Vladimir Cvetković

35
Vladimir Cvetković Jan Zaanen Zohar Nussinov Sergei Mukhin Condensed Matter Physics Seminar John Hopkins University Baltimore, February 15th 2006 Superconductivity from the `ordered’ limit

description

Superconductivity from the `ordered’ limit. Jan Zaanen Zohar NussinovSergei Mukhin. Condensed Matter Physics Seminar John Hopkins University Baltimore, February 15th 2006. Vladimir Cvetković. Correlated superconductors. Ideal (Bose-Einstein) gas. BEC cold atomic gas, - PowerPoint PPT Presentation

Transcript of Vladimir Cvetković

Page 1: Vladimir Cvetković

Vladimir CvetkovićJan Zaanen

Zohar Nussinov Sergei Mukhin

Condensed Matter Physics SeminarJohn Hopkins University

Baltimore, February 15th 2006

Superconductivity from the `ordered’ limit

Page 2: Vladimir Cvetković

Correlatedsuperconductors

Ideal (Bose-Einstein) gas

Strongly correlated fluid

BEC cold atomic gas,BCS superconductivity

Helium 4 superfluid ω

q

Page 3: Vladimir Cvetković

Correlatedsuperconductors

Ideal (Bose-Einstein) gas

Strongly correlated fluid

BEC cold atomic gas,BCS superconductivity

Helium 4 superfluid

High Tc superconductors

Page 4: Vladimir Cvetković

Electrons comingto a standstill

Electron crystals in cuprates

Bi2Sr2CaCu2O8+Ca1.88Na0.12CuO2Cl2

Hanaguri et al.Kapitulnik et al.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Vershinin et al.

Bi2Sr2CaCu2O8+

Page 5: Vladimir Cvetković

Quantum fluctuating stripe order

Stripes: Theory: Zaanen & Gunnarson; Kivelson & Emery; Schultz

Experiments:

La1.75Ba0.25CuO4 Sr14Cu24O41

Tranquada & Yamada Abbamonte et al.

Page 6: Vladimir Cvetković

Transient stripe order

``Melted stripes’’

Bi2Sr2CaCu2O8+

Hoffman et al.

YB2Cu3O6.6

Mook et al.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Hinkov et al.

YB2Cu3O6.6

Page 7: Vladimir Cvetković

Correlatedsuperconductors

Ideal (Bose-Einstein) gas

Strongly correlated fluid

BEC cold atomic gas,BCS superconductivity

Helium 4 superfluid

High Tc superconductors

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 8: Vladimir Cvetković

Plan of talk

1. Liquid crystals2. Duality (Higgs-Abelian)3. Elasticity (quantum)4. Elasticity + Duality5. Charged nematic solid6. Conclusions

Page 9: Vladimir Cvetković

Conclusions

•Dislocation mediated melting of aneutral / Wigner / stripe crystal

•Superconducting state

•Unconventional magnetic screening -- oscillating screening currents

•Unconventional electric screening -- overscreeningof the Coulomb potential

•New pole(s) in the electron energy loss function asa signature of new (superconducting) phase(experimentally accessible!)

Page 10: Vladimir Cvetković

Plan of talk

1. Liquid crystals2. Duality (Higgs-Abelian)3. Elasticity (quantum)4. Elasticity + Duality5. Charged nematic solid6. Conclusions

Page 11: Vladimir Cvetković

1. Liquid crystals

Phase diagram

Page 12: Vladimir Cvetković

Quantum liquid crystals

Quantum fluctuations (doping) induced melting

Stripe melting (Kivelson, Fradkin, Emery; Nature 393, 550

(1998))

Page 13: Vladimir Cvetković

Plan of talk

1. Liquid crystals

2. Duality (Higgs-Abelian)3. Elasticity (quantum)4. Elasticity + Duality5. Charged nematic solid6. Conclusions

Page 14: Vladimir Cvetković

2. XY dualityin 2+1D

XY action

Phase field:smooth and multivalued

vorticesmagnons

Page 15: Vladimir Cvetković

2. XY dualityin 2+1D

XY action

Superfluid Mott insulatorXY

Coulomb Superconductor(Higgs)

EM

Conjugated momentum

Gauge fields

Currents

EM action withvortices as charges

Page 16: Vladimir Cvetković

Matching the degrees

of freedom IXY - Superfluid

Transversal photon

EM - Coulomb

Coulomb interaction

XY Magnon

Page 17: Vladimir Cvetković

Matching the degrees

of freedom IIXY - Mott insulator EM - Higgs

Particle/hole Transversal photon

Coulomb interaction

Longitudinal photon

VC, J. Zaanen, cond-mat/0511586; submitted to PRB

Page 18: Vladimir Cvetković

Plan of talk

1. Liquid crystals2. Duality (Higgs-Abelian)

3. Elasticity (quantum)4. Elasticity + Duality5. Charged nematic solid6. Conclusions

Page 19: Vladimir Cvetković

3. Elasticity –Strain action

Displacement field

Action

• Longitudinal (compression + shear)• Transversal (shear)

Ideal crystal – two phonons

Phonon velocities

Page 20: Vladimir Cvetković

Displacementsingularities

Dislocations Disclinations

•Destroys shear rigidity

•Restores rotationalinvariance

•Destroys curvaturerigidity

•Topological charge:Franck scalar

•Topological charge:Burgers vector

•Restores translationalinvariance

Page 21: Vladimir Cvetković

Find dislocations in electron DOS

12

34

56

78

12

45

6

3

Page 22: Vladimir Cvetković

Plan of talk

1. Liquid crystals2. Duality (Higgs-Abelian)3. Elasticity (quantum)

4. Elasticity + Duality5. Charged nematic solid6. Conclusions

Page 23: Vladimir Cvetković

4. Duality +Elasticity

Stress field

Dual stress gauge fields

Our dual action

Dislocation currents

Angular conservation -- Ehrenfest constraint

Three degrees of freedom

Two phonons (photons) + `Coulomb’ interaction

Page 24: Vladimir Cvetković

Disorder field

Director order parameter abbaab nnQ 21−=

GLW action for Burgers vector (director)

GLW action for (dislocation) loop gas

Higgs mechanism for the elastic photons

Page 25: Vladimir Cvetković

QuickTime™ and a decompressor

are needed to see this picture.

Dislocation kinetics

Glide ClimbAllowed – reconnecting Disallowed – excess material

Climb makes the compression stress short-ranged!

VC, Z. Nussinov, J. Zaanen, cond-mat/0508664, to appear in Phil. Mag.

QuickTime™ and a decompressor

are needed to see this picture.

Page 26: Vladimir Cvetković

Neutral nematic crystal

The nematic phase = the `dual’ shear superconductorLongitudinal Transversal

ω ω

q qJ. Zaanen et al., Ann.Phys. 310, 181 (2004);VC, J. Zaanen, Z. Nussinov, S. Mukhin, in preparation

Page 27: Vladimir Cvetković

Plan of talk

1. Liquid crystals2. Duality (Higgs-Abelian)3. Elasticity (quantum)4. Elasticity + Duality

5. Charged nematic solid6. Conclusions

Page 28: Vladimir Cvetković

5. Addingelectric charge

Charged particles – Wigner crystal

Extra terms in the dual action

Charged crystal innate superconductor but...

... dual stress gauge fields dress it back

• Dual stress to EM gauge fields coupling

• Bare Meissner

Page 29: Vladimir Cvetković

Static magnetic screening

Characteristic screening lengths

•London (magnetic)

•Shear

Static screening (Meissner)

Screening type

•Normal (conventional SC) at 2λL > λS

•Oscillating currents at 2λL < λS

Dual shear superconductor: bare Meissner liberated

Page 30: Vladimir Cvetković

Static Coulomb screening

Characteristic screening lengths•Ideal crystal screening length

•Liquid screening length

•Dislocation correlation length

Static Coulomb term

Coulomb potential screenedin all phases

•Disorder lines

Physically relevant regime:

Page 31: Vladimir Cvetković

Electron energyloss function

Electric permeability(dynamical Coulomb propagator)

Extra pole in the electron loss function!

Energy loss function

Gap values:

VC, J. Zaanen, Z. Nussinov,S. Mukhin, in preparation (2)

Page 32: Vladimir Cvetković

Detecting the dual `electric shear’

photonOld fashioned

(Dresden EELS)New fashioned

(Taiwanese RIXS)`Smart’

(Reflective EELS)

Page 33: Vladimir Cvetković

Conclusions

•Dislocation mediated melting of aneutral / Wigner / stripe crystal

•Superconducting state

•Unconventional magnetic screening -- oscillating screening currents

•Unconventional electric screening -- overscreeningof the Coulomb potential

•New pole(s) in the electron energy loss function asa signature of new (superconducting) phase(experimentally accessible!)

Page 34: Vladimir Cvetković

Charged orderednematic phase

Anisotropic

Anisotropic effective`glide’ length

Dynamical coupling between themagnetic and electric sectors:polaritons `visible’ in EELS

Extreme superconductinganisotropy

Page 35: Vladimir Cvetković

Alternative description

Burgers disorder fields

ψb

ℤ2 symmetry

Sdis = 12 dτ dxdb∫ ∂μ − ibaBμ

a( )ψ b

2+ m2 ψ b

2+ db'ψ b

2Vb⋅b'ψ b '

2∫ ⎡ ⎣ ⎢

⎤ ⎦ ⎥

GLW action for (dislocation) loop gas

Director order/disorder

Qab = Qab ψ b ,ψ b( )

ψ−b =ψ b

Ordered nematic -- U(1) gauge symmetry preserved

Jμ−b = −Jμ

b