowithresonancesinvolvingforcingoftinychargedgrainsbytheperiodicallyfluctuatingplanetarymagneticfield–so-called“LorentzResonances”(Burnsetal1985,SchafferandBurns1987,seeHoranyietal2009andHedmanetal2018aforreviewsoftheseandotherelectrodynamicaleffects).Themostobviousplaceswheretheseprocesseswillbeimportantisinthediffuserings,suchastheD,E,andGrings,whichareknowntobemosteasilydelineatedbytheirtinyparticles(Hedmanetal2009,2018a).TheERingshowsthemostclearinfluences,includingitspreferenceforanear-monodispersionofparticlesizeataroundonemicronradius,aradialprofilewithalocalminimumatthelocationofEnceladus,and3DvariationsthatcorrelatewiththeorientationrelativetotheSun(Hedmanetal.,2012,Yeetal2016).Itisnowknown,ofcourse,thattheERingisthefrostybreathofEnceladus,andanalysesofISSimageshaveclarifiedhowitisfedinsomedetail(Mitchelletal2015).

Asecondringphenomenonwidelythoughttobeconnectedtoelectromagneticforcesistheflickeringofshadowy“spokes”acrosstheAandBrings,discoveredbyVoyager(seereviewsbyOrtonetal2009andHoranyietal2009).VariousperiodicitiesintheVoyagerspokeoccurrencerates,rotationratesatspokeboundaries,andtheangularandspectralscattering

Page 15: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

15

propertiesofspokeregionshaveimplicatedelectromagneticeffectsactingontinygrains(withsizesmostrecentlyshownbyD’Aversaetal2010).Thetinygrainsareprobablyreleasedsporadicallyfromringparticlesurfacessomehow,perhapsbym-sizeparticleimpacts,energybeamedfromtheplanet,ormagneticfield/plasmainstabilitiesnearthering(reviewedbyHoranyietal2009).Earth-basedobservationsalsocontributedtothisunderstanding(McGheeetal2005).SurprisinglytomostoftheCassiniteam,spokeswereinvisibleonapproachandforthefirstyearormoreofthemission,firstseenonlyweaklyinlate2005(Mitchelletal2006).ThisobservationsupportedanideafirstsuggestedbyNitteretal(1998)thatseasonalchangesinphotochargingbytheSunwereresponsible.Inthistheory,dustisconstantlybeingloftedoutoftheringplanebyimpacts,butwhenthesolarelevationishigh,electronsarephotosputteredoutofthedensemainringlayer,causingthemainringstobepositivelychargedwhileembeddedinaverticallyextended,negativelychargedelectronplasma.Grainsejectedfromtheringsbecomenegativelychargedinthisplasmaandaresweptimmediatelybackintotheringsbythestrongverticalelectricfield.Theprocessislikeanelectrostaticdustprecipitatorinanindustrialsmokestack.Thetheorypredictedthatatacertainlowelevationangle,theelectrostaticprecipitationwouldceaseandspokeswouldreappear(Voyager1and2flybyswerebothatatimeoflowsolarelevation),andindeedtheirdisappearanceagainayearorsoafterequinoxprovedthistobethecase.Duringthebrieftimespokeswereabundant(roughly2009-2011),detailedstudiesoftheirmorphology(Mitchelletal2013)showedthatthespokeshadextendedactivegrowthtimes,bothradiallyandazimuthally,andthattheiractivitylevelwasmostlikelyassociatedwithoneoftheSaturnKilometricRadiation(SKR)periods,butmaximizesatadifferentlongitudeinthatsystemthanfoundbyVoyager.

Finally,certaindustyringletsinvariousotherwiseemptygapsintheringssuggestevidenceforelectromagneticorevensolarradiativecontrolontheirpredominantlymicron-sizedgrains.Onedusty,eccentricso-called“charming”ringletintheoutermostCassiniDivisiongap,thatwasnotverynoticeableduringeitherVoyagerencounter,alwayspointsitsapoapsetowardsthesunduetoradiationpressure(Hedmanetal2010a).Severaldusty,clumpyringletsintheEnckegaphavesimilarproperties(Hedmanetal2013c).Ingeneral,onewouldexpectthatthesetinygrainsareconstantlyresuppliedbygenerallyunseenstrandsorclumpsofmacroscopicparticleswithcomparablylowopticaldepths,butsuchabeltofmoremassiveparticleswouldnotbeinfluencedbyelectromagneticorradiativeforces.4.1.2RingParticleCompositionandSize(R_AO2)-Mapcompositionandsizedistributionofringmaterial. Asdescribedinmoredetailinsection4.2.4c,understandingthenonicymassfractionintheringsiscritical,asitprovidesperhapsthestrongestconstraintontheageandoriginoftherings. (a)Composition(remotesensing):Thegoalwastodeterminethecompositionoftheringmaterialwiththebestpossibleradialresolutionacrossthemainrings.SpectralobservationsatUV,visual,andNIRwavelengthsaregenerallyinsensitivetoringparticlesizebecausetheringparticleswereknowntobemuchlargerthanthesewavelengthsfromgroundbasedandVoyagerobservations.Knownringstructureisonscaleson100-300km,soobservationsneededtobeplannedtoenableVIMS,UVISandCIRS–allhavingmuchlowerresolutionthanISS–toresolvethesescales.Longerobservationtimesallowingdeeper

Page 16: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

16

integrationswerepossibleatgreaterdistances,andhighSNRspectraofbroadsegmentsoftheA,B,andCRingswerealsoobtained.Astimewenton,welearnedmoreabouttheobservationsandabouttherings.Forinstance,Saturnshinewasfoundtocontributeorganic-lookingspectralfeaturesincertaingeometries(ringlongitudesbetween120-240oSolarhouranglesasobservedfromhighphaseangles,forinstance).TheVIMSandUVIScalibrationpipelinesevolvedandimprovedasthemissionwenton,anddataanalyzedandpublishedearlyinthemissionmightstillprofitfromreanalysis.ISS,whilehavingmuchhigherresolutionandtypicallyobtaining3-5km/pxlinextendedcolorsequences,hasverylimitedspectralresolution.In-depthISSsequenceswereplanned,butonlyonelitfaceobservationinall15filterswasobtainedinPrimeMission,whichwascorrupted,soextensiveandredundantfollowupwasplannedforthe“extended”orCassiniSolsticeMission(CSM),overarangeofilluminationandviewinggeometries(see4.2.6).RegionalandlocalradialvariationsincolorandspectrawereseenbyUVIS,ISS,andVIMS,greatlyexpandinggeometricalandwavelengthcoveragetoadepthofdatathathasyettobeplumbed.However,goingfromobservedreflectivity(orI/F,theratioofobservedintensitytothatofacolocatedLambertsurface)toquantitativeconstraintsonringparticlecompositionisasomewhatimperfectmodelingstep,involvingthepoorlyunderstoodwaycloselyspacedparticleswithrough,grainyregolithsscatterlight(seesection6).

Allowingformostofthesecomplexities,VIMSspectraldatahasbeenespeciallypowerfulinconnectingtheabundanceandregolithgrainsizeofwatericewiththerelativeabundanceofothermaterials.Earlyinthemission,Nicholsonetal(2008)found,andsubsequentlyHedmanetal(2013)showedinmoredetail,thattherednessofthemainringscorrelatedverywellwiththewatericebanddepth,suggestingthattheUVabsorberwasspatiallycolocatedwithwaterice,mostlikelyastiny,submicronorsmallersizeinclusionswithinthewatericeregolithgrains(newinsituobservationsmayhaveevendetectedthesetinyfew-nm-sizeinclusionsdirectly–seesection4.2.4b).DetailedstudiesofradialvariationofcolorandspectraarereviewedbyCuzzietal(2009,2018,andreferencestherein).RegardingtheactualnatureoftheUVabsorber,alivelydebatehascontinuedforadecadeastowhethertherings’rednesscanbebetterexplainedbygoodold-fashionedrustorothermetaloxides,asonMars,orbylarge,organicmoleculeslikePolycyclicAromaticHydrocarbons(PAHs)thatgivefruitsandvegetablestheirorange-redcolor(seeCuzzietal2009foradiscussion).

Broadlyspeaking,theopticallythinnerCRingandCassinidivisionaremore“polluted”bysomespectrallyneutralnonicymaterialthantheAorBrings,makingthemdarkeratvisualwavelengthsanddecreasingthestrengthsofthenear-IRwatericebands;thisisthenaturaloutcomeifthedarkeningmaterialisdepositedfromextrinsicmeteoroidbombardment(CuzziandEstrada1998;Bradleyetal2018;seeCuzzietal2009forareview).MorerecentresultsfromCIRSthermalmodelsgivetheringparticlebolometricalbedo–anothermeasurementoftheirnonicypollutants;itisinterestingthat,likeinferencesfromvisualwavelengthreflectivities,thebolometricalbedosarenotonlylowerintheCringandCassinidivisionbutalsovarysmoothlyacrossthesharpAandBringboundaries(Morishimaetal2010),asgenerallypredictedbyballistictransportmodels.

Cassini’slate-orbitin-situobservationsfindplentyoforganicmaterialandsomesilicates,butnodiscerniblefreemetalormetaloxides(seesection4.2.4bfordetails).Moreover,themostrecentCassiniandnon-CassinistudiesusingbothclassicalandMonte-Carloringradiativetransfermodelsagreethatthespectraaremoreconsistentwithreddishorganicsthanwith

Page 17: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

17

othersuggestedmaterials(Ciarnielloetal2018,Cuzzietal2018b).However,eventhebestcurrentregolithscatteringmodelssimplifythephysicsandinvolveseveralparameters.Becausedifferentflavorsof“Hapke-like”regolithscatteringmodelsleadtosystematic,model-baseduncertaintiesinabsoluteabundancesatthefactor-or-severallevel,orevenworse,quantitativeinferencesaboutabundancesmustbetreatedwithcaution.Forinstance,Hedmanetal(2013)interpretedfine-scaleradialcolorvariationsintermsofregolithgrainsize,butthismayhavebeenbecauseofthelimitationsoftheir(classical)model,whereasothersecondaryoptical-depth-relatedeffectsmayaslikelybethecause.Ontheotherhand,Cassini’sUVspectrometerUVISobservedthestrong170nmwatericeabsorptionedgeandhowitvariesacrosstherings(Bradleyetal2010,2013);theseanalysesprovideasensitivemeasurementoftheregolithgrainsize,whichcanremoveambiguitiesinregolithmodelsatcomparablewavelengthsandleadtoabsoluteabundancesofnonicymaterial(seesection4.1.2formorediscussionofgrainsizeeffects).So,whilethecompositionaldebatehasclarifiedregardingoverallcomposition,thereisaneedforconsiderablymoreworkregardingradialvariationandinferenceofquantitativeabundancesofnonicymaterial(seesection6).

OthernewcontributorstotheringcompositionweretheCIRSfar-IRcapability2andtheCassini2.2cmRadar,usedinradiometermode3.Theseobservationshaveconsiderablehistoricalmotivation,asmicrowaveobservationswerethefirsttoconstraintheringcompositionasnearlypurewatericeparticlesofcm-msize(seeEspositoetal1984forareview).ThebasicobservationisthatthebrightnesstemperatureoftheringsdropsfromthephysicaltemperatureinthethermalIR,toasmallfractionofitinthemicrowave(thusrequiringalowparticleemissivity).CIRSwasabletogetringspectracoveringthetransitionspectralrangebetweenthermalIRandseveralhundredmicronwavelength,resolvinginconsistentVoyager-eraobservations(Spilkeretal2005,2018,andFlasaretalthisvolume),and2.2cmradiometrywasusedtocreatesensitive,high-resolutionmapsoftheverylowmicrowavebrightnesstemperature(Zhangetal2017a,b).Microwaveradiometryisuniquebecausethelongwavelengthspenetratetodepthsofseveralmetersincoldwaterice(thathasaverylowmicrowaveabsorptioncoefficient),thusmicrowavessamplethebulkcompositionoftheringparticlesinawaythatmicronandsubmicronwavelengthscannot.TheCassini2.2cmradiometryhadsufficientlyhighresolutiontoseparatetheA,B,andCRingsintodozensofradialbins,andgreatlyimprovedongroundbasedinterferometrybysettingupperlimitsofafractionofapercentonnonicymaterialintheAandBRings. Analysisofthe2.2cmRADARradiometryobservationsalsofoundthattheCRing(withupto6%nonicymaterialuniformlymixed)ismuch“dirtier”thantheAandBrings(Zhangetal2IthadbeenhopedthatthelongestwavelengthchannelofCIRS–advertisedas0.5mmwavelengthbutmorerealistically1mm,couldbeusedasaradiometerinthisway,butcomplicatedcalibrationproblemswiththeMichelsoninterferometrytechniqueprecludedthisevenafterconsiderableeffortbytheteam.3LittlewasproposedorexpectedalongthelinesofringsciencefromRADARintheAOorearlydiscussions,astheteamwasexclusivelyfocusedonTitan.However,asthemissionwentonandtheantennabeamwascarefullycalibrated,theverylowringbrightnesstemperaturewasmappedeveninthepresenceofthe10-times-brighter,hugeglobeofSaturnloominginthecomplexsidelobes.

Page 18: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

18

2017a,b).TheassumptionofuniformmixingmayseriouslyunderestimatetheCRingnonicymaterialabundancethough;constraintsonsurfacemassdensityfromahandfulofspiraldensityandbendingwavesstronglysuggestthattheparticlesinthesamebeltofthecentralCRingwhereunusuallyhighabundancesofsilicatesarefound,haveaninternaldensityseveraltimeshigherthanwaterice–far“heavier”thanexplainedbyamere6%inuniformlymixedsilicatedust.Thesituationsuggestsburiedsolidchunksofnonicymaterial–silicateorcarbonaceous–inlargevolumefraction.This“rubblebelt”iswhatwemightexpecttheremainsofadisruptedcoreofadifferentiatedobjecttolooklike.However,modelingthemicrowaveemission/scatteringprobleminthemainringsisverydifficult,sincetheparticlesizesandseparationsarenotmuchlargerthanthewavelength,soapproximationsareneededevenintheverybestcurrentmodels,leadingtosomedegreeofcompositionaluncertainty;moreovertheseanalysesareinsensitivetothenatureofthenonicymaterial. RecentcomparisonsofspectralpropertiesofthemainringswiththoseoftheringmoonsandclassicalicymoonsareprovidedbyFilacchioneetal(2012,2013,2014),andotherrecentreviewsarebyCuzzietal(2009,2018a).Forcomplementarydiscussionoftheringcompositionbasedoninsituobservations(notpartoftheAOobjectives),whichareespeciallyrelevanttotheDRing,seesection4.2.4.Theso-called“diffuse”(D,E,F,G)ringsandsmallerrubblebelts)arediscussedinsection4.1.4,bothregardingstructureandcomposition. (b)SizeDistribution:EvenbeforeVoyager,itwasknownthatbyfarmostofthemainringparticleswereinthecm-fewmeterssizerange,andforthisreasonmicrowavewavelengthswereexpectedtobethemostpowerfulatspecifyingtheirdetails.Tothisend,Cassini’sobservationplanningincorporated135radiooccultationsofthemainandFrings,atthreewavelengths:0.94,3.6,and13cm.Theseoccultationsprovidethedirect-pathopticaldepthatallthreewavelengths,clearlyshowinglocalandregionaldifferencesintheabundanceofthesmallerparticles(afewcminradius).Inaddition,theoff-axisscattering(so-calledbistaticscattering)oftheradiobeamcanbeusedtoconstrainvariationsintheparticlesatthelarge-sizeendofa(usually)powerlawsizedistribution,aswellastheslopeofthepowerlaw(egZebkeretal1985;Cuzzietal2009).TheRSSoccultationprofilingobservationshavebeenreduced,correctedfordiffraction,andprovidedtotheRingsNodeofthePDS;someexamplesareshowninCuzzietal2009(figures16.1a-16.2).Distinctionsassubtleaschangesintheslopeofthepowerlawsizedistributionandtheminimumandmaximumparticlesizebetweentypicallyafewmmandafewmeterscanbediscerned.Inaddition,stellaroccultationscontributeinformationontherelativeabundanceofsmallerparticles. Somegeneralitiescanbeextractedevenatthispreliminarystageoftheinvestigation.ThefractionofsmallparticlesincreasesoutwardsthroughtheAringbasedontheRSSdata,consistentwithmorevigorouscollisionsassociatedwiththeincreasingradialdensityofresonancesandspiraldensitywaves(Cuzzietal2009;Beckeretal2016,Jerouseketal2016).IntheRSSdata,CRing“plateaus”showlocaldropsinthedifferentialopticaldepth,characteristicoflocallyfewerwavelength-sizeparticles,andasimilareffectisseencrossingfromtheouterCRingtotheinnerBring,andfromtheouterCassiniDivisiontotheinnerARing–withtheopticallythickerringshavingrelativelyfewerwavelength-sizeparticleslyingnearthesmallendofthesizedistribution(Cuzzietal2009).

Page 19: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

19

Stellaroccultationvariancedata4fromUVISprovidesanindependentandcomplementaryparticlesizedeterminationtotheRSSdata.AlloftheCringplateausandnarrower"embeddedringlets”haveasmallermeanparticlesizecomparedtothebackgroundCringrevealedbyUVISoccultationvariancedata.ThebackgroundCringhasanundulatingopticaldepthoverscalesofhundredsofkm,andeffectiveparticlesizecorrelateswiththisstructure;thismaysuggestsize-dependentdynamicaltransportwithinthering.Theinnermost700kmoftheBring,andregionsaroundthestrongresonancesintheAring,exhibitdifferenteffectiveparticlesizesbasedonoccultationvariance(eventhoughself-gravitywakesintheseregionsdominatethesignal).ThereisamarkeddecreaseineffectiveparticlesizecoincidingwiththeMimas5:3bendingwaveintheouterAring.Thisandotherobservationssuggestaverticallyextendedhazeofsmallparticlesacrossthewave;oddly,theeffectisnotseeninthenearlydensitywaveswherecollisionsmightbeexpectedtobeevenmorevigorous.ThevarianceintheCassiniDivision"ramp"revealstheparticlesizedistributiontheretobemoresimilartotheAringthantotheCassiniDivision,withadiscreteincreaseineffectiveparticlesizeattheinneredgeoftheramp.Ontheotherhand,thecomparableCring-Bringboundarytransitionismoregradualinvarianceandimpliedparticlesize(Colwelletal.2018). Moreinformationonparticlesizescanbegainedbycomparingthelocalsurfacemassdensity,fromwavelengthsofspiraldensityandbendingwaves(seeColwelletal2009;Schmidtetal2009)withthelocalopticaldepth.Foridenticalparticles,theopacity(ratioofopticaldepthtosurfacemassdensity)isinverselyproportionaltoparticlesize.Basedonanumberofobservationsofspiraldensitywaves,thereseemtobeonlyverysmooth,orno,dramaticchangesinsurfacemassdensityacrosstheplateausoracrosstheinnerAringboundary(Tiscarenoetal2013a,Colwelletal2009;section4.1.1b).Becausetheopticaldepthdoeschangeabruptlybyafactorofseveral,theremustbeacorrespondingabruptchangeintheopacityattheselocations,requiringachangeintheparticlesizedistribution.Thesenseofthisisthattheparticlesareonaveragesmallerintheplateaus,andintheinnerAandBrings,thaninadjacentmaterial,consistentwiththevariancedatanotedabove.Butyet,RSSoccultationsshowthatthesesameregionshavefewercm-sizeparticles,requiringeitherthattheremustalsobefewerlargeparticles,orthatthelargestparticlesaresmaller,intheplateausandsimilarregions.Alltogetherthissuggestsnarrowersizedistributionsfortheplateaus,andinnerAandBRings,thanfortheirsurroundings–relativelyfewerparticlesatbothsizeextremes.Thereiscurrentlynoexplanationforthisstrongstructuralcontrolonparticlesize,withveryabruptboundaries. Animportantkindof“sizedistribution”isthesizedistributionofregolithgrainsonthesurfacesofringparticles.Whilenotwhatadynamicistwouldcalla“ringparticle”,thesegrains,alongwiththeirunderlyingmaterialcomposition,determinethespectralsignatureatanywavelength.Regolithgrainsizesareusuallybestdeterminedinandaroundstrongabsorptionbands.UVIS,forinstance,seesthestrongwaterice“edge”at170nm,andfromthedetailsofitspositiondeterminesaregolithgrainsizeofabout5microns(Bradleyetal2010,2013).However,atlongerwavelengths(say,thenear-IRwaterbands),largergrainsizesinthetensofmicrons4ShowalterandNicholson(1990)introducedthistechniquetorelatetheexcessvarianceintheoccultationsignal(aboutaradiallyvariable,locallydefinedmean)tothesizeofthelargestlocalparticles.

Page 20: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

20

aregenerallyderived(Cuzzietal2009,Clarketal2012,Filacchioneetal2012,2013).Thisisconsistentwiththeideathatshorterwavelengthssenseandarescatteredbysmallerscalestructures.Indeed,evenbeforeCassini,modelsbyPouletetal(2002,2003)ofEarthbasedspectraoftheringscoveringthe0.3-4.5umspectralrangerequiredverybroadregolithsizedistributions–from10micronstoseveralmillimeters.Analysesofthelong-wavelengthrollofffrommuchlongerwavelengthCIRSdata(Spilkeretal2005),anda30microniceabsorptionfeature(Morishimaetal2012),suggest(notsurprisingly)abroadsizedistributionfromtensofmicronstocentimetersradius,withthelargeronesperhapsstartingtomergefromregolithparticlestofreely-floatingparticles.Muchmoreworkisneededwithimprovedregolithradiativetransfermodelsandbroaderspectralranges. Theso-called“diffuserings”havetheirowndistinctsizedistribution–generallydominatedbymicron-sizedparticlesthatdiffract,ratherthanbackscatter,lightatUV,visual,andNIRwavelengths(seesection4.1.4).4.1.3Ring-SatelliteInteraction(R_AO3)-Investigateinterrelationofringsandsatellites,includingembeddedsatellites.

ThefirstactualsightingofasmallmoonembeddedinacleargapwasPan,intheARingEnckegap(Showalter1991;seeColwelletal2009andOrtonetal2009).Cassiniquicklyfoundasecondexample:Daphnis,intheKeelergap,hasaninclinedorbitandthewavyedgesitimpartstothegapflapvertically(Weissetal2009).Theknowndimensionsandmassesoftheseobjects(Porcoetal2005,2007),combinedwiththeestimatedringviscosity,providesourbestvalidationofthe“shepherdingtorque”theory(GoldreichandTremaine1980,1982;Schmidtetal2009).Cassinithenembarkedonanextensive,systematicmappingoftheothermultipleemptygapsintheCassiniDivisionandCRingoverthedurationofthemission,comingupemptyhanded,and(eventhoughnoteverylongitudeofeverygapwasmapped)concludingthatthesegapsdonotseemtobeclearedbymoonlets(Spitale2017),atleastbasedontheshepherdingtorquetheoryascurrentlyunderstood(Schmidtetal2009).Cluesaboutothergap-clearingprocessesmaybefoundinsomeofthedetailsoftheedgelocationsoftheCassiniDivisiongaps(HedmanandNicholson2010,SpitaleandPorco2010,Frenchetal2016a).However,therearenocorrespondingcluesregardingthefewCRinggapslackingmoonlets,whichmayinsteadbeexplainedinthecontextofwhatevermysteryprocessgeneratestheCRingplateauensemble,withwhichtheunexplainedgapsareassociated.It’sironicthattheVoyagerimagingteamredirectedresourceslateintheplanningphasetotesta(then-new)hypothesisforgap-clearingbysearchingforgap-embeddedmoonlets,butresourceandtimeconstraintsforcedachoiceoftargetingonlyonegap,andasitturnsout,theCassiniDivisionwheretheylookedwasnottherightplace(Smithetal1982).

Ringedgescanalsobemaintainedbysingle,isolatedresonances,asattheouteredgesoftheBring(Mimas2:1resonance;SpitaleandPorco2010andreferencestherein)andtheAringouteredge(Janus7:6resonance;Porcoetal1984).RecentlyElMoutamidetal(2016)andTajeddineetal(2017a)showedindetailhowJanusactuallyisabletocreateanabruptedgefortheouterARingandrestrainitsspreading,evenasitswapsorbitsbackandforthwithEpimetheus,insomewhatofateameffortwithalltheotherringmoonsandresonancesactingondifferentpartsoftheAring,sotheclassical“shepherding”theoryseemstobeingoodshape.

Page 21: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

21

Thekinky,strandedFRinghasamorecomplicated,oftenchaotic,relationshipwithitsnearbymoons,though(seesection4.2.3).

Aspecialkindofembeddedmoonletisonethatistoosmall(smallerthan1kmradius)toactuallyopenagap;thesewerepredictedbySpahnetal(1994),butmostCassiniscientistsweresurprisedtoactuallyseesome,initiallyintheSOIimages(Tiscarenoetal2006).Thesehavebeendubbed“propellers”byvirtueofthedisturbancestheycreate,whicharetooweaktopreventviscosityfrombackfillingthedisturbancebeforethenextencounterofthemoonletwiththesamematerial.ItseemsthereareontheorderofamillionoftheseobjectsintheAring,andtheyareconfinedmostlytothreedistinctbandsintheARing(Sremcevicetal2007,Tiscarenoetal2008).TherehavebeenreportsofpropellersintheBRingaswell(Sremcevicetal2012,2013,2014a,2014b).Itisnotcurrentlyunderstoodwhethertheseobjectsareshardsofaringparent,oraresomehowspontaneouslyformingandperhapsdispersinginplace(Espositoetal2012).ThethreeAringpropellerbandsareanticorrelatedwiththe“halos”oflargespiraldensitywaves,andcorrelatedwiththestrengthofself-gravitywakes,whichmightfavorthelocalformationideaormightsimplyindicatechangesinthephotometricbalanceorlocalviscositythatcausespropellerstobevisible.Asubsetofmuchlargerobjects,dubbed“GiantPropellers”wasdiscovered,whichcouldbetrackedandfoundtobeevolvinginsemimajoraxis(Tiscarenoetal2010).Thisdiscoverymotivatedsignificantdedicatedobservingduringtheextendedmission(seesection4.2.8).Meanwhile,thetheoryofthesedisturbanceshasbeenactivelydiscussedandcontinuestoadvance(Schmidtetal2009,Cridaetal.2010,PanandChiang2010,2012,ReinandPapaloizou2010,Panetal2012,BromleyandKenyon2013,Tiscareno2013,Seileretal.2017).

ApossiblephysicalextensionoftheseobjectstosmallersizeshasbeenseenintheopticallythickerbandsoftheCRing(includingtheplateaus)andCassiniDivision(includingitsouterramp);so-called“ghosts”orpartialclearingsappearinUVISoccultationswithverysmalllengthscales(Baillieetal2013).Thesearethoughttobecausedbyrelativelylargeringparticles–maybemeterstotensofmetersinsize–smallerthantheAandBringpropellers(objectssosmallwouldnotcleargapsinthegenerallyhigheropticaldepth,andmorestronglystirred,AandBrings).Theseobjectswouldneedtobemorethan3timeslargerthanthelargestringparticleinapowerlawsizedistributioninordertocreatethe“ghost”clearings.

FleetingglimpsesofwhatappeartobeembeddedKeplerianobjectshavealsobeenobtainedneartheedgesofseveralringsandringlets.AttheouteredgeoftheARing,theso-called“Peggy”objectwasseenbriefly(Murrayetal2014),seeminglygettingreadytobreakfreeofthemainrings.Thisexcitingmomentmight,itwasthought,allowtheobjecttobespunawayfromtheringsduetoringtorquessuchasmodeledbyCharnozetal(2010)–aneffectbywhichtheageoftheringsmightbeconstrained(seealsosection4.2.4c).However,Peggyactuallywasreabsorbedbackintotheringsandapparentlybrokeintoseveralpieces,provingthatleavinghomecanbedifficult.ModeratelylargeKeplerianobjects,butstilltoosmalltobeseendirectly,werealsoseenneartheedgesoftheAring’sKeelergap(Tajeddineetal2017b),intheHuygensringletoftheCassiniDivision(SpitaleandHahn2016),andneartheouteredgeoftheBRingitself(SpitaleandPorco2010;seealsoCuzzietal2018a).Ithasbeensuggestedthatmanyorevenalloftheseobjectsaretransient,formingbycompactionduetosatelliteperturbations,andthenbeingdisruptedastheyincreasinglystirtheregionsaroundthem(Espositoetal2012).

Page 22: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

22

Finally,itcannotbeforgottenthatallthewonderfuldynamicalrelationshipswearestartingtounderstandbetweentheringsandvariousmoonsdependonagoodunderstandingoftheorbitaldynamicsofthemoonsthemselves,andtheso-called“ringmoons”inparticular,thatinteractstronglywiththerings(Spitaleetal2006,Jacobsonetal2008,Tajeddineetal2013).AdditionalresultscanbefoundintheISSteamreport.Ofspecialimportanceistheparadigm-breakingobservationalresultofLaineyetal(2017)thatthemidsizeicymoonsofSaturn,fromMimasthroughatleastRhea,aretidallyevolvingoutwardsmuchfasterthanhadbeenpreviouslyassumedbasedontraditionaltidal“Q”theory.Thiswasextremelysurprising,becauseSaturn’sinteriorhadbeenthoughttobequitenon-dissipative,likeJupiter,withahigh“Q”value(seeSaturnsection).Amorerecenttidaltheorysuggeststhat“Q”ishighlyfrequencydependent,andthatmoonsgettrappedonacomboflow-QfrequenciesthatslowlydecreaseasSaturn’sinteriorstructureevolves,drivingtheentiresetofmoderate-sizedicymoonsoutwardatamoreorlessdistance-independentrateinsteadofthestronglydistance-dependentrateoftraditionaltidaltheory(see,eg,Fuller2016).Thisnewperspectivehasprofoundimplicationsfortheoriginand(nowincreasinglybelievedtobe)geologicallyyouthfulageoftherings(section4.2.4c).4.1.4DustandMeteoroidDistribution(R_AO4)-Determinedustandmeteoroiddistributionbothinthevicinityoftheringsandininterplanetaryspace. (a)Thediffuserings:Theso-called“diffuse”rings(D,E,F,andG)arebeststudiedbytracingtheirmicron-sizeparticles.SuchsmallparticlesscatterUV,visual,andnear-IRlightintosmallsolidanglesintheforwarddirectionsotheymaybemoreeasilydetectedthaninthelowerbrightnessoftheirlargerparticles,whichisspreadovermoreanglesnearbackscatteringandalsomaybesubjecttothelowbrightnessofindividualparticles.Inallthesecaseswhereonlyfinedustbeltsareobserved,itisgenerallyacceptedthatalarger-particle“skeleton”–orsomesmallparentmoonlet-mustbepresenttoresupplythemicron-sizedmaterial,whichisratherquicklylost(Burnsetal1984;Hedmanetal2018a).Basedpartlyonobservationsofchargedparticledepletions(VanAllen1982;seealsoMAPSchapterinthisvolumeforCassini-basedexamples),theGringhaslongbeenknowntocontainanunderlyingrubblebeltorarcofmacroscopicparticles(seereviewsbyOrtonetal2009andHedmanetal2018),andCassinidiscoveredthattheultimatesourceofthisrubblebeltisa0.5kmsize,highlynonsphericalobjectcalledAegaeon,whichhasaverydark,primitive-bodytypesurface(Hedmanetal2011a).Moreover,Aegaeonistrappedina7:6resonancewithMimas(Hedmanetal2007,2010). Severalotherdustyarcsofmaterialwerediscovered,suppliedbythesmallmoonletsAnthe,Pallene,andMethone–ofthese,MethoneandAnthearetrappedinMimasresonances(Hedmanetal2009b).Acomposite“dustyring”phasefunctionandsizedistributionwasobtainedfromwidephaseanglecoverageoftheDandGrings,forapplicationtoso-called“DebrisDisks”aroundyoungstars(HedmanandStark2015);acertainsimilarityinthetworingphasefunctionsmaypointtosomefamilyand/orprocesssimilarityintheparticles–suchasanaggregate,fractalstructure.TheDringshowsseveralkindsoftimevariability,andisdiscussedmoreinsection4.2.2.Also,thegiant,diffuse“Phoebering”(discoveredbySpitzer;Verbisceretal2009)wasfurtherconstrainedinextent,dynamics,andparticlesizeusingshadow-edgeimagingobservations(Tamayoetal2014,2016).

Page 23: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

23

Adisadvantageofnecessaryrelianceonforwardscatteringforthediffuserings,isthatitisessentiallydiffraction,andonlyweaklydependentoncomposition,sothecompositionoftheseringsisnotquiteaswellknown.Evenwhenthereissomesignalinbackscatteredintensityorreflectivity,itremainsproblematictoderiveevenalbedosforthelargeFandGringparticles(whosescatteringwouldbecompositionallydiagnostic)becausetheiropticaldepthsarevariableand/orsmall,andsouncertain.TheFRingisknowntobedominatedbycrystallinewaterice(Vahidiniaetal2011,Hedmanetal2011b)butmaybesignificantlypollutedbydriftingGringmaterial(Clarketal2012,seefigure3.22ofCuzzietal2018a,andsection4.2.3formoreFRingdiscussion).Bycomparison,thecompositionoftheEringisknownverywellfromCDAin-situsampling(mostlywaterice,withembeddedorganicsandsalt,allcharacteristicoftheundergroundEnceladusoceanfromwhichitcomes);itsstructureisdiscussedinsection4.2.1.In-situsamplingofnanoparticlesintheDRingarediscussedbelowandin4.1.5and4.2.4b.

(b)Theextrinsic(interplanetary)massfluxwasaprimarygoalofCassini.TheCDAInstrumentpaper(Sramaetal2005)estimateddetecting100extrinsicparticlesofmicron-sizeandlarger,andthisis,intheend,justaboutwhattheyfound.However,earlyinthemissionitstartedtolookdifficultorimpossibletomeasureitdirectly(it’saverydustysysteminreality),soanindirectapproachwasexplored,lookingfordustejectahaloesaroundRheaandTethys,byanalogytoGalileoresultsatJupiter(Sremcevicetal2005);thisledtoonlyupperlimitsandaninitialconclusionthattheextrinsicmeteoroidfluxwaslowerthanpreviouslyassumed.However,thebasic,directapproach,simplycountingupthedetectionsandvelocitiesofsmallparticleswithidentifiablyextrinsicorbits,wasultimatelysuccessful,partlyduetothemuchlongertimebaselineoftheCSM(13years)relativetothebaselinemission(seebelow).Thelackofindirectdetection(satellitedusthaloes)wasreconciledafterthefactbyuncertaintiesintheejectayieldmodel.Forexample,theongoing"snowfall"causedbyEnceladus'geysersmighthaveinfluenced/changedthemechanicalsurfacepropertiesofRheaandTethyscomparedtotheJovianicymoons.Futureanalysesofthermalinertiasmightprovideusefulconstraintsonsatellitesurfaceproperties,inthisregard.

TheCDAmeteoroidmassfluxmeasurementworksasfollows(Kempfetal2018;seeCDAchapterofthisreport).Foreachparticledetectedenteringtheinstrumentthereisainstrumentalambiguitythatallowstwoequallyvalidpredetectionvelocityvectors.Alowerlimittotheincidentmassfluxcomesfromonlythe25particlesforwhichbothvelocityvectorstracebacktoextrinsicprojectiles,frombeyondSaturn.Anupperlimitofasortalsoincludesthe75orsoparticlesforwhichonlyoneofthevelocityvectorsrequiresanextrinsicorigin.Becausethesizedistributionofthedetectedparticlesisnotwellknown,thelargestparticlesmightcarrymostofthemass,andtheirraritysuggeststhatthenominaldetectionvaluescouldbealowerlimit.Forinstance,asolitary250umparticlewasnotincludedinthemassfluxcalculations(includingitwouldincreasethemassfluxbyafactoroffive)andanotheryearofmissiontimemighthavecapturedmorelargeparticles.Future,moredetailed(perhapsBayesian)analysesmightrefinetheuncertaintiesmore,butatpresentitseemsthatthenominalCDA“minimumflux”isconservative.Thevaluesfortheminimumflux“atinfinity”–beforegravitationalfocusingbySaturn–arewithinafactoroforderunityofpre-Cassiniassumptions(CuzziandEstrada1998).However,theCDAdiscoverythatthepre-Saturnorbitsweredynamically“KBO-like”(loweccentricityandinclination)ratherthan“comet-like”(andthushavelowerencounter

Page 24: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

24

velocities)thanpreviouslyassumed,leadstoanorderofmagnitudeincreaseinSaturn’sgravitationalfocusingfactorandthusinthefluxattherings.Theimplicationsofthisnewresultformodelsofringstructuralandcompositionalevolution,whichhavemultipleparameters(Estradaetal2015)arenotyetwellunderstoodbuttheyareunlikelytoallowaringageolderthanpreviousestimatesofsomehundredsofmillionsofyears.

Alongthelinesofmassfluxintotherings,weshouldmentionfluxatlargersizesasperhapsprovidingadditionalconstraintsonringevolution;asyet,noefforthasgoneintomergingthesedatasetsandresults.AnobservationbyRPWSonlyreportedatmeetings(Gurnettetal2004)maysuggestimpactsbydozensofparticlesduringthe30minutesCassiniwasskimmingacrossthefaceoftheringsatSOI;significanttheoreticaldevelopmentisneededtotranslatetheseobservationsintoresponsibleprojectilesizes(sand-grains?)butifthiscanbedone,therateswouldsurelybeofinterest.Impactejectatrailsfromahandfulofmeter-sizedparticleimpactswereimagedbyISS(Tiscarenoetal2013,SchmidtandTiscareno2013);UVISmountedanearlyattempttodetectactualimpactflashesthemselvesbutsubsequentthoughtandmodelingconcludedthattheflashcouldonlybeseeninthenear-IR(Chambersetal2008)sotheUVISsearcheswerediscontinued.Perhapsasimple,largeFOV,NIRphotometerexperimenttomonitorimpactsmightbeconsideredforafuturemission.Finally,asdiscussedinsection4.2.2,thereisevidenceformultipleimpactsontheringsby1-10kmsizeobjectsoverdecadesandcenturies.

4.1.5RingMagnetosphere-IonosphereInteractions(R_AO5)–StudyinteractionsbetweentheringsandSaturn’smagnetosphere,ionosphere,andatmosphere.

Ithaslongbeenknownthattheringshavean“atmosphere”oftheirownduetophotosputteringandmeteoroidbombardment,andinteractwithboththemagnetosphereandtheplanet,evenreducingtheionosphericelectrondensity(Shimizu1982,ConnerneyandWaite1984).DuringSaturnOrbitInsertion(SOI)Cassiniobtainedthefirst-everinsitumeasurementoftheringatmosphere,anditwasabigsurprise.Ithadbeenexpectedtobedominatedby“waterproducts”(WP;moleculesandionsofH2Oanditsfragments)butinsteadCAPSfounditwasdominatedbyneutralandionizedOandO2(Tsengetal2010).TheobservationsandtheoryarereviewedinCuzzietal2009;essentially,WPrecombineonringparticlesurfacesbutOandO2donot,buildingupintheringatmospherewithoutfreezingoutoradsorbingontoringparticlesurfaces,andultimatelyfilteringouttothemagnetosphereandintotheplanet(Tsengetal2010).Sincethatreview,theeffecthasbeenmodeledinmoredetail,andtheobservedseasonalvariationofmagnetosphericoxygenionstransportedfromtherings(seeMAPSDWGreport)suggeststhatphotosputteringofringicesdominatesovermaterialfromEnceladusinproducingtheringatmosphere(Tsengetal2010,2013;Elrodetal2014).ThisdiscoveryoftheringatmospherealonewouldsatisfytheAOobjective,butindeedduringtheRGandGForbits,Cassinidiscoveredfarmoreabouttheparticulatecomponentofthering“atmosphere”anditsfluxintotheplanet–theso-called“ringrain”longspeculatedupon(eg,ConnerneyandWaite1984).Wediscussthisindetailinsection4.2.4.

ThediffuseEandGRingsinteractinmoreintimatewayswiththemagnetosphere;theirtinygrainsgetchargedandundergoelectromagneticforces(section4.1.1e).4.2ExtendedMission(CSM)Objectives:

Page 25: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

25

Theobjectivesbelowweredevelopedin2010,toprioritizeupcomingplanningbyfocussingonspecificproblems,eitherunresolvedAOgoalsorunexpectednewphenomena,andtotakeadvantageoftheuniquegeometriesoftheCassiniSolsticeMission(CSM).4.2.1ChangingRings(RC1a)–Determinetheseasonalvariationofkeyringpropertiesandthemicroscalepropertiesofringstructure,byobservingattheseasonallymaximumopeningangleoftheringsnearSolstice. Theemphasishereison“observingattheseasonallymaximumopeningangleoftheringsnearSolstice”.ThedominantoperativeintentionwastotakeadvantageofthemaximumringopeningangleasseenfromthesunandEarth,to(a)allowCIRStodeterminetheenergeticsofthermalheatingandcoolingoftheringsastheyopenedtotheirmaximumopeningangletothesun,and(b)allowRSSoccultationstopenetratethemostopaquepartsoftherings–thecentralBring–whichtheyhadnotyetbeenabletodoevenduringthemaximumopeningangleallowedduringPrimeMission(21o).Thedifferencerelativetotruemaximumopeningangleof23.7ocanbecriticalforRSS,asitappearsintheexponentialoftheopticaldepthterm.Theobjectivewasverywellsatisfied,inthat36moreradiooccultationswereobtained,withvariouscombinationsofresolutionandsensitivity,atopeningangleslargerthanavailableduringprimemissionandmoresuitableforprobingthedenseBRIng.ThedatahavebeenreducedanddepositedintheRingsPDSnodeat1and10kmspatialresolution.CIRSalsoobtaineddataoverawiderangeofopeningangles;oneimportantconclusionhastodowiththeseasonalcoolingoftheringsthroughequinox;theirminimumtemperatureisconsiderablylargerthaninstantaneousthermalequilibriumwithSaturn’sreflectedandemittedenergy,constrainingtheinternaldensityoftheparticles(atleastintheAringwherethemodelwasapplied)tobeclosertosolidiceinthecentralAringthaninitsinnerorouterregions(Morishimaetal2016).Perhapsthiscanbecorrelatedwiththeradialvariationofself-gravitywakesand/ortheradialdistributionof“propellerobjects”. Whenthisgoalwaswritten,itwasstillnotknownastowhetherthespokeswouldvanishagain,andifso,exactlywhenandunderwhatgeometricalconditions.Indeedthatsituationisnowwellunderstoodintermsofphotochargingofthemainrings(section4.1.1e). ThediffuseERing,composedlargelyofmicron-sizedgrainsjettedoutofEnceladus,deformsandchangesshapewiththeseasonsinresponsetotheelevationangleofthesun,assolarradiationpressureinfluencestheorbitsofthesetinygrains(Hedmanetal2012). Thewaxingandwaningofthemagnetosphericoxygenioncontentisdominantlyseasonal–implicatingphotosputteringoficeinthemainringsratherthanimpactsbygrainsfromEnceladus,onepreviouscandidate(Tsengetal2013).4.2.2:RingTemporalVariability(RC1b)-DeterminethetemporalvariabilityofringstructureonalltimescalesuptodecadalforregionsincludingEnckegap,DRing,FRing,andringedgesbysubstantiallyincreasingthecadenceandtimebaselineofobservations.

Theringsarechangingbeforeoureyes.TheFRingmaybethemostextremeexampleoftimevariability,andmeriteditsownstrategicobjective(section4.2.3).Herewediscussotheraspectsofringtemporalvariability.

ThesharpedgesoftheAandBRingsfloparoundloosely,revealingthefluidnatureoftherings.TheAringouteredgeseven-lobedstructurederivesfroma7:6resonancewith

Page 26: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

26

(mostly)Janus,anditreorganizesitself,diminishinginamplitude,whenJanusswapstoitsouterorbitandtheresonancemovesoffoftheARingedge(SpitaleandPorco2009,ElMoutamidetal2016c).TheBRingouteredgeismorecomplicated,showingthepredictedtwo-lobedforcingoftheMimas2:1resonance,butinaddition,showinginterferencewithm=1,2,and3patternsthatareprobablyfreemodesdrivenbyringpressureandviscosity.Sometimesthepatternalmostvanishesbecauseofthisinterference(Frenchetal2010,Hedmanetal2010,Espositoetal2012,Nicholsonetal2014,SpitaleandPorco2010;seesection4.1.1c)

Saturn’sinnermostring–theDRing–isonlyvisiblewitheffortandinfavorablegeometry.However,aftertheFRing’sfireworks,ithasprovidedsomeofthemostinterestingevidencefortimevariations(usuallyobservedbyvirtueofitsfinedustcomponent,inforwardscatteringgeometries,asdiscussedinsection4.1.4a).Hedmanetal(2007b)firstnoticedthatitsstructureofirregularlyspacedbandsorbeltshadchangeddramaticallysinceVoyager.Theyalsopointedoutapatternthattheyinterpretedasaverticalspiralripple,andsuggestedthattheripplewastheresultofanongoingwrappingupbydifferentialnoderegressionofatiltedmeanringplane.Fromthewavelengthofthewrap,whichshortenswithtime,theydatedtheeventtotheearly1980s.Hedmanetal(2011c)foundtherippletoextendthroughtheCRing,andsuggestedthatthetiltwasimposedbyanimpactingstreamofrubble,perhapsfromadisrupted,1-10kmsize,Shoemaker-Levy-9typeobject,withanextendednodecrossingtheDandCrings.Hedmanetal(2015b)determined,fromfurtheranalysis,thattheeventmayhavehadtwoparts,separatedbymonths.HedmanandShowalter(2016)subsequentlyfoundpatternevidencefortwootherdisturbancesthatoccurredin1979(inVoyagerdata)and2011!Maroufetal(2011)discoveredasimilarpatternintheCring,fromhigher-resolutionradiooccultationdata,thattheyinterpretedastwoevents,separatedby50years,thatoccurredinthelate1300's.Itisfascinatingthattheringsstillbearsilentwitnesstotheselong-lastingscarsofcometaryimpacts.Arelatedexampleoftimevariabilityisongoingimpactsontotheringbydiscreteparticleslargeenoughtocreatedetectabledisturbances–thelittlecousinsoftheseripple-forming,comet-sizeobjects.Impactsbymeter-sizeparticleshavebeenobserveddirectly;oncealeadingcandidatefortriggeringspokes(section4.1.1e),theconnectionbetweentheobservedmeter-sizeimpactratesandspokeformationrateshasnotbeenpursuedindepth.Theseimpacteffectswerediscussedinsection4.1.4b.

TheDandCringsshowtwoother,stillunexplained,kindsoftimevariation.Hedmanetal(2014c)foundthatoneofthemostprominentbrightringletsintheDRing,alsoseenbyVoyager,ismovinginwardsatmorethan2km/yr,andapparentlymovedoutwardstoitscurrentpositionbetweenVoyagerandCassini.Theringletalsohasstrongazimuthalclumpinessthatseemsstable,butcannotbeassociatedwithanyplausibleresonance-witheithersomeknownmoon,orsomeknownplanetaryinteriormodesorrotatingstructures;allinallitisapuzzlingdynamicalfeature.Also,therearetime-variableaspectstoseveralCringspiraldensitywavesthatappeartobedrivenbydensityfluctuationsfixedtoSaturn’sinternalstructureandrotatingwithitswinds–so-called“tesseral”resonances(seesection4.1.1b).Hedmanetal(2014a,2017,2018b)havefoundthatsomeofthesewavetrainsseemtobedriftinginwardsatabout1km/year,asifthedensityfluctuationscausingthemweremovinginlatitudeordepthinsidetheplanet.

Page 27: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

27

4.2.3FRing(RC2a)–FocusonFRingstructure,anddistributionofassociatedmoonletsorclumps,assparseobservationsshowclumps,arcs,andpossiblytransientobjectsappearinganddisappearing.

Becauseofthestrongtimevariationsseenduringprimemission,theFRingbecameacentralfocusforCassiniimagingobservationsduringCSM.TheFRingliesabout3000kmoutsidetheARingedge,andisuniqueinthefamilyofplanetaryrings.FaintlyglimpsedbyPioneer11,itskinky,multi-strandedstructurewasrevealedinVoyagerimagestobedominatedbysmalldustgrains,andVoyagerradioandstellaroccultationsshowedittohaveaverynarrowcoreoflargerobjects..EarthbasedobservationsbetweenVoyagerandCassinishowedittobehighlyvariable,withlargeclumpscomingandgoing,havingorbitalperiodsthatdifferedslightlyfromthatofitscentralstrand(McGheeetal2001).Asitwasstraddledbythe100-kmdiameterringmoonsPrometheusandPandora,classicalshepherdingtheorywasquicklyproposedtoexplainitssurvival.However,almostimmediately,problemsarosewiththatinterpretation,growingovertheyearswhenitwasrealizedthatnotonlyweretheso-calledshepherdsonchaoticorbitsthemselves,butobjectsorbitingbetweenthemwereexcitedtoevenmorechaoticorbits.Infact,Cassiniveryquicklyobservedsomeoftheseobjects(2004S6,etc;Porcoetal2005)onorbitsthatcrossedtheFRing,butcouldnotbetrackedformorethanafewmonthsbeforetheyvanished(Cooperetal2017).Meanwhile,largejetsofmaterialwereseensplashedoutfromthecentralcoreduetocollisionsbythesecareeningobjects(Charnozetal2005,Murrayetal2008,Beckeretal2018),andevidencewasfoundforsmaller,unseenobjectsembeddedwithintheFRingstrandsthemselves.DynamicalmodelsshowedhowtheperturbationsofPrometheusalonecouldexplainthealternatingstreamer-channelappearanceoftheFRing(Murrayetal2005),Buerleetal2010).

Severalnewclassesofembeddedobjectswereinferredandmodeled,basedonoftenfaintandinitiallyobscurepatternsseentocomeandgo.“Mini-jets”–smallspikespokingoutofthecentralstrand–werecataloguedandunderstoodascausedbylargeembeddedobjects(metersortensofmetersinsizeperhaps)collidingatlow(fewm/sec)speedswithinthedensecentralringstrand(Charnoz2009,Murrayetal2008,Espositoetal2008,Buerleetal2010,Albersetal2012,Meinkeetal2012,Attreeetal2012,2014).“Fans”orlocalized,regularbrightnessfluctuationswereshowntobeduetosmall,embeddedobjectsonslightlyeccentricorbitsrelativetotheFRing(Murrayetal2008).SomeofthesefanswerelocalizedtopartsoftheringwherePrometheuscompressedringmaterial,perhapsactuallyformingnew,smallmoonletsthenandthere(Buerleetal2010).

RSSoccultationsonlydetectedtheFring’sverynarrow(<1km)“truecore”ofcm-and-larger-sizeparticlesabout1/3ofthetime,showingithadtobeazimuthallybrokenanddiscontinuous.Usingtheseobservations,anewtheorywasdevelopedinwhichthestabilityofthe“truecore”,inthepresenceofstrongorbitalchaosdrivenlocallybyPrometheus,wasduetoauniqueoverlapoftwodifferentkindsof“resonances”(Cuzzietal2014,2018c;seealsoAlbersetal2012andCooperetal2013).ThisarrangementoftheFRing’s“truecore”,whichconsistsofincomplete“arcs”ofmacroscopicparticles,mustoccasionallymakesmalladjustments,giventheoccasionalchaoticchangesinPrometheus'orbittowhichtheclumpsmustreadjust.Hedmanetal(2011b)observedvariationsincrystallineicebanddepthduetovariationsintherelativeabundanceofmacroscopicbodiesanddust,whichhaveyettobecorrelatedwiththeRSSclumping.Largeobjectsformingin“fans”,andusuallyoutsidethevery

Page 28: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

28

narrowlydefinedstabletruecoreorbit(Cuzzietal2014,2018c),canbecomestronglyperturbedbyPrometheusandevolveinto2004S6-likeobjects,ultimatelyrecollidingwiththeFRingathighspeeds.Indeed,while2004S6wastrackedin2006-2008asitcollidedwiththeFringseveraltimesandthenlost,similarobjectshavesinceappeared.DifferentfrequenciesandintensitiesofsuchbigeruptionsasseenbyCassiniandbyVoyagerobservationsunderlinethesporadicnatureofthesevariations(Frenchetal2012,2014).4.2.4RingAgeandOrigin(RN1a)–Constraintheoriginandageoftheringsby(a)directdeterminationoftheringmass,and(b)ofthecompositionofringejectatrappedonfieldlines.

Overtheyearstheringcompositionhasemergedasperhapsthebestgaugeofringageandcluetoringorigin.Whileringcompositionispowerfullyaddressedusingtraditionalremotesensingtechniques(section4.1.2),thisobjectivefocusedoninsitumeasurementsthatwereonlyachievableduringCassini’sRGandGForbits.

(a)Determinationofringmass:Itwasnotknown,whenCassiniwasinitiallyplanned,thatwewouldbeabletoobtainadirectmeasurementoftheringmass;thisonlybecamepossibleintheCassiniSolsticeMission(CSM)GForbits,whenthespacecraftwasabletoflybetweentheringsandtheplanet22times.TheoriginalAOmissionplanwastoconstraintheringmassbymeasuringtheringopticaldepthandparticlesizedistributionstogether,andsampleallavailablespiraldensitywaves,usingstellarandradiooccultations.However,becauseofthepossibleambiguitiesassociatedwith“hiddenmass”intheBringthataroseduringtheprimemission(section4.1.1b),sixcompleteclosepasseswereallocatedintheGForbits,duringwhichthespacecraftremainedquietwhileRSStransmittedacarriersignaltoEarth,toallowthesmallgravitationaleffectsoftheringstobeseparatedfromthoseofSaturn–amini-Junomission.Thedetailsofthetechnique,anddifficultiesencountered,aredescribedbyIessetal(2018)andinthisvolume.Unexpectedandprobablyazimuthallyvariableinternalpropertiesoftheplanet(veryunlikethoseofJupiter)contaminatethegravitationalsignatureoftherings,increasingthemeasurementuncertaintytoperhaps50%ofthesignal.Itispuzzlingthat,iftheRSSvarianceisinterpretedasinternalmassirregularities,theamplitudeoftheseseemsconsiderablylargerthanwouldbeinferredfromthedozenorsospiraldensityandbendingwavescurrentlyseenintherings,thathavebeenidentifiedasbeingdrivenbymassfluctuationsinsidetheplanet(section4.1.1b).Nevertheless,itcanbeconcludedwithconfidencethattheringmassisprobablylessthantheVoyager-eraestimatetowithintheuncertainty(seetheRSSteamreportinthisvolumeandIessetal2018).Atotalringmassevenaslargeas0.8Mimasmassesisregardedasunlikely.WhileRSShasbeenasyetunabletoobtainaradialprofileofsurfacemassdensity,thereisacluefromCIRSthermalmodelsthatthecentralBringregioncalledB3(105000-110000km)isactuallyaquitesharplyboundedannuluscontaining2-3timesthesurfacemassdensityoftherestoftheBRing(Reffetetal2015).

(b)Compositionofringsfromringejecta:TheAOmissionprovidedfornodirect,in-situmeasurementofmainringparticlecomposition;itwasplannedtorelyonremoteobservationsbyVIMSandCIRS,andeventuallyRADAR2.2cmradiometry,sensingthenonicycomponentofringmaterial(seesection4.1.2).Unfortunately,nounambiguouscompositionalsignaturesofanymaterialsbesideswatericewereseenbyVIMS,UVIS,orISS,andotherinstrumentssuchas

Page 29: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

29

CIRSandRADARcouldonlyconstraintheamountofnonicymaterialinanonspecificway.Fortunately,intheGForbits,whenCassinicrossedtheringplaneinsideoftheDRing(andindeedskimmedthroughtheplanet’stenuousupperatmosphere)synergistic,dedicatedin-situobservationsbyCDA,INMS,MIMI,andRPWShitpaydirt.

CDAdetectedgrainsatavarietyofverticaldistancesabovetherings,withvaryingsilicate/icefraction(Hsuetal2018).TheFe/Siratiosuggestedlow-Fesilicates.Theorder-unitysilicate/IceratioinmaterialdetectedbyCDA(especiallyathighlatitudes)isfarhigherthanseeninthemainringsoreventhemorepollutedCRing,andsuggeststhatdetectedgrainshavebeenstrippedofmostoftheiricebeforedetection,perhapsbyphotosputtering(Hsuetal2018),butthisremainsanactiveareaofresearch.Noevidencewasfoundfor“free”ironorFexOycompounds(candidatesforreddeningtherings;seesection4.1.2aandCuzzietal2009forareviewanddiscussion),eventhoughtheirpresencehadbeensuggestedintrueinterstellargrainsdetectedbyCDA(Altobellietal2016).CDAobservationsoforganicsareexpectedtobelimitedtolargegrains,whichwererarebecausethedustabundanceattheradiiofringplanecrossingswasmuchlowerthanhadbeen(conservatively)estimatedfromspacecrafthazardstudies,andmostofthedetectedgrainsweretootinytogetgoodmassspectrainthepresenceofknowncarboncontaminationofCDA.Forthelargergrains,CDAcansaythattheconcentrationoforganicsislowinanysingledetectedgrain,comparedtotheamountoficeorsilicate.Nevertheless,thedataarestillbeinganalyzedandnewresultsalongtheselinesareanticipated(see,forinstance,Hsuetal2018andthechapterbytheCDAteam,thisvolume).

MIMIdetectedanequatoriallayerof4-5nmradiusgrainswithverticalthicknessofafewthousandkm(Mitchelletal2018)blendingintotheveryrareupperatmosphereofSaturn.ThesetinygrainsplausiblyderivefromtheevenflatterDRinganddriftinwardsundergasdragwhilespreadingvertically.Theyaretoosmalltopickupmuchcharge,soorbitatnearlyKeplerianspeeds,obtainingtheirfew-thousandkmverticalthicknessbyscatteringcollisionswithdifferentiallyrotatingexosphericHatoms.MIMIcouldnotdeterminethecompositionofthesegrainsdirectly,butestimatestheirmassfluxintotheatmosphereat5kg/s(Mitchelletal2018andthisvolume).

Meanwhile,asCassiniskimmedthroughtheveryrarifiedupperatmosphereontheGForbitsclosesttoSaturn,INMSdetectedstrongsignalsduetoaverywiderangeofmasses,uptotheirlimitat100amu(Waiteetal2018,Perryetal2018).TheabundanceofthesemoleculesactuallydecreaseddownwardsintoSaturn,sotheyareenteringfromabove,notdiffusingupfromdepth.Theoverallpatternobservedisroughlydominatedbymultiplesofcarbonatoms,uptoC6,butgiventhelikelihoodthatlargemoleculesfragmentintosmalleroneswithintheINMSchamberpriortoactuallybeingsampled,detailedinferencesrequireacomplexdeconvolutionprocess(Milleretal2018).INMSisunabletodetectnonvolatilemateriallikeironorsilicates,andisevensubjecttounderestimationofH2O.ThegoodagreementbetweentheINMSlatitudinalsignalstrengthandthethicknessoftheMIMI4-5nmparticlelayersuggeststhattheINMScompositionsrefertoimpactfragmentsoftheMIMIparticles.AlsoseenintheINMSspectraareNandO;however,thecomplexityofthedeconvolutionleavessomeambiguityaboutwhethertheO,N(andevensomeoftheC)werecarriedaspartoftheorganicsorinsmallermoleculeslikeNH3orCH4(Waiteetal2018,Milleretal2018,Perryetal2018).Forcomparison,CassiniVIMSobservationsseenoCH4orCO2(Cuzzietal2009)andSTISspectraseenoNH3(Cuzzietal2018b).INMSestimatedatotalfluxofthesematerialsintoSaturn’s

Page 30: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

30

upperatmosphere,overalatitudinalbandof5-10owide,thatisabout1000timeslargerthantheMIMIestimate(Perryetal2018),andproposethatitmustbecarrieddominantlybyparticlesof1-2nmradius,toosmallforMIMItodetectbutfollowingroughlythesameverticaldistribution.ThisfluxissohighthatINMSsuggestsitisprobablyduetoaflareupintheDring,perhapsduetorecentactivityintheD68ringlet(Hedmanetal2014c,HedmanandShowalter2016). (c)RingOriginandAge:TheageoftheringshasbeendebatedsincetheVoyagerera,whentwogenerallinesofargumentarosesuggestingtheymaybemuchyoungerthanthesolarsystem.Thesearedescribedinmoredetailinseveralrecentreviewchapters(Cuzzietal2009,2018a;Charnozetal2009).First,angularmomentumtransferbyspiraldensitywavesbetweentheringsandtheinnermoonsshouldquicklycollapsetheAringandspinthecloseringmoonsoutwards,atidaleffectlikeourownEarth-moontidalinteraction(GoldreichandTremaine1982;butseePouletandSicardy2001orCharnozetal2000forloopholes).Second,pollutionofthedominantlyicyAandBrings–morethan90%ice,asknownsincepre-Voyager(Espositoetal1984;Ortonetal2009)–bydominantlynonicymeteoroidinfallshoulddarkentheminmuchlessthantheageofthesolarsystem(Doyleetal1989,CuzziandEstrada1998,ElliottandEsposito2011).Ithadbeenargued,however,thattheringmasscouldbemuchlargerthangenerallyacceptedduringtheVoyagerera,becausegravitationalclumpingandlackofsamplingbyspiraldensitywavesofthemostmassive(B)ringmightallowmostofthemasstoescapedetection(section4.1.1b).Also,themeteoroidmassfluxwasverypoorlyknown,andifithadbeenoverestimatedbyanorderofmagnitudeorso,theringscouldremainunpollutedfortheageofthesolarsystem.

ThecombinationofringmassdeterminedbyRSS(Iessetal2018),andtheextrinsicmeteoroidmassfluxmeasuredbyCDA(Kempfetal2018;seesection4.1.4b)atlastallowsustoconstraintheringagetobelessthan250Myrorso(observationalandmodel-baseduncertaintiesremain)–thatis,noolderthanthedinosaurs.Ifwemustreluctantlyrelinquishourotherwisephysicallyplausible“primordialringorigin”scenarios,atleastthereisoneplausible“recentorigin”scenario,relatedtoadynamicalinstabilityincurred100MyragobyastablyevolvingSaturninnermoonsystem(Cuketal2018).Therearemanycurrentissuesassociatedwithconnectingsuchaninstability(nearRhea’sorbit)andactualformationofamassiveringinsidetheRochezone.However,itoffersbothanindependentlyderived,recentageandalsoanindicationwhySaturnistheonlygiantplanettosportsuchayoung,massive,icyring.Constraintsfromcrateringoficymoonsurfacesandinternalevolutionwillplayanimportantroleintestingtheidea.Thecurrentimplicationsthattheringsarecoloredbyorganics,thattheremaybeasilicate-richrubblebeltburiedwithintheCRing(section4.1.2a),andeventhedark,enigmaticGRingparentAegaeon(Hedmanetal2011a)provideimportantconstraintsaswell.4.2.5Ringmoons(RN1b)-Determinethecompositionoftheclose-in“ringmoons”astargetsofopportunity.ThisisdiscussedindetailintheFinalReportoftheIcySatellitesWorkingGroup.4.2.6High-resolutionRingStructureandcomposition(RN1c)-Determinestructuralandcompositionalvariationsathighresolutionacrossselectedringfeaturesofgreatestinterest,usingremoteandin-situobservations.

Page 31: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

31

Asubstantialnumberofnew,dedicatedobservationswereprioritized,integrated,andimplementedtomakeuseoftheunique,up-close-and-personalgeometryofCassini’sRGandGForbitstoaddress“radialstructure”,meaningonscaleslargerthantheverticalthickness.Also,alargenumberofISS8-15filtercolorscanswith3-5kmradialresolutionwereintegratedandsuccessfullyimplementedwellbeforetheRGandGForbits,toaddresscompositionalvariations,overalargerangeofilluminationandviewingangles,aswellasdifferentsolarhouranglestoassesstheroleofSaturnshine.

Muchhigherspatialresolutionisneededtoassessfinescalestructuralvariations.RecallthattheuniqueSOIobservations(400mresolution)weresparselysampled,wereoftheunlitface,andweretakenatalargerelativevelocityrequiringshortexposures.Ontheotherhand,theRGandGForbitsprovidedsimilar100-300mresolutiononthelitfaceaswellasoftheunlitface,andatlowphaseangles,withtheopportunitytousesmearremovaltracking.Moreover,onenewkindofobservationwasenabledduringtheRGandGForbits–activeradarbackscattering.Radarobservations(fromtheground)openedthemoderneraofSaturn’sRingsresearch40yearsago,buttheirsensitivitydecreasesasdistancetothefourthpower,sotheyonlybecamefeasibleforCassiniintheseveryclose-ingeometries.TheRadarteamdidcarryoutthreeactiveradarbackscatteringradialprofileswiththepotentialtoreachseveralkmradialresolution,butreductionofthissortofdatahasnotbeenpreviouslydonebytheteamandisstillinprogress(seethechapterbytheRadarTeam).Indeed,asofthiswriting,anumberofobservationstakenontheRGandGForbitsremainintheearlystagesofanalysis.However,anoverviewofhighresolutionobservationsbyISS,VIMS,UVIS,andCIRSmaybefoundinTiscarenoandHarris(2018)andTiscarenoetal(2018).4.2.7RingMicrostructure(RN2a)-ConductIn-depthstudiesofringmicrostructuresuchasself-gravitywakes,whichpermeatetherings.Microstructurehastheconnotationofstructurecomparableinscaletotheringverticalthickness(section4.1.1b).DuringtheCSM,anumberofexceptionallyhighradialresolutionscanswereimplementedofthelitandunlitfaces,usingsmearremovaltracking(theso-called“SUPERHRESscans”)andtargetedobservationsof,forinstance,theKeelergapinthevicinityofDaphnis,theCRingplateaus,andotherspecificregionsofinterest.Spatialclumping–ofseveraldifferenttypesandonscalesstilllargerthantheexpectedself-gravitywakes–iswidelyseeninimageswiththesesub-kmresolutions(Tiscarenoetal2018).Anumberofspeciallydesigned“Turnaround”stellaroccultationswereprioritizedandincluded;thesearechordoccultationsinwhichthepathofthestarbecomestangenttotheorbitaldirectionatsomeradius.Theimplicationisthatradialstellarvelocityvanishesandultra-highradialresolutioncanbeobtained,alongwithverygoodtangentialresolution.Finally,thetechniqueofvarianceanalysis4hasbeenwidelyappliedandavarietyofinterestingdifferencesseenfromplacetoplace.Thissortofanalysisisonlygettingunderway(Colwelletal2018).4.2.8NewRingStructures(RN2b)-Performfocusedstudiesoftheevolutionofnewlydiscovered“propeller”objects.Extendtostudiesofstreakyplateaustructure.Adedicatedcampaigntoimageselected“giant”propellers(>1kmsize)asoftenaspossiblewasconductedoverthelastfiveyearsofthemission.Thiscampaignyieldedseveralhundredimagesthatsuccessfullytargetedpropellers,withrichsamplingintime.Ongoinganalysisoftheseimages

Page 32: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

32

(e.g.,section4.1.3)findsexcursionsfromkeplerianorbitofdiversekinds,includingbothgradualtrendsandsharpchangesofdirection.IntheRGorbits,threegiantpropellerswerespecificallytargetedforclose-flybyimaging,whichsuccessfullyrevealedtheirdetailedstructure.AlsointheRGorbits,high-resolutionimagesofthePropellerBeltsyieldedthefirstfullviewofasizedistributioninwhichthelargestpropellersare4xto5xlargerthanthesmallest(Tiscarenoetal.2018).IntheGForbits,imagesoftheplateausspectacularlyconfirmedprevioussuspicionsofstreakytexture,andfurtherrevealedsharp-edgedbeltsoftextures(somestreaky,someclumpy)atotherlocationsinthemainrings(Tiscarenoetal.2018).Mostofthesedataencompassboththelitandunlitfacesoftherings,andarestillunderreductionandanalysis.(5)Saturn“System”ScienceResults

Thepossibilityof“youngrings”nowhasbroadenedtothepossibilityofayounginnericymoon(andring)system.TheevectionresonancetheoryofCuketal(2016)notonlyindependentlyarrivesatasimilartimescaleasringages,butalsopointstoSaturnasthemostlikelyplanettoincursuchafate.Morestudiesoftheicymoonsurfaces(especiallycrateringstatistics)areneededtoconstrainthevalidityofthishypothesis,andthecompositionofthemoonsandringsneedstobetakenintoaccounttogether.

Alongtheselines,resultsobtainedthroughthestudyofringshaveledustoanewunderstandingofthedeepinteriorofSaturn.Thediscipline,nowknownasKronoseismology,isinitsinfancy,andhasledtothesuggestionofadiffusecoreboundary,andrapidlychanginginternalstructure,atSaturn(section4.1.1b).RecentresultshaveevenshownthattheelusivedeepinteriorrotationperiodoftheplanetcanbedeterminedverypreciselybymatchinginternalstructurepredictionswithspiralwavesseenintheCRing.

CDAalsodetected46grainscomingfromtheInterstellarFluxstream(itsvelocityapexorramdirectionisknownfromthevelocityofthesolarsystemthroughthelocaldiffuseInterstellarmedium)andconstrainedtheircomposition(Altobellietal2016).ThisprofoundlyimportantinsitudeterminationofthecompositionofISMgrainscomplementsandinformsoftenambiguousremotesensingdeterminations(seealsosection4.2.4above).ThegrainspopulatingthediffuseISM–thosedetectedhereandthemosteasilystudiedbyremotesensing–includeMg-richsilicatesand,perhaps,ironmetaloroxides,butaredepletedinsulfur.Bycomparison,thesilicatesdetectedbyCDAduringtheGForbitswerealsoMg-richbutshowednoevidenceofcompanionFemetaloroxides.TheISMgrainswerequitehomogeneous,probablybyrepeatedprocessingintheISMbyshocksandradiation.Asthesegrainsbecomeembeddedinthedark,dense,presolarparentcloud,theyaccumulatemorevolatileorganicsandices(apparentlysomesulfur-bearingices)beforeflowingintotheformingsolarsystem.But,theirveryrefractorymixofsilicatesandmetalwouldnotbeexpectedtochangeatthelowtemperaturesoftheseclouds.(6)Unsolvedproblemssuitableforongoingresearchandfuturemissions

Page 33: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

33

Figure2:Amontageofstill-puzzlingstructure.AmosaicviewofSaturn’smainringsisshownin

thecentralpanel.Certainselectedregionsareindicatedbydouble-headerarrows,andbycloseupimagesshownasinsets.

WhyistheinteriorofSaturnsodifferentfromthatofJupiter,asseenbytheRSSgravitypasses,andwhyarethemassirregularitiesinferredsodifferentandsomuchlargerthanwhatareinferredfrom“Kronoseismology”spiraldensityandbendingwavesintherings?ArethesedifferencestiedtothefastertidalevolutionratesseenfortheSaturnianmoonsthanforthejovianmoons(theso-called“largerQ”forJupiterthanforSaturn)?Whataretheembeddedmassconcentrationsresponsibleforthe“tesseral”spiraldensitywavesthatrotateatharmonicsofSaturn’sspinrate,andmoreoverchangewithtime?

Theringmassandinparticularitsradialdistributionwerenotaswellconstrainedashoped,becauseofunexpectedinternalstructurewithinSaturn.Onlyatotalringmasscouldbedetermined,andtheBringcomponentinferredbybackingoutthealreadyverywellknownAandCRingmasses(fromspiraldensitywaves).Thisremaininguncertaintyprovidesanopportunityforafuturemission–touserepeatedclosegravitationalflybystoseparateoutandfullyunderstandtheapparentlyunusualandintriguinginternalstructureoftheplanet,fromtheradialmassdistributionwithintherings,hopefullyatafewhundredkmradialresolutioneven,toseewhichpartsoftheopaqueBRingactuallyholdhowmuchofthemass.BetterradialmassresolutionwouldbeusefulintheCRingalso,becausethepossibilitythatthemiddleCRinghidesafossilsilicaterubblebelthasimplicationsforringorigin;itiscurrentlyconstrainedbyasmallhandfulofsurfacemassdensities.Thereissomeevidencethatthevisualwavelength

Page 34: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

34

spectraofthecentralCringdifferfromtheotherwisesimilarCassiniDivision;mightthisbeanotherclueregardingaburiedsilicatebelt?

Thesmooth,undulating80-kmscaleirregularstructureintheinnerBringmayberelatedtoballistictransport,butthearrayoffiner-to-coarserscalestructureinthemiddleandouterBRingseemstobesomethingdifferent.Coulditbesomeformofviscousoverstability,operatingatlongerwavelengthsthanmodelsshow,andpossiblycouplingtotheevenlargerscaleazimuthalBringedgevariations?Intheregionbetween100,000-104500km,radioandstellaroccultationsbothseesuccessionsofverysharptransitionsbetweenlargeandverylargeopticaldepth,forwhichnoexplanationsexist.Atthetimeofthiswriting,RSSoccultationsoftheverydensestBringregions,takenatthelargestringopeningangleswheretheywouldbemostlikelytobeevenpartiallytransparent,havenotbeenanalyzedorreleased,butareeagerlyanticipated.

TheouterCRinghostsaseriesof5-8“plateau”featuresinopticaldepth,nearlysymmetricallyarrayedabouttheMaxwellgapwhichisnowknowntobecausedbya2:1resonancewiththestrongestplanetaryinternalvibrationmode(MarleyandPorco1993,Frenchetal2016b,Fulleretal2014);thereasonwhyadense,ellipticalm=1ringletdominatesthegap,apparentlycausedbyanm=2resonance,isnotunderstood.AsimilarsituationoccursataTitanresonanceintheCRing,butthatisanm=1resonance.Theplateausdonothaveanyspecialassociationwithresonancesfromknownorpredictedplanetaryinternalmodes(Marley2014).Theyareoddinthattheirappearanceasfeaturesisdueprimarilytolocallyabruptchangesinparticlesizedistributionratherthansurfacemassdensity(sections4.1.2b,andbelow).Moreover,ultra-highresolutionCassiniimagesrevealanovelandunique“streaky”structureintheplateausthatisnotunderstood(Tiscarenoetal2018). WhyisthereaCassiniDivisionatall,andwhyaretherenoembeddedmoonletsclearingitsseveralemptygaps?IthasbeensuggestedthatweakperturbationsfromthefluctuatingBRingedgemightplayarole(Hedmanetal2010b).PresumablytheCassiniDivisionwasoriginallyclearedbyapowerfulMimas2:1spiraldensitywave,atatimewhentheringswerecontinuousthroughtheregion,buthowdidthatearly,vigorousevolutionleadtotoday’squietbandedstructure?And,howarethemoonlet-freeCringgapsformed?

IntheAring,amillion“propeller”objectspopulatethreedistinctradialbelts.Aretheseobjectstransientclumpsthatemergefromthebackgroundmaterialwithlow,butfiniteprobabilityandthendisperseagain?Giantpropellers(foundonlyoutsidetheEnckegap)seemespeciallyhardtocreatebyspontaneous,ortriggeredformation.Gravitationalencounterswithsmallermassesseemtoexplaintheirwanderingbehavior,butthemassclumpsneededarelargerthanthelargestringparticlesandeventypicalself-gravitywakes.Thereareafew“propeller”objectsintheBRing,buttheirlocationsandabundanceshavenotbeenwellcharacterized.WhatelsecouldbehidinginthedensestpartsoftheBRing?Whatcausesthe“ghost”gapsintheCringandouterCassiniDivision?

IntheFRing,telltalesignaturesofembedded,relativelylargeobjectsareseenpreferentiallyinstrandswheretheyaremaximallycompressedbyPrometheus.Ifthesemimajoraxesofthesenewlycreatedobjectslieoutsidethestable“truecore(section4.2.3),theywilldevelopchaoticorbitalperturbations,diffusingawayfromtheirformationlocationastheireccentricityincreases,andultimatelyrecollidingsporadicallywiththeFRingcore.Cyclesofsuchactivitymaybeexpected(andthereissomeevidencefromcomparingVoyagerand

Page 35: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

35

Cassini)butnosystematicassessmenthasbeenobtained.Meanwhile,eventhemostrecenthypothesisforthestabilityoftheFRing’struecorecannotexplainthestableprecessionofdozensofseparatedarcsasasingle,welldefinedellipse.Couldthe(mostlyunconstrained)massoftheFRingbeplayingarole?

ThesystematicincreaseoftherednessoftheringsinwardsacrosstheBRingremainsapuzzle.In-situobservations(albeitintheDring)seemtofavorlargeorganicmolecules,PAHSorfragmentsoftholins,possiblycontainingNandmaybeevenO,astheUVabsorberresponsiblefortheringredness.Theseredorganicsseemtobeintrinsictothedominanticymaterial.WhetherornotorganicsalsoexplaintheweakerUVabsorptionseeninmostoftheicymoonswillbeanimportantclueregardingringoriginscenarios,suchasrecentonesthatconnecttheirorigintoamoderatelyrecentcollisionalerosion/destructionofpre-existing,mature,differentiatedicymoons.Canorganicmaterialremainassociatedwithliquidwaterwhenamoondifferentiates,andremainwithitwhenitfreezes?

Colorandbrightnessvariationswithintheringsontenstohundredsofkmscalehavebeeninterpretedassmall-scale,optical-depthdependentregolithgrainsizevariations,butmodelscapableoftreatingthedifficultringradiativetransferproblemhaveyettobedeployedincompositionalanalyses.Thatis,secondaryoptical-depthdependenteffects(likecollisionalpackingorsmoothingofparticlesurfaces)maychangetheparticlephasefunctions,orvolumedensityeffectsmaychangethelayerscatteringfunction.Muchmoreanalysisneedstobedonewithmoresophisticated,nonclassicalradiativetransfermodels,fittingobservationsoverwiderangesofilluminationandviewinggeometry,aswellasassessingwiderrangesofwavelengthsimultaneously,tounderstandthesituationbeforecompositionalimplicationscanbederivedwithconfidence.Shadowingonthesurelyveryraggedring“particle”surfacesneedstobestudied(Cuzzietal2017).Alsoonthesubjectofradiativetransfermodels,Cassini’sthreehigh-radial-resolutionactiveradarbackscatteringscansrequirenewmodelsfortheirinterpretation,thatcanadequatelytreatcoherentbackscattering.

Unexplainedjumpsinparticlesizedistributionareseenatanumberofplacesintheringswheresharpedgesappearinopticaldepth,butacrosstheseedgesthereareonlysmall(orno)contrastsinsurfacemassdensity.Basically,thismeansthe“features”arecausedbyabruptchangesinparticlesizedistribution.TheinneredgeoftheAring,whereittransitionstotheCassiniDivision,isonesuchplace.TheseriesofCRing“plateaus”,nearlysymmetricallysurroundingtheMaxwellgap(whichisknowntobeassociatedwitha2:1resonancewithamodeinsideSaturn)arelikethataswell.Whatcausesthiseffect?Whydotheslopesandminimumormaximumsizesingenerallypowerlawsizedistributionsofringparticlesvaryfromplacetoplace?Aremostparticlesporousthroughoutordotheyconcealdense,solidcores?

Unexplainedmicrostructureisseeninmanyplacesacrosstherings,atopticaldepthslargeandsmall,inlate,high-resolutionimageswhichhaveresolutionevenbetterthanthosetakenatSOI,aswellascombinationsoflitandunlitfacegeometries,lowersmear,andhighersignaltonoiseratio(Tiscarenoetal2018).Thetexturecanchangeratherquicklywithradiusandisnotalwaysrelatedtoopticaldepthchanges. Theprocessactuallyresponsiblefortheinitialformationofspokes–whetheritbeburstsofionizingradiationfromplanetarysuperstorms,magneticfieldinstabilities,orimpacts,remainsunclear.

Page 36: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

36

TheBallistictransportprocessusuallybelievedtoexplainthesharpinneredgesoftheAandBRing,andhypothesizedtoexplaintheCringplateaus,hasbeenmodeledassumingtheboundariesofthesefeaturesmanifestedjumpsinsurfacemassdensitywithoutparticlesizechanges,andwenowknowtheunderlyingsurfacemassdensityisonlyslowlyvaryingwhiletheparticlesizechangesabruptly.Howdothesenewrealizationsaffectthemodels?Couldtheejectionvelocitychangefromplacetoplace,dependingonthenatureofthelocalparticleregoliths?Howwilltheresultschangeundernewassumptionsaboutmeteoroidimpactfluxanddynamicalpopulation?Thetheoryofringpollutionandrestructuringbymeteoroidbombardmentandballistictransportneedstobetestedmorecarefullyagainstotherstructuresandcompositionalprofiles,andrevisedtocapturemorerealisticimpactoutcomesandnewlyconstrainedincomingmeteoroidfluxes.Matchingradialscansofringcolorandspectralreflectancewithmodelsofcompositionalevolutionmustincorporatenewunderstandingaboutringsurfacemassdensity,particlesize,andviscosity.Inclusionofregoliththermalinertiaswouldprovideanotherhandleonhowparticlesurfacesrespondtometeoroidbombardment. Moresophisticatedmodelsofimpactchemistryandradiationchemistryareneeded–bothinmicrometeoroidimpactsonringparticles,possiblyresultinginsomeC-Ochemistry,andbynm-sizegrainimpactsintotheINMSentrychamber.INMSseesavarietyofmolecules–CH4,CO2,andNH3inparticular,thatarenotevidentinVIMSorHST-STISspectraoftherings.Aresomeofthesecreatedinhypervelocityimpacts,transformingabsorbingcarboncompoundsintovolatilesortransparentices?Ifso(orifnot)thiswouldhaveimplicationsforringpollutionandinferredringage.Howdoesthewatericethroughouttheringsremaincrystallinegivenconstantradiationandmeteoroidbombardment?VIMSspectralandoccultationobservationsstronglysupportcrystallineice.

Explanationforthegeologicallyrecentformationoftherings:Wenowhaveanewsetofconstraints,andevenanappealingtheoreticalhypothesistoexplore;however,wearestilllackingacompleteunderstandingastohowtheringsformedintheircurrentlocation,withinSaturn’sRochelimit,fromadifferentiatedicyobjectwithatrace,intimatelymixedorganiccomponent,250Myrago,evengivendisruptivecollisionsnearthecurrentorbitofRhea.Observationsandinterpretationoficymoonsurfacescancontributemeaningfulconstraints. …Coda… Thisshortreviewcaninnowaycapturethedepthandcomplexityoftheanalysisthathasgoneintoeveryoneoftheincompletelistof200publicationscitedhere,eachofthemseveralyearsworkformultiplescientists.EachofthesepapershascontributedonecriticalanduniquestonetotheedificeofknowledgewenowpossessabouttheringsofSaturn–stonesallformedfrombitsreturnedbyCassini’sspectacular13yearmission.Norcanitadequatelyconveytheevenlargeranddeeper,stillunanalyzedanduninterpretedamountofdatasothoughtfullyconceived,passionatelyarguedfor,painstakinglyplanned,obtained,carefullycalibrated,andstoredinthePlanetaryDataSystemthatawaitstheattentionoffuturegenerationsofringscientists.But,wehopeitcanprovideanideaofthescopeofwherewestandtoday,andhintsatfuturedirectionsofresearch.Eventhissummarywouldbedifferentifitwerewrittenayearfromnow.TheCassiniRingsDisciplineWorkingGrouphasnothingbutadmirationanddeepappreciationforthededicationofthehundredsofengineersanddozensofmanagersatJPLwhomadethismissionpossible,someofwhommaybeluckyenoughtoreturntoSaturnonafuturemissionandhelpanswertheseoutstandingquestions.

Page 37: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

37

ReferencesAlbers,N.;Sremčević,M.;Colwell,J.E.;Esposito,L.W.(2012)Saturn'sFringasseenbyCassiniUVIS:Kinematicsandstatistics;Icarus217,367-388.Altobelli,N.;Postberg,F.;Fiege,K.;Trieloff,M.;Kimura,H.;Sterken,V.J.;Hsu,H.-W.;Hillier,J.;Khawaja,N.;Moragas-Klostermeyer,G.;Blum,J.;Burton,M.;Srama,R.;Kempf,S.;Gruen,E.(2016)FluxandcompositionofinterstellardustatSaturnfromCassini’sCosmicDustAnalyzer;Science,352,312-318Attree,N.O.;Murray,C.D.;Cooper,N.J.;Williams,G.A.(2012)DetectionofLow-velocityCollisionsinSaturn'sFRing;ApJL755,Issue2,articleid.L27Attree,N.O.;Murray,C.D.;Williams,G.A.;Cooper,N.J.(2014)Asurveyoflow-velocitycollisionalfeaturesinSaturn'sFring;Icarus,227,56-66.Baillié,K.;Colwell,J.E.;Lissauer,J.J.;Esposito,L.W.;Sremčević,M.(2011)WavesinCassiniUVISstellaroccultations.2.TheCring;Icarus216,292-308.Baillié,K.;Colwell,J.E.;Esposito,L.W.;Lewis,M.C.(2013)Meter-sizedMoonletPopulationinSaturn'sCRingandCassiniDivision;Astron.J.145,Issue6,articleid.171,10pp.Becker,T.M.;Colwell,J.E.;Esposito,L.W.;Bratcher,A.D.(2016)CharacterizingtheparticlesizedistributionofSaturn'sAringwithCassiniUVISoccultationdata;Icarus279,20-35.Becker,T.M.;Colwell,J.E.;Esposito,L.W.;Attree,N.O.;Murray,C.D.(2018)CassiniUVISsolaroccultationsbySaturn'sFringandthedetectionofcollision-producedmicron-sizeddust;Icarus306,171-199.Beurle,K.;Murray,C.D.;Williams,G.A.;Evans,M.W.;Cooper,N.J.;Agnor,C.B.(2010)DirectEvidenceforGravitationalInstabilityandMoonletFormationinSaturn'sRings;ApJ718,L176-L180Borderies,N.;Goldreich,P.;Tremaine,S.(1985)Agranularflowmodelfordenseplanetaryrings;Icarus63,406-420.Bradley,E.T.;Colwell,J.E.;Esposito,L.W.;Cuzzi,J.N.;Tollerud,H.;Chambers,L.(2010)FarultravioletspectralpropertiesofSaturn’sringsfromCassiniUVIS;Icarus206,458-466.Bradley,E.T.;Colwell,J.E.;Esposito,L.W.(2013)ScatteringpropertiesofSaturn'sringsinthefarultravioletfromCassiniUVISspectra;Icarus225,726-739.

Page 38: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

38

Bromley,B.C.;Kenyon,S.J.(2013)MigrationofSmallMoonsinSaturn'sRings;ApJ764,Issue2,articleid.192Burns,J.A.;Showalter,M.R.;Morfill,G.E.(1984)TheetherealringsofJupiterandSaturn;IN:Planetaryrings(A85-3440115-88).Tucson,AZ,UniversityofArizonaPress,200-272.Burns,J.A.;Schaffer,L.E.;Greenberg,R.J.;Showalter,M.R.(1985)LorentzresonancesandthestructureoftheJovianring;Nature316,115-119.Chambers,L.S.;Cuzzi,J.N.;Asphaug,E.;Colwell,J.;Sugita,S.(2008)HydrodynamicalandradiativetransfermodelingofmeteoroidimpactsintoSaturn'srings;Icarus194,623-635.Charnoz,S.(2009)PhysicalcollisionsofmoonletsandclumpswiththeSaturn'sF-ringcore;Icarus201,191-197.Charnoz,S.;Dones,L.;Esposito,L.W.;Estrada,P.R.;Hedman,M.M.(2009)OriginandEvolutionofSaturn'sRingSystem;inSaturnfromCassini-Huygens,byDougherty,M.K.;Esposito,L.W.;Krimigis,S.M.,ISBN978-1-4020-9216-9.SpringerScience+BusinessMediaB.V.,2009,p.537Charnoz,S.;Porco,C.C.;Déau,E.;Brahic,A.;Spitale,J.N.;Bacques,G.;Baillie,K.(2005)CassiniDiscoversaKinematicSpiralRingAroundSaturn;Science310,1300-1304Charnoz,S.Salmon,J.;Crida,A.(2010)TherecentformationofSaturn'smoonletsfromviscousspreadingofthemainrings;Nature,465,752-754Charnoz,S.R.M.Canup,A.CridaandL.Dones(2018)TheOriginofPlanetaryRingSystems;achapterin"PlanetaryRings":M.TiscarenoandC.Murray,eds.(Cambridge)p.515-536Ciarniello, M. E. A. (2018), Cassini-VIMS observations of Saturn's main rings: II. Aspectrophotometric study by means of Monte Carlo ray-tracing and Hapke's theory (inpreparation),Icarus,inreview.

Clark,R.N.;Cruikshank,D.P.;Jaumann,R.;Brown,R.H.;Stephan,K.;DalleOre,C.M.;EricLivo,K.;Pearson,N.;Curchin,J.M.;Hoefen,T.M.;Buratti,B.J.;Filacchione,G.;Baines,K.H.;Nicholson,P.D.(2012)ThesurfacecompositionofIapetus:MappingresultsfromCassiniVIMS;Icarus,218,831-860.Colwell, J. E., Esposito, L.W., and Sremčević,M. 2006. Self-gravity wakes in Saturn’s A ringmeasuredbystellaroccultationsfromCassini.Geophys.Res.Lett.,33,L07201.Colwell,J.E.;Esposito,L.W.;Sremčević,M.;Stewart,G.R.;McClintock,W.E.(2007)Self-gravitywakesandradialstructureofSaturn'sBring;Icarus190,127-144.

Page 39: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

39

Colwell,J.E.;Nicholson,P.D.;Tiscareno,M.S.;Murray,C.D.;French,R.G.;Marouf,E.A.(2009)TheStructureofSaturn'sRings;inDoughertyM.K.,EspositoL.W.,andKrimigisS.M.,eds,(2009);``SaturnfromCassini-Huygens";Springer.ISBN978-1-4020-9216-9Colwell,J.E.;Esposito,L.W.;Cooney,J.H.(2018)ParticlesizesinSaturn'sringsfromUVISstellaroccultations1.Variationswithringregion;Icarus,300,150-166.Connerney,J.E.P.;Waite,J.H.(1984)NewmodelofSaturn'sionospherewithaninfluxofwaterfromtherings;Nature312,136-138.Cooper,N.J.;Murray,C.D.;Williams,G.A.(2013)LocalVariabilityintheOrbitofSaturn'sFRing;Astron.J.145,Issue6,articleid.161,15pp.Cooper,N.J.,C.D.Murray,andS.Renner(2017)FRingObjects;presentedatCassiniEndofMissionPSG;Pasadena,CA,September16,2017Crida,A.;Papaloizou,J.C.B.;Rein,H.;Charnoz,S.;Salmon,J.(2010)MigrationofaMoonletinaRingofSolidParticles:TheoryandApplicationtoSaturn'sPropellers;AJ140,944-953Cuzzi,J.N.;Estrada,P.R.(1998)CompositionalEvolutionofSaturn'sRingsDuetoMeteoroidBombardment;Icarus132,1-35.Cuzzi,J.;Clark,R.;Filacchione,G.;French,R.;Johnson,R.;Marouf,E.;Spilker,L.(2009):inDoughertyM.K.,EspositoL.W.,andKrimigisS.M.,eds,(2009);``SaturnfromCassini-Huygens";Springer.ISBN978-1-4020-9216-9;p.459Cuzzi,J.N.;Burns,J.A.;Charnoz,S.;Clark,R.N.;Colwell,J.E.;Dones,L.;Esposito,L.W.;Filacchione,G.;French,R.G.;Hedman,M.M.;Kempf,S.;Marouf,E.A.;Murray,C.D.;Nicholson,P.D.;Porco,C.C.;Schmidt,J.;Showalter,M.R.;Spilker,L.J.;Spitale,J.N.;Srama,R.;Sremčević,M.;Tiscareno,M.S.;Weiss,J.(2010)AnEvolvingViewofSaturn’sDynamicRings;Science,327,1470-1475Cuzzi,J.N.;Whizin,A.D.;Hogan,R.C.;Dobrovolskis,A.R.;Dones,L.;Showalter,M.R.;Colwell,J.E.;Scargle,J.D.(2014)Saturn’sFRingcore:Calminthemidstofchaos;Icarus232,157-175.Cuzzi,J.N.;Chambers,L.B.;Hendrix,A.R.(2017)Roughsurfaces:Isthedarkstuffjustshadow?;Icarus289,281-294.Cuzzi,J.N.,G.Filacchione,andE.A.Maroufetal(2018a)Saturn'sRings;achapterin``PlanetaryRings":M.TiscarenoandC.Murray,eds.(Cambridge)Cuzzi,J.N.;French,R.G.;Hendrix,A.R.;Olson,D.M.;Roush,T.;Vahidinia,S.(2018b)HST-STISspectraandtherednessofSaturn'srings;Icarus309,363-388.

Page 40: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

40

Cuzzi,J.N.,E.A.Marouf,R.G.French,R.A.Jacobson,C.D.Murray,andN.J.Cooper(2018c)Saturn’sFRingisshepherdedbyPrometheus;inreview,ScienceAdvancesD'Aversa,E.,G.Bellucci,P.D.Nicholson,M.M.Hedman,R.H.Brown,M.R.Showalter,F.Altieri,F. G. Carrozzo, G. Filacchione, and F. Tosi (2010), The spectrumof a Saturn ring spoke fromCassini/VIMS,GRL,37(1)

Déau, E.; Dones, L.; Charnoz, S.;West, R. A.; Brahic, A.; Decriem, J.; Porco, C. C. (2013) TheoppositioneffectinSaturn’smainringsasseenbyCassiniISS:1.Morphologyofphasefunctionsanddependenceonthelocalopticaldepth;Icarus,226,591-603.

Déau,E.(2015)TheoppositioneffectinSaturn'smainringsasseenbyCassiniISS:2.Constraintson the ring particles and their regolithwith analytical radiative transfermodels; Icarus, 253,311-345.

Déau,E.;Dones,L.;Mishchenko,M.I.;West,R.A.;Helfenstein,P.;Hedman,M.M.;Porco,C.C.(2018)TheoppositioneffectinSaturn'smainringsasseenbyCassiniISS:4.CorrelationsofthesurgemorphologywithsurfacealbedosandVIMSspectralproperties;Icarus305,324-349.

Dougherty,M.etal(2018)Science,submitted

Doyle,L.R.;Dones,L.;Cuzzi,J.N.(1989)RadiativetransfermodelingofSaturn'souterBring;Icarus80,104-135.Durisen,R.H.;Cramer,N.L.;Murphy,B.W.;Cuzzi,J.N.;Mullikin,T.L.,Cederbloom,S.E.(1989)Ballistictransportinplanetaryringsystemsduetoparticleerosionmechanisms.I-Theory,numericalmethods,andillustrativeexamples;Icarus80,136-166.Durisen,R.H.;Bode,P.W.;Cuzzi,J.N.;Cederbloom,S.E.;Murphy,B.W.(1992)Ballistictransportinplanetaryringsystemsduetoparticleerosionmechanisms.II-TheoreticalmodelsforSaturn'sA-andB-ringinneredges;Icarus100,364-393.Elliott,J.P.;Esposito,L.W.(2011)RegolithdepthgrowthonanicybodyorbitingSaturnandevolutionofbidirectionalreflectanceduetosurfacecompositionchanges;Icarus2012,268-274.ElMoutamid,M.;Nicholson, P.D.;Hedman,M.M.;Gierasch, P. J.; Burns, J. A.; French, R.G.(2016a)TesseralresonancesintheringsofSaturn;AAS/DDAmeeting#47,id.400.05

ElMoutamid,M.;Hedman,M.M.;Nicholson,P.D.;Gierasch,P.J.;Burns,J.A.(2016b)EvidenceofdifferentialrotationinsideSaturnfromwavesofitsrings;AAS/DPSmeeting#48,id.114.0

ElMoutamid,M.,P.D.Nicholson,R.G.French,M.S.Tiscareno,C.D.Murray,M.W.Evans,C.M.French,M.M.Hedman,and J.A.Burns (2016c),How Janus’orbital swapaffects theedgeofSaturn’sAring?,Icarus,279,125-140

Page 41: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

41

Elrod,M.K.;Tseng,W.-L.;Woodson,A.K.;Johnson,R.E.(2014)SeasonalandradialtrendsinSaturn’sthermalplasmabetweenthemainringsandEnceladus;Icarus242,130-137

Esposito,L.W.;Meinke,B.K.;Colwell,J.E.;Nicholson,P.D.;Hedman,M.M.(2008)MoonletsandclumpsinSaturn'sFring;Icarus194,278-289.Esposito,L.W.;Albers,N.;Meinke,B.K.;Sremcevic,M.;Madhusudhanan,P.;Colwell,J.E.;Jerousek,R.G.(2012)Apredator-preymodelformoon-triggeredclumpinginSaturn'srings;Icarus217,103-114.Estrada,P.R.;Durisen,R.H.;Cuzzi,J.N.;Morgan,D.A.(2015)Combinedstructuralandcompositionalevolutionofplanetaryringsduetomicrometeoroidimpactsandballistictransport;Icarus252,415-439.Estrada,P.R.,R.H.Durisen,andH.N.Latter(2018)MeteoroidBombardmentandBallisticTransportinPlanetaryRings;in"PlanetaryRings":M.TiscarenoandC.Murray,eds.(Cambridge)p.198-224Ferrari,C.,Brooks,S.,Edgington,S.,etal.2009.Structureof self-gravitywakes inSaturn’sAringasmeasuredbyCassiniCIRS.Icarus,199,145–153.Filacchione,G.;Capaccioni,F.;Ciarniello,M.;Clark,R.N.;Cuzzi,J.N.;Nicholson,P.D.;Cruikshank,D.P.;Hedman,M.M.;Buratti,B.J.;Lunine,J.I.;Soderblom,L.A.;Tosi,F.;Cerroni,P.;Brown,R.H.;McCord,T.B.;Jaumann,R.;Stephan,K.;Baines,K.H.;Flamini,E.(2012)Saturn'sicysatellitesandringsinvestigatedbyCassini-VIMS:III-Radialcompositionalvariability;Icarus220,1064-1096.Filacchione,G.;Capaccioni,F.;Clark,R.N.;Nicholson,P.D.;Cruikshank,D.P.;Cuzzi,J.N.;Lunine,J.I.;Brown,R.H.;Cerroni,P.;Tosi,F.;Ciarniello,M.;Buratti,B.J.;Hedman,M.M.;Flamini,E.(2013)TheRadialDistributionofWaterIceandChromophoresacrossSaturn'sSystem;ApJ766,Issue2,articleid.76Filacchione,G.;Ciarniello,M.;Capaccioni,F.;Clark,R.N.;Nicholson,P.D.;Hedman,M.M.;Cuzzi,J.N.;Cruikshank,D.P.;DalleOre,C.M.;Brown,R.H.;Cerroni,P.;Altobelli,N.;Spilker,L.J.(2014)Cassini-VIMSobservationsofSaturn'smainrings:I.Spectralpropertiesandtemperatureradialprofilesvariabilitywithphaseangleandelevation;Icarus241,45-65.Flandes, A., et al. 2010. Brightness of Saturn’s rings with decreasing solar elevation. Planet.SpaceSci.,58,1758–1765.French,R.S.;Showalter,M.R.;Sfair,R.;Argüelles,C.A.;Pajuelo,M.;Becerra,P.;Hedman,M.M.;Nicholson,P.D.(2012)ThebrighteningofSaturn'sFring;Icarus,219,181-193.

Page 42: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

42

French,R.S.;Hicks,S.K.;Showalter,M.R.;Antonsen,A.K.;Packard,D.R.(2014)AnalysisofclumpsinSaturn'sFringfromVoyagerandCassini;Icarus,241,200-220.French,R.G.;Marouf,E.A.;Rappaport,N.J.;McGhee,C.A.(2010)OccultationObservationsofSaturn'sBRingandCassiniDivision;AJ139,1649-1667French,R.G.;Nicholson,P.D.;McGhee-French,C.A.;Lonergan,K.;Sepersky,T.;Hedman,M.M.;Marouf,E.A.;Colwell,J.E.(2016a)NoncircularfeaturesinSaturn'sringsIII:TheCassiniDivision;Icarus274,131-162.French,R.G.;Nicholson,P.D.;Hedman,M.M.;Hahn,J.M.;McGhee-French,C.A.;Colwell,J.E.;Marouf,E.A.;Rappaport,N.J.(2016b)DecipheringtheembeddedwaveinSaturn'sMaxwellringlet;Icarus279,62-77.Fuller,J.(2014)Saturnringseismology:EvidenceforstablestratificationinthedeepinteriorofSaturn;Icarus242,283-296.Fuller,J.;Luan,J.;Quataert,E.(2016)ResonancelockingasthesourceofrapidtidalmigrationintheJupiterandSaturnmoonsystems;MNRAS458,3867-3879Goldreich,P.;Tremaine,S.(1980)Disk-satelliteinteractions;ApJ241,425-441.Goldreich,P.;Tremaine,S.(1982)Thedynamicsofplanetaryrings;Ann.Revs.Astron.Astrophys.20.249-283.Gurnett,D.A.;Kurth,W.S.;Hospodarsky,G.B.;Persoon,A.M.;Xin,L.;Farrell,W.;Lecacheux,A.;Wahlund,J.-E.(2004)CassiniObservationsofRadioandPlasmaWavePhenomenaAssociatedwiththeSaturn'sRings;AAS/DPSmeeting#36,id.02.04;BAAS36,p.1067Harbison,R.A.;Nicholson,P.D.;Hedman,M.M.(2013)ThesmallestparticlesinSaturn’sAandCRings;Icarus226,1225-1240.Hedman,M.M.,etal.(2007a)Self-gravitywakestructuresinSaturn’sAringrevealedbyCassiniVIMS.Astron.J.,133,2624–2629.Hedman,M.M.,etal.(2007b)Saturn'sdynamicDring;Icarus,188,89-107

Hedman,M.M.;Burns,J.A.;Tiscareno,M.S.;Porco,C.C.(2009a)Organizingsomeverytenuousthings:ResonantstructuresinSaturn'sfaintrings;Icarus202,260-279.Hedman,M.M.;Murray,C.D.;Cooper,N.J.;Tiscareno,M.S.;Beurle,K.;Evans,M.W.;Burns,J.A.(2009b)Threetenuousrings/arcsforthreetinymoons;Icarus199,378-386.

Page 43: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

43

Hedman,M.M.;Burt,J.A.;Burns,J.A.;Tiscareno,M.S.(2010a)TheshapeanddynamicsofaheliotropicdustyringletintheCassiniDivision;Icarus210,284-297.Hedman,M.M.;Nicholson,P.D.;Baines,K.H.;Buratti,B.J.;Sotin,C.;Clark,R.N.;Brown,R.H.;French,R.G.;Marouf,E.A.(2010b)TheArchitectureoftheCassiniDivision;AJ139,228-251Hedman,M.M.;Cooper,N.J.;Murray,C.D.;Beurle,K.;Evans,M.W.;Tiscareno,M.S.;Burns,J.A.(2010c)Aegaeon(SaturnLIII),aG-ringobject;Icarus207,433-447.Hedman,M.M.;Burns,J.A.;Thomas,P.C.;Tiscareno,M.S.;Evans,M.W.(2011a)PhysicalpropertiesofthesmallmoonAegaeon(SaturnLIII);EPSC-DPSJointMeeting2011,October2011a,Nantes,France.Hedman,M.M.;Nicholson,P.D.;Showalter,M.R.;Brown,R.H.;Buratti,B.J.;Clark,R.N.;Baines,K.;Sotin,C.(2011b)TheChristiansenEffectinSaturn'snarrowdustyringsandthespectralidentificationofclumpsintheFring;Icarus215,695-711.[Erratum:2012Icar..218..735H]Hedman,M.M.;Burns,J.A.;Evans,M.W.;Tiscareno,M.S.;Porco,C.C.(2011c)Saturn’sCuriouslyCorrugatedCRing;Science332,708.Hedman,M.M.;Burns,J.A.;Hamilton,D.P.;Showalter,M.R.(2012)Thethree-dimensionalstructureofSaturn'sEring;Icarus217,322-338.Hedman,M.M.;Nicholson,P.D.(2013a)Kronoseismology:UsingDensityWavesinSaturn'sCRingtoProbethePlanet'sInterior;AJ146,articleid.12,16pp.Hedman,M.M.;Nicholson,P.D.;Cuzzi,J.N.;Clark,R.N.;Filacchione,G.;Capaccioni,F.;Ciarniello,M.(2013b)ConnectionsbetweenspectraandstructureinSaturn’smainringsbasedonCassiniVIMSdata;Icarus223,105-130.Hedman,M.M.;Burns,J.A.;Hamilton,D.P.;Showalter,M.R.(2013c)Ofhorseshoesandheliotropes:DynamicsofdustintheEnckeGap;Icarus223,252-276.Hedman,M.M.;Nicholson,P.D.(2014a)MoreKronoseismologywithSaturn'srings;MNRAS444,1369-1388Hedman,M.M.,P.D.Nicholson,andH.Salo(2014b),ExploringOverstabilitiesinSaturn'sARingUsingTwoStellarOccultations,AJ,148,15,doi:10.1088/0004-6256/148/1/15.

Hedman, M. M.; Burt, J. A.; Burns, J. A.; Showalter, M. R. (2014c) Non-circular features inSaturn’sDring:D68;Icarus233,147-162.

Page 44: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

44

Hedman,M,M.;Stark,C,C.(2015)Saturn'sGandDRingsProvideNearlyCompleteMeasuredScatteringPhaseFunctionsofNearbyDebrisDisks;ApJ811,Issue1,articleid.67Hedman,M.M.;Burns,J.A.;Showalter,M.R.(2015b)CorrugationsandeccentricspiralsinSaturn'sDring:NewinsightsintowhathappenedatSaturnin1983;Icarus248,137-161.Hedman,M.M.;Nicholson,P.D.(2016)TheB-ring'ssurfacemassdensityfromhiddendensitywaves:Lessthanmeetstheeye?Icarus279,109-124.Hedman,M.M.;Showalter,M.R.(2016)AnewpatterninSaturn'sDringcreatedinlate2011;Icarus279,155-165.Hedman,M.M.;ElMoutamid,M.;Nicholson,P.D.(2017)DriftingwavesinSaturn'sCring,evidenceforchangesinSaturn'sinterior;AAS/DDAmeeting#48,id.401.03Hedman,M.M.,F.Postberg,D.P.Hamilton,S.Renner,andH.-W.Hsu(2018a)DustyRings;achapterin"PlanetaryRings":M.TiscarenoandC.Murray,eds.(Cambridge)p.308-335Hedman,M.M.;Nicholson,P.D.;ElMoutamid,M.(2018b)EvidenceforChangesinSaturn'sInteriorfromStructuresinItsRings;49thLPSC,No.2083,id.1288Horanyi,M.;Burns,J.A.;Hedman,M.M.;Jones,G.H.;Kempf,S.(2009)DiffuseRings;inSaturnfromCassini-Huygens,byDougherty,M.K.;Esposito,L.W.;Krimigis,S.M.,ISBN978-1-4020-9216-9.SpringerScience+BusinessMediaB.V.,2009,p.511Hsuetal(2018)Science,submittedIessetal(2018)Science,submittedJacobson,R.A.;Spitale,J.;Porco,C.C.;Beurle,K.;Cooper,N.J.;Evans,M.W.;Murray,C.D.(2008)RevisedOrbitsofSaturn'sSmallInnerSatellites;Astron.J.135,261-263Jerousek,R.G.;Colwell,J.E.;Esposito,L.W.;Nicholson,P.D.;Hedman,M.M.(2016)Smallparticlesandself-gravitywakesinSaturn'sringsfromUVISandVIMSstellaroccultations;Icarus279,36-50.Johnson,R.E.;Tseng,W.-L.;Elrod,M.K.;Persoon,A.M.(2017)NanograinDensityOutsideSaturn’sARing;ApJL834,Issue1,articleid.L6Kempfetal2018,inpreparation(massfluxpaper)Laughlin,G.;Korchagin,V.;Adams,F.C.(1997)SpiralModeSaturationinSelf-GravitatingDisks;ApJ477,410-423.

Page 45: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

45

Lainey,V.;Jacobson,R.A.;Tajeddine,R.;Cooper,N.J.;Murray,C.;Robert,V.;Tobie,G.;Guillot,T.;Mathis,S.;Remus,F.;Desmars,J.;Arlot,J.-E.;DeCuyper,J.-P.;Dehant,V.;Pascu,D.;Thuillot,W.;LePoncin-Lafitte,C.;Zahn,J.-P.(2017)NewconstraintsonSaturn'sinteriorfromCassiniastrometricdata;Icarus281,286-296.Leyrat, C., Spilker, L. J., Altobelli, N., Pilorz, S., and Ferrari, C. 2008. Infrared observations ofSaturn’s ringsbyCassiniCIRS:Phaseangleand local timedependence.Planet.SpaceSci.,56,117–133.Mankovich,C.,M.S.Marley,J.J.Fortney,andN.Movshovitz(2018)CassiniRingSeismologyasaProbeofSaturn’sInteriorI:RigidRotation;SubmittedtoApJMarley,M,S.(1990)NonradialoscillationsofSaturn:Implicationsforringsystemstructure;Ph.D.Thesis,Univ.ofArizona,TucsonMarley,M.S.;Hubbard,W.B.;Porco,C.C.(1987)SaturnianNonradialp-ModeOscillationsandCRingStructure;BAAS19,p.889Marley,M.S.;Hubbard,W.B.;Porco,C.C.(1989)C-RingFeaturesandf-ModeOscillationsofSaturn;BAAS21,p.928Marley,M.S.;Porco,C.C.(1993)Planetaryacousticmodeseismology-Saturn'srings;Icarus106,508Marley,M.S.(2014)Saturnringseismology:Lookingbeyondfirstorderresonances;Icarus234,194-199.Marouf,E.A.;French,R.G.;Rappaport,N.J.;Wong,K.;McGhee,C.;Anabtawi,A.(2011)SixCenturiesOldSpiralofVerticalCorrugationsinSaturn'sC-Ring;AGUFallMeeting2011,abstractid.P12B-01McGhee,C.A.;Nicholson,P.D.;French,R.G.;Hall,K.J.(2001)HSTObservationsofSaturnianSatellitesduringthe1995RingPlaneCrossings;Icarus152,282-315McGhee,C.A.;French,R.G.;Dones,L.;Cuzzi,J.N.;Salo,H.J.;Danos,R.(2005)HSTobservationsofspokesinSaturn'sBring;Icarus173,508-521.Meinke,B.K.;Esposito,L.W.;Albers,N.;Sremčević,M.(2012)ClassificationofFringfeaturesobservedinCassiniUVISoccultations;Icarus218,545-554.Milleretal2018Science,submittedMitchell,C.J.;Horányi,M.;Havnes,O.;Porco,C.C.(2006)Saturn'sSpokes:LostandFound;Science311,1587-1589

Page 46: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

46

Mitchell,C.J.;Porco,C.C.;Dones,H.L.;Spitale,J.N.(2013)ThebehaviorofspokesinSaturn'sBring;Icarus225,446-474.Mitchell,C.J.;Porco,C.C.;Weiss,J.W.(2015)TrackingtheGeysersofEnceladusintoSaturn’sERing;AJ149,Issue5,articleid.156,16pp.(2015).Mitchell,D.etal2018Scence,submittedMorishima,R.,Spilker,L.,Salo,H.,etal.2010.AmultilayermodelforthermalinfraredemissionofSaturnsringsII:Albedo,spins,andverticalmixingofringparticlesinferredfromCassiniCIRS.Icarus,210,330–345.Morishima, R., G., Edgington S., and Spilker, L. 2012. Regolith grain sizes of Saturn’s ringsinferredfromCassini-CIRSfar-infraredspectra.Icarus,221,888–899.Morishima,R.,Spilker,L.,andTruner,N.2014.AzimuthaltemperaturemodulationsofSaturn’sAringcausedbyself-gravitywakes.Icarus,228,247–259.Morishima,R.,Spilker,L.,Brooks,S.,Deau,E.,andPilorz,S.2016.IncompletecoolingdownofSaturn’sAringatsolarequinox:Implicationforseasonalthermalinertiaandinternalstructureofringparticles.Icarus,279,2–19.Murray,C.D.;Chavez,C.;Beurle,K.;Cooper,N.;Evans,M.W.;Burns,J.A.;Porco,C.C.(2005)HowPrometheuscreatesstructureinSaturn'sFring;Nature437,1326-1329Murray,C.D.;Beurle,K.;Cooper,N.J.;Evans,M.W.;Williams,G.A.;Charnoz,S.(2008)ThedeterminationofthestructureofSaturn'sFringbynearbymoonlets;Nature,453,7196,739-744Murray,C.D.andR.C.French(2018)TheFRing;achapterin"PlanetaryRings":M.TiscarenoandC.Murray,eds.(Cambridge)p.336-360Nicholson,P.D.;Hedman,M.M.;Clark,R.N.;Showalter,M.R.;Cruikshank,D.P.;Cuzzi,J.N.;Filacchione,G.;Capaccioni,F.;Cerroni,P.;Hansen,G.B.;Sicardy,B.;Drossart,P.;Brown,R.H.;Buratti,B.J.;Baines,K.H.;Coradini,A.(2008)AcloselookatSaturn'sringswithCassiniVIMS;Icarus,193,182-212.Nicholson,P.D.;Hedman,M.M.(2010)Self-gravitywakeparametersinSaturn'sAandBrings;Icarus206,410-423.Nicholson,P.D.,R.G.French,M.M.Hedman,etal.(2014):“NoncircularfeaturesinSaturn’sringsI:TheedgeoftheBring.”Icarus227,152-175.

Page 47: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

47

Nicholson,P.D.;R.G.French,andJ.N.Spitale(2018)NarrowRings,GapsandSharpEdges;in"PlanetaryRings":M.TiscarenoandC.Murray,eds.(Cambridge)p.276-307Nitter,T.;Havnes,O.;Melandsø,F.(1998)Levitationanddynamicsofchargeddustinthephotoelectronsheathabovesurfacesinspace;JGR103,6605-6620Orton,G.S.;Baines,K.H.;Cruikshank,D.;Cuzzi,J.N.;Krimigis,S.M.;Miller,S.;Lellouch,E.(2009)ReviewofKnowledgePriortotheCassini-HuygensMissionandConcurrentResearch;inSaturnfromCassini-Huygens,byDougherty,M.K.;Esposito,L.W.;Krimigis,S.M.,ISBN978-1-4020-9216-9.SpringerScience+BusinessMediaB.V.,2009,p.9Pan,M.;Chiang,E.(2010)ThePropellerandtheFrog;ApJL722,L178-L182Pan,M.;Chiang,E.(2012)CareandFeedingofFrogs;AJ143,Issue1,articleid.9,6pp.Pan,M.;Rein,H.;Chiang,E.Evans,S.N.(2012)Stochasticflightsofpropellers;MNRAS427,2788-2796.Pilorz,S.,Altobelli,N.,Colwell,J.,andShowalter,M.2015.ThermaltransportinSaturn’sBringinferredfromCassiniCIRS.Icarus,254,157–177.Porco,C.;Danielson,G.E.;Goldreich,P.;Holberg,J.B.;Lane,A.L.(1984)Saturn'snonaxisymmetricringedgesat1.95R(s)and2.27R(s);Icarus60,17-28.Porco,C.C.;Baker,E.;Barbara,J.;Beurle,K.;Brahic,A.;Burns,J.A.;Charnoz,S.;Cooper,N.;Dawson,D.D.;DelGenio,A.D.;Denk,T.;Dones,L.;Dyudina,U.;Evans,M.W.;Giese,B.;Grazier,K.;Helfenstein,P.;Ingersoll,A.P.;Jacobson,R.A.;Johnson,T.V.;McEwen,A.;Murray,C.D.;Neukum,G.;Owen,W.M.;Perry,J.;Roatsch,T.;Spitale,J.;Squyres,S.;Thomas,P.;Tiscareno,M.;Turtle,E.;Vasavada,A.R.;Veverka,J.;Wagner,R.;West,R.(2005)CassiniImagingScience:InitialResultsonSaturn'sRingsandSmallSatellites;Science,307,5713,1226-1236Porco,C.C.;Thomas,P.C.;Weiss,J.W.;Richardson,D.C.(2007)Saturn’sSmallInnerSatellites:CluestoTheirOrigins;Science318,1602Porco,C.C.;Weiss,J.W.;Richardson,D.C.;Dones,L.;Quinn,T.;Throop,H.(2008)SimulationsoftheDynamicalandLight-ScatteringBehaviorofSaturn'sRingsandtheDerivationofRingParticleandDiskProperties;A.J.136,2172-2200Porco,C.C.;Weiss,J.W.;Richardson,D.C.;Dones,L.;Quinn,T.;Throop,H.(2008)SimulationsoftheDynamicalandLight-ScatteringBehaviorofSaturn'sRingsandtheDerivationofRingParticleandDiskProperties;AJ136,2172-2200Poulet,F.;Sicardy,B.(2001)DynamicalevolutionofthePrometheus-Pandorasystem;MNRAS322,343-355.

Page 48: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

48

Poulet,F.;Cuzzi,J.N.(2002)TheCompositionofSaturn'sRings;Icarus160,350-358.Poulet,F.;Cruikshank,D.P.;Cuzzi,J.N.;Roush,T.L.;French,R.G.(2003)CompositionsofSaturn'sringsA,B,andCfromhighresolutionnear-infraredspectroscopicobservations;Astron.Astrophys412,305-316Reffet, E., Verdier, M., and Ferrari, C. 2015. Thickness of Saturn’s B ring as derived fromseasonaltemperaturevariationsmeasuredbyCassiniCIRS.Icarus,254,276–286.Rein,H.;Papaloizou,J.C.B.(2010)StochasticorbitalmigrationofsmallbodiesinSaturn'srings;Astron.Astrophys524,id.A22,13pp.Robbins,S.J.,Stewart,G.R.,Lewis,M.C.,Colwell,J.E.,andSremcevic,M.(2010)EstimatingthemassesofSaturn’sAandBringsfromhigh-opticaldepthN-bodysimulationsandstellaroccultations.Icarus,206,431–445.Salo,H.;French,R.G.(2010)TheoppositionandtilteffectsofSaturn’sringsfromHSTobservations;Icarus210,785-816.Schmidt,J.;Ohtsuki,K.;Rappaport,N.;Salo,H.;Spahn,F.(2009)DynamicsofSaturn'sDenseRings;inSaturnfromCassini-Huygens,byDougherty,M.K.;Esposito,L.W.;Krimigis,S.M.,ISBN978-1-4020-9216-9.SpringerScience+BusinessMediaB.V.,2009,p.213Schmidt,J.;Colwell,J.E.;Lehmann,M.;Marouf,E.A.;Salo,H.;Spahn,F.;Tiscareno,M.S.(2016)OntheLinearDampingRelationforDensityWavesinSaturn’sRings;ApJ824,Issue1,articleid.33Schmidt,J.;Tiscareno,M.S.(2013)EjectacloudsfrommeteoroidimpactsonSaturn'srings:Constraintsontheorbitalelementsandsizeoftheprojectiles;AGUFallMeeting2013,abstractid.P23D-1820Schaffer,L.;Burns,J.A.(1987)Thedynamicsofweaklychargeddust-MotionthroughJupiter'sgravitationalandmagneticfields;JGR92,2264-2280Seiler,M.;Sremčević,M.;Seiß,M.;Hoffmann,H.;Spahn,F.(2017)ALibrationalModelforthePropellerBlériotintheSaturnianRingSystem;ApJL840,Issue2,articleid.L16Shimizu,M.(1982)StronginteractionbetweentheringsystemandtheionosphereofSaturn;MoonandthePlanets,22,p.521,522.Showalter,MarkR.(1991)Visualdetectionof1981S13,Saturn'seighteenthsatellite,anditsroleintheEnckegap;Nature351,709-713.

Page 49: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

49

Showalter,M.R.;Nicholson,P.D.(1990)Saturn'sringsthroughamicroscope-ParticlesizeconstraintsfromtheVoyagerPPSscan;Icarus87,285-306.Shu,F.H.(1984)Wavesinplanetaryrings;in"PlanetaryRings"(A85-3440115-88).UniversityofArizonaPress,1984,p.513-561.Smith,B.A.;Soderblom,L.;Batson,R.M.;Bridges,P.M.;Inge,J.L.;Masursky,H.;Shoemaker,E.;Beebe,R.F.;Boyce,J.;Briggs,G.;Bunker,A.;Collins,S.A.;Hansen,C.;Johnson,T.V.;Mitchell,J.L.;Terrile,R.J.;Cook,A.F.;Cuzzi,J.N.;Pollack,J.B.;Danielson,G.E.;Ingersoll,A.P.;Davies,M.E.;Hunt,G.E.;Morrison,D.;Owen,T.;Sagan,C.;Veverka,J.;Strom,R.;Suomi,V.E.(1982)AnewlookattheSaturnsystem-TheVoyager2images;Science215,504-537.Spahn,F.;Scholl,H.;Hertzsch,J.-M.(1994)Structuresinplanetaryringscausedbyembeddedmoonlets;Icarus111,514-535Spahn,F.,H.Hoffmann,H.Rein,M.Seiss,M.Sremcevic,andM.Tiscareno(2018)MoonletsinDensePlanetaryRings;in"PlanetaryRings":M.TiscarenoandC.Murray,eds.(Cambridge)p.157-197Spilker,L.J.,Pilorz,S.H.,Edgington,S.G.,etal.2005.CassiniCIRSobservationsofaroll-offinSaturnringspectraatsubmillimeterwavelengths.EarthMoonPlanets,96,149–163.Spilker,L.J.,C.Ferrari,N.Altobelli,S.Pilorz,andR.Morishima(2018)ThermalPropertiesofRingsandRingParticles;achapterin``PlanetaryRings":M.TiscarenoandC.Murray,eds.(Cambridge)p.397-431Spitale,J.N.;Hahn,J.M.(2016)TheshapeofSaturn'sHuygensringletviewedbyCassiniISS;Icarus279,141-154.Spitale,J.N.(2017)Saturn'sMisbegottenMoonlets;AAS/DDAmeeting#48,id.400.04Spitale,J.N.;Jacobson,R.A.;Porco,C.C.;Owen,W.M.,Jr.(2006)TheOrbitsofSaturn'sSmallSatellitesDerivedfromCombinedHistoricandCassiniImagingObservations;Astron.J.132,692-710.Spitale,J.N.;Porco,C.C.(2009)TimeVariabilityintheOuterEdgeofSaturn'sA-RingRevealedbyCassiniImaging;Astron.J.138,1520-1528Spitale,J.N.;Porco,C.C.(2010)DetectionofFreeUnstableModesandMassiveBodiesinSaturn'sOuterBRing;AJ140,1747-1757Sremcevic,M.;Krivov,A.V.;Krüger,H.;Spahn,F.(2005)Impact-generateddustcloudsaroundplanetarysatellites:modelversusGalileodata;Plan.Sp.Sci53,625-641.

Page 50: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

50

Sremčević,M.;Schmidt,J.;Salo,H.;Seisz,M.;Spahn,F.;Albers,N.(2007)AbeltofmoonletsinSaturn'sAring;Nature449,1019-1021Sremcevic,M.;Stewart,G.R.;Albers,N.;Esposito,L.W.(2012)DiscoveryOfBRingPropellersInCassiniUVISAndISS;AAS/DPSmeeting#44,id.513.06Sremcevic,M.;Stewart,G.R.;Albers,N.;Esposito,L.W.(2013)PropellersinSaturn'srings;AGUFallMeeting2013,abstractid.P21E-07Sremcevic,M.;Stewart,G.R.;Albers,N.;Esposito,L.W.(2014a)PropellersinSaturn'srings;EPSCAbstracts,Vol.9,id.EPSC2014-633Sremcevic,M.;Stewart,G.R.;Albers,N.;Esposito,L.W.(2014b)PropellersinSaturnAandBrings;AAS/DPSmeeting#46,id.417.01Tajeddine,R.;Lainey,V.;Cooper,N.J.;Murray,C.D.(2013)CassiniISSastrometryoftheSaturniansatellites:Tethys,Dione,Rhea,Iapetus,andPhoebe2004-2012;A&A575,id.A73,6pp.Tajeddine,R.;Nicholson,P.D.;Longaretti,P.-Y.;ElMoutamid,M.;Burns,J.A.(2017a)WhatConfinestheRingsofSaturn?ApJS232,Issue2,articleid.28,17pp.Tajeddine,R.;Nicholson,P.D.;Tiscareno,M.S.;Hedman,M.M.;Burns,J.A.;ElMoutamid,M.(2017b)DynamicalphenomenaattheinneredgeoftheKeelergap;Icarus289,80-93.Tamayo,D.;Hedman,M.M.;Burns,J.A.(2014)FirstobservationsofthePhoeberinginopticallight;Icarus233,p.1-8.Tamayo,D.;Markham,S.R.;Hedman,M.M.;Burns,J.A.;Hamilton,D.P.(2016)RadialprofilesofthePhoebering:AvastdebrisdiskaroundSaturn;Icarus275,117-131.Thomson,F.S.;Marouf,E.A.;Tyler,G.L.;French,R.G.;Rappoport,N.J.(2007)PeriodicmicrostructureinSaturn'sringsAandB;GRL34,Issue24,CiteIDL24203Tiscareno,M.S.;Burns,J.A.;Hedman,M.M.;Porco,C.C.;Weiss,J.W.;Dones,L.;Richardson,D.C.;Murray,C.D.(2006)100-metre-diametermoonletsinSaturn'sAringfromobservationsof‘propeller’structures;Nature440,Issue7084,648-650Tiscareno,M.S.;Burns,J.A.;Nicholson,P.D.;Hedman,M.M.;Porco,C.C.(2007)CassiniimagingofSaturn'srings.II.Awavelettechniqueforanalysisofdensitywavesandotherradialstructureintherings;Icarus189,14-34.Tiscareno,M.S.;Burns,J.A.;Hedman,M.M.;Porco,C.C.(2008)ThePopulationofPropellersinSaturn'sARing;Astron.J.135,1083-1091

Page 51: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

51

Tiscareno,M.S.;Burns,J.A.;Sremcevic,M.;Beurle,K.;Hedman,M.M.;Cooper,N.J.;Milano,A.J.;Evans,M.W.;Porco,C.C.;Spitale,J.N.;Weiss,J.W.(2010)PhysicalCharacteristicsandNon-KeplerianOrbitalMotionof"Propeller"MoonsEmbeddedinSaturn'sRings;ApJ718,L92-L96Tiscareno,M.S.;Hedman,M.M.;Burns,J.A.;Weiss,J.W.;Porco,C.C.(2013a)ProbingtheinnerboundariesofSaturn'sAringwiththeIapetus-1:0nodalbendingwave;Icarus224,201-208.Tiscareno,M.S.;Mitchell,C.J.;Murray,C.D.;DiNino,D.;Hedman,M.M.;Schmidt,J.;Burns,J.A.;Cuzzi,J.N.;Porco,C.C.;Beurle,K.;Evans,M.W.(2013b)ObservationsofEjectaCloudsProducedbyImpactsontoSaturn’sRings;Science340,Issue6131,460-464Tiscareno,MatthewS.(2013)Amodified“TypeImigration”modelforpropellermoonsinSaturn'srings;Plan.&Sp.Sci77,36-142.Tiscareno,M.S.;Harris,B.E.(2018)MappingspiralwavesandotherradialfeaturesinSaturn'srings;eprintarXiv:1708.03702;SubmittedtoIcarusTiscareno,M.S.;Mitchell,C.J.;Murray,C.D.;DiNino,D.;Hedman,Ma.M.;Schmidt,J.;Burns,J.A.;Cuzzi,J.N.;Porco,C.C.;Beurle,K.;Evans,M.W.(2013);ObservationsofEjectaCloudsProducedbyImpactsontoSaturn’sRings;Science,340,6131,460-464Tseng,W.-L.;Ip,W.-H.;Johnson,R.E.;Cassidy,T.A.;Elrod,M.K.(2010)Thestructureandtimevariabilityoftheringatmosphereandionosphere;Icarus,206,382-389.Tseng,W.-L.;Johnson,R.E.;Elrod,M.K.(2013)ModelingtheseasonalvariabilityoftheplasmaenvironmentinSaturn'smagnetospherebetweenmainringsandMimas;Plan.Sp.Sci.77,126-135Vahidinia,S.;Cuzzi,J.N.;Hedman,M.;Draine,B.;Clark,R.N.;Roush,T.;Filacchione,G.;Nicholson,P.D.;Brown,R.H.;Buratti,B.;Sotin,C.(2011)Saturn'sFringgrains:Aggregatesmadeofcrystallinewaterice;Icarus215,Issue2,p.682-694.[Erratum:2012Icar..218..736V]vanAllen,J.A.(1982)FindingsonringsandinnersatellitesofSaturnofPioneer11;Icarus51,509-527Verbiscer,A.J.;Skrutskie,M.F.;Hamilton,D.P.(2009)Saturn'slargestring;Nature461,1098-1100Waiteetal2018ScienceWeiss,J.W.;Porco,C.C.;Tiscareno,M.S.(2009)RingEdgeWavesandtheMassesofNearbySatellites;AJ138,272-286

Page 52: Volume 1: Cassini Final Report, Rings Discipline Working Group · RWG_FinalReport-2.docx 10/22/18 9:40 AM 1 Volume 1: Cassini Final Report, Rings Discipline Working Group Figure 1:

RWG_FinalReport-2.docx10/22/189:40AM

52

Ye,S_Y.,GurnettD.A.andKurth,W.S.,In-situmeasurementsofSaturn'sdustyringsbasedondustimpactsignalsdetectedbyCassiniRPWSIcarus 279: 51-61Zebker,H.A.;Marouf,E.A.;Tyler,G.L.(1985)Saturn'srings-Particlesizedistributionsforthinlayermodel;Icarus64,531-548.Zhang,Z.;Hayes,A.G.;Janssen,M.A.;Nicholson,P.D.;Cuzzi,J.N.;dePater,I.;Dunn,D.E.;Estrada,P.R.;Hedman,M.M.(2017a)CassinimicrowaveobservationsprovidecluestotheoriginofSaturn'sCring;Icarus,281,297-321.Zhang,Z.;Hayes,A.G.;Janssen,M.A.;Nicholson,P.D.;Cuzzi,J.N.;dePater,I.;Dunn,D.E.(2017b)ExposureageofSaturn'sAandBrings,andtheCassiniDivisionassuggestedbytheirnon-icymaterialcontent;Icarus294,14-42.