Veksler and Baldin Laboratory of High Energy Physics

71
Dubna SPIN-09 Delta-Sigma experimentt 1 Delta-Sigma experiment. The results obtained and Δσ T (np) measurements planned using new high intensity polarized deuteron beam at the Nuclotron-M Veksler and Baldin Laboratory of High Energy Physics Joint Institute for Nuclear Research

description

Delta-Sigma experiment. The results obtained and Δσ T (np) measurements planned using new high intensity polarized deuteron beam at the Nuclotron-M. Veksler and Baldin Laboratory of High Energy Physics Joint Institute for Nuclear Research. Outline. - PowerPoint PPT Presentation

Transcript of Veksler and Baldin Laboratory of High Energy Physics

Page 1: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 1

Delta-Sigma experiment. The results obtained and ΔσT (np)

measurements planned using new high intensity polarized deuteron beam

at the Nuclotron-M

Veksler and Baldin Laboratory of High Energy Physics Joint Institute for Nuclear Research

Page 2: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 2

Outline• Introduction. Urgency of the data obtaining for np spin

observables in the GeV region. Aim of the Delta-Sigma

experiment.

• Determination of the ΔσL,T(np), A00kk(np), A00nn(np) and

Rdp observables and research program of experiment.

• Experimental set-up with instrumentation for transmission

ΔσL,T(np) measurements and magnetic spectrometer for

elastic nppn charge exchange events detection.

• The results obtained in frame of Delta-Sigma experiment

research program.

• Coming ΔσT (np) measurements at the Nuclotron-M.

Page 3: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 5

• The aim of the project is to extend investigations of

NN interaction over a new high energy region of free

polarized neutron beams 1.2 – 3.7 GeV provided

at present only at the JINR VBLHEP.

• The main task of these studies is determination for

the first time the imaginary and real parts of all spin-

dependent elastic np forward scattering amplitudes

over this energy region.

• To reach this aim, a complete data set on energy

dependencies of np spin-dependent observables have

to be obtained for direct and simple reconstruction of

these amplitudes.

Page 4: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 6

At the forward (θCM = 0) and backward (θCM = π) angles five complex invariant amplitudes a, b, c, d, and e from the invariant amplitudes representation, which are the functions of the angle θCM and energy ECM, satisfy the following equations: a(0) − b(0) = c(0) + d(0), e(0) = 0, (1) a(π) − b(π) = c(π) − d(π), e(π) = 0. (2) Therefore only three complex amplitudes are independent in these directions. The forward and backward scattering amplitudes are connected by the angular symmetry conditions. We assume that the I = 1 amplitudes are known. Consequently for the direct reconstruction of the np forward amplitudes, altogether, at least six independent np observables at either the forward or backward directions are needed.

Page 5: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 7

The Delta-Sigma research program foresees the measurements

of total cross section differences ΔσL,T(np) and spin correlation parameters

A00kk(np) and A00nn(np) at θCM = π for the longitudinal (L - along the incident nucleon momentum k) and transverse (T – along the perpendicular n to the k) beam and target polarization directions, respectively.

Page 6: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 10

Determination of ΔσL,T (np) Observables The general expression for the total cross section of a polarized nucleon beam

trasmitted through a polarized proton target is (S.M.Bilenky and R.M.Ryndin, Phys.Lett. 6 (1963) 217, R.J.N. Phillips, Nucl.Phys. 43 (1963) 413):

σtot = σ0tot + σ1tot (PB PT) + σ2tot (PB k)(PT k), (3)

where PB and PT are the beam and target polarizations, and k is the unit vector in the incident beam direction.

The term σ0tot is the spin-independent total cross section, and σ1tot and σ2tot are the spin-dependent contributions which connect with the observables ΔσT and ΔσL by the relations:

– ΔσT = 2 σ1tot = [σtot (↑↑) – σtot (↓↑)]/PB PT, (4)

– ΔσL = 2 (σ1tot + σ2tot) = [σtot (→→) – σtot (→←)]/PB PT. (5) From isotopic invariance of strong interaction, one can write the following

expressions for total cross section differences at isosinglet and isotriplet states: ΔσL,T (np) = ½ ΔσL,T (I=0) + ½ ΔσL,T (I=1), (6)

ΔσL,T (pp) = ΔσL,T (nn) = ΔσL,T (I=1), (7)

ΔσL,T (I=0) = 2 ΔσL,T (np) – ΔσL,T (pp). (8) Using the last equation, one can obtain values of ΔσL,T (I=0) from known

quantities of ΔσL,T (np) and ΔσL,T (pp), measured at the same energy.

Page 7: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 11

Values of σ0tot, ΔσT and ΔσL are connected with the imaginary parts of three invariant forward scattering amplitudes a + b, c and d via three optical theorems:

σ0tot = (2π/K) Im [a(0) + b(0)], (9)

– ΔσT = (4π/K) Im [c(0) + d(0)], (10)

– ΔσL = (4π/K) Im [c(0) – d(0)]. (11)

From measured ΔσL,T (np) values one can

unambiguously extract imaginary parts of invariant

forward scattering amplitudes c and d using Eq. (10,11).

Page 8: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 12

The A00kk(np) and A00nn(np) values are to

be defined in the backward direction. These

observables will be measured by registration

of yields of elastic charge exchange

process np pn at θLab = 0.

They could be measured simultaneously with

the corresponding ΔσL,T(np) transmission

experiments.

Page 9: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 13

Measurements of the spin-correlation parameters A00kk(np) and A00nn(np) from np→pn process at 0º in Lab

If the scattered particles are detected at 0º angle then only two non-

vanishing spin-dependent quantities A00nn(E,0º) and A00kk(E,0º) can be

measured from the np→pn scattering.

C.Lechanoine-Leluc and F.Lehar. Rev. Mod. Phys. 65, 47 (1993).

J. Ball, R.Binz, J.Bystricky et al. Eur.Phys.J. C 5, 57 (1998).

These np-observables are connected with the invariant amplitudes by

(the centre of mass system): dσ/dΩ (π) = ½ [|a|2 + |b|2 + |c|2 + |d|2], (12)

dσ/dΩ A00nn(π) = ½ [|a|2 – |b|2 – |c|2 + |d|2], (13) dσ/dΩ A00kk(π) = Re a* d + Re b* c. (14)

These equations can be transformed to: dσ/dΩ (1 + A00kk) = |b + c|2 = A + (Re b + Re c)2, (15)

dσ/dΩ (1 – A00kk – 2A00nn) = |b – c|2 = B + (Re b – Re c)2, (16)

dσ/dΩ (1 – A00kk + 2A00nn) = |b + c – 2d|2 =

= C + (Re b + Re c – 2Re d)2, (17)

where terms A, B, C contain the amplitudes imaginary parts only.

Page 10: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 14

Using the known imaginary parts of the forward

amplitudes transformed into the backward

direction, the np differential cross section and

the two spin correlation parameters

A00kk(np) and A00nn(np) at θCM = π

are sufficient to obtain the real parts of all the

three amplitudes from Eqs. (15) − (17).

Page 11: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 15

But in contrast to the optical theorems at

θCM = 0 , the scattering amplitudes in the

backward direction are related to the np

scattering observables by bilinear equations.

Each of them may have, in principle, an

independent ambiguity in the sign. The total

ambiguity is then eight-fold at most and any

independent experiment decreases it by a

factor of two.

Page 12: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 16

To reduce the total ambiguity in the

scattering amplitude determination, the

Delta-Sigma collaboration performed the

measurements of the ratio

Rdp = dσ/dΩ (nd→p(nn)) / dσ/dΩ (np→pn).

for the charge exchange processes on the

deuterium and hydrogen targets.

Page 13: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 17

Experimental observable

Rdp = dσ/dΩ(nd→p(nn )) / dσ/dΩ(np→pn) (18)

is the ratio of a quasi-elastic nd scattering differential cross section to the free np elastic scattering one. At θCM = π F.Lehar. Phys. Part. Nucl. 40, No. 6 (2009)

Rdp (π) = (2/3) · dσ/dΩSD ( np) / dσ/dΩ(np), (19)

Rdp (π) = (2/3) · [0.25 · |a - b|2 + 0.5 · ( |c|2 - |d|2 )] / 0.5 · ( |a|2 + |b|2 + |c|2 + |d|2 ), (20)

where dσ/dΩSD ( np) is the “spin-dependent” part of the np→pn differential crosssection.

The values of Rdp can give one additional relation between spin-dependent NN-amplitudes and a set of such data allows to avoid one uncertainty of extraction of amplitudes real parts.

Energy dependence of the ratio Rdp for elastic charge exchange process np→pn at 0º in Lab (or elastic np→np backward scattering in C.M.S.) has been measured using high intensity unpolarised neutron beam from the Nuclotron and the magnetic spectrometer of the Delta-Sigma set-up with liquid hydrogen and deuterium targets.

Page 14: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 19

DELTA-SIGMA Setup at the Polarized Neutron Beams of the JINR VBLHE VP 1 – beam line of polarized deuterons; 1V – beam line of polarized neutrons;

BT – beryllium neutron production target; IC – ionization chamber; PIC 1-3, 9-16 – multiwire proportional/ionization chambers; CM – sweeping magnet; C1-C4 – set of neutron beam collimators; SRM – neutron spin rotating magnet; PPT – polarized proton target; NP – neutron profilometer

Page 15: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 20

Page 16: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 22

Measurements of the −ΔσL(np) energy

dependence were carried out at ten different

values of the polarized neutron beam energy

from 1.2 to 3.7 GeV. The L-polarized neutron

beam at the Synchrophasotron facility of the

JINR VBLHE and the Dubna L-polarized

proton target were used.

Page 17: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 23

Energy Dependence of the –ΔσL (np) Observable Obtained with Free Neutron Polarized Beams

Page 18: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 24

Energy Dependence of the –ΔσL (I=0)

Page 19: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 25

Measurements of the −ΔσL (np) energy dependence were in the main completed.

Results were published in:

References on –ΔσL (np) results

1. B.P.Adiasevich, V.G.Antonenko, S.A.Averichev, L.S.Azhgirey et al. Zeitschrift fur Physik C71 (1996) 65.2. V.I.Sharov, S.A.Zaporozhets, B.P.Adiasevich, V.G.Antonenko et al.

JINR Rapid Communications 3[77]-96 (1996) 13.3. V.I.Sharov, S.A.Zaporozhets, B.P.Adiasevich, N.G.Anischenko et al. JINR Rapid Communications 4[96]-99 (1999) 5.4. V.I.Sharov, S.A.Zaporozhets, B.P.Adiasevich, N.G.Anischenko et al.

European Physical Journal C13 (2000) 255.5. V.I.Sharov, N.G.Anischenko, V.G.Antonenko, S.A.Averichev et al.

European Physical Journal C37 (2004) 79-90.6. V.I.Sharov, N.G.Anischenko, V.G.Antonenko, S.A.Averichev et al.

Yadernaya Fizika v.68, №11 (2005) 1858-1873. Physics of Atomic Nuclei v.68, №11 (2005) 1796-1811.

Page 20: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 26

• The magnetic spectrometer consist of the analyzing dipole SP94, two sets of multiwire proportional chambers PCs: Gx, Gy, 1x, 2x before and PCs: 3x, 3y, 4x, 4y after SP94 for momentum analyzis of detected secondaries;

• Time-of flight system S1, TOF1,2 for particle identification; • Liquid H2 / D2 or solid CH2 / CD2 targets inserted in the neutron beam

line instead of the PPT and surrounded by a device DTS for detecting charged recoils and gammas;

• Trigger counters A, S1, ST1,2,3.

Page 21: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 29

Page 22: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 30

Page 23: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 31

Page 24: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 32

Page 25: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 33

ЯДЕРНАЯ ФИЗИКА, 2009, том 72, №6, с. 1051–1064ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ

THE RATIO Rdp OF THE QUASI-ELASTIC nd→p(nn) TO THE ELASTICnp→pn CHARGE-EXCHANGE-PROCESS YIELDS AT THE PROTONEMITTING ANGLE θp,lab = 0◦ OVER 0.55–2.0-GeV NEUTRON BEAMENERGY REGION. EXPERIMENTAL RESULTS

V. I. Sharov1)*, A. A. Morozov1), R.A.Shindin1), V.G.Antonenko2),S. B. Borzakov3), Yu. T. Borzunov1), E. V. Chernykh1), V. F. Chumakov1), S.A.Dolgii1),M. Finger4), 5), M.Finger, Jr.4), L. B. Golovanov1), D. K. Guriev1), A. Janata4),A. D. Kirillov1), A. D. Kovalenko1), V.A.Krasnov1), N. A. Kuzmin6), A. K. Kurilkin1),P. K. Kurilkin1), A.N.Livanov1), V.M.Lutsenko6), P.K.Maniakov1), E. A. Matyushevsky1),G. P. Nikolaevsky1), A. A. Nomofilov1), Tz. Panteleev3), 7), S. M. Piyadin1), I. L. Pisarev4),Yu. P. Polunin 2), A. N. Prokofiev8), V.Yu.Prytkov1), P.A.Rukoyatkin1),M. Slunecˇ ka4), 5), V.Slunecˇ kova. 4), A.Yu.Starikov1), L.N.Strunov1), T. A. Vasiliev1),E. I. Vorobiev1), I.P.Yudin6), I.V.Zaitsev1), A. A. Zhdanov8), V.N.Zhmyrov4)

Received May 20, 2008; in final form, December 29, 2008

Physics of Atomic Nuclei, 2009, Vol. 72, No. 6, pp. 1007–1020.ELEMENTARY PARTICLES AND FIELDS Experiment

Page 26: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 35

ЯДЕРНАЯ ФИЗИКА, 2009, том 72,№6, с. 1065–1069ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ

THE RATIO Rdp OF THE QUASI-ELASTIC nd→p(nn) TO THE ELASTICnp→pn CHARGE-EXCHANGE-PROCESS YIELDS AT THE PROTONEMITTING ANGLE θp,lab = 0◦ OVER 0.55–2.0-GeV NEUTRON-BEAMENERGY REGION. COMPARISON OF THE RESULTSWITH THE MODEL-DEPENDENT CALCULATIONS

V. I. Sharov*, A. A. Morozov, R. A. Shindin, E. V. Chernykh, A. A. Nomofilov, L. N. Strunov

Joint Institute for Nuclear Research, Dubna, Russia Received May 20, 2008; in final form, October 4, 2008

Physics of Atomic Nuclei, 2009, Vol. 72, No. 6, pp. 1021–1025.ELEMENTARY PARTICLES AND FIELDS Experiment

Page 27: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 37

The project status

R E P O R T

ON SCIENTIFIC PROJECT

AND PROPOSAL FOR PROLONGATION

OF THESE INVESTIGATIONS

FOR 2010–2012

UNDER NEW PROJECT

Delta-Sigma-T (proposal)

Page 28: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 39

THE COMING RESEARCH PROGRAM

The coming research program under the project on 2010–2012 is following:

Using adequate T-polarized neutron beam and T-polarized proton target to perform

– the measurements of the ΔσT (np) at the same energy points (1.2 – 3.7 GeV) as for ΔσL (np) with energy steps

of 100–200 MeV and expected statistical errors ≤ 0.5 mb;– the measurements of the energy dependencies of spin-

correlation parameter A00nn (np) at the same energy points as for ΔσT (np) with expected statistical errors 0.02–0.05. These measurements will be performed simultaneously with and independently of the ΔσT (np) ones.

Page 29: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 40

Measurements of the ΔσT (np) and

A00nn(np) energy dependences using T

orientations of beam and target polarizations

will be possible in the near future when the

new high intensity source of polarized

deuterons SPD will be put in operation

at the Nuclotron-M and when the T mode of

target polarization will be ready.

Page 30: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 41

A. Sidorin talk, April 16, 2009. Nuclotron_M status and nearest plans.

Development and creation of a high-intensity polarized deuteron source (V.Fimushkin)

We continue collaboration works with INR (Troitsk) on the development of the new high-intensity polarized deuteron source, and signed an addendum for work prolongation in 2009. We plan to complete TDR documentation in this year and start construction of some elements at INR.Simulation, modeling and design of different elements of the future source is in active phase at LHEP. Experimental hall for the future test bench with that source is prepared at LHEP building 203A, preparation electrical and water-cooling works were performed.It is purchased part of necessary vacuum equipment (turbomolecular pumps) for the SPD realization in 2009 – delivery in August 2009.

SPD putting into operation: the end of 2010.

Page 31: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 42

Page 32: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 43

Page 33: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 44

Page 34: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 45

If intensity of the polarized deuteron beam

will be 2х1010 d/cycle then:

at the neutron beam energy Tn = 1.2 GeV

during 8 hours

will be accumulated a statistics provides

the −∆σT (np) statistical error of ≈ 0.1 mb.

The A00nn (np), measured simultaneously with and

independently of the ΔσL,T(np) measurements, will

has less then 0.05 statistical error.

Page 35: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 46

Page 36: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 47

FURTHER DESIRED MEASUREMENTS• Using suitable L-polarized neutron beam and L-polarized proton target to perform

- the more precise and detailed measurements of the ΔσL (np) near Tn=1.8 GeV at 2–3 energy points with energy steps of 100 MeV and expected statistical errors less than 0.5 mb;

- the measurements of the energy dependencies of spin-correlation parameters A00kk (np) at the same energy points as for ΔσL (np) with expected statistical errors 0.02–0.05. These measurements can be performed independently of the ΔσL (np) ones.

• Using a high intensity unpolarized deuteron beam for preparing free neutron beam and liquid hydrogen and deuterium targets to continue the measurements of ratio Rdp=dσ/dΩ(nd) / dσ/dΩ(np) for elastic charge- exchange process np→pn at 0° angle with 5% statistical errors at the energies more then 2.0 GeV.

Page 37: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 48

Page 38: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 49

Page 39: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 50

The investigations under the project program

were in part supported by

the International Science Foundation and

Russian Government,

Grant N JHW 100,

the Russian Foundation for Basic Research,

Grants N 96-02-18736,

N 02-02-17129,

N 07-02-01025.

Page 40: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 51

Page 41: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 52

Page 42: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 53

Page 43: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 54

Participants of the "DELTA-SIGMA" experiment S.A.Averichev, L.S.Azhgirey, N.G.Anischenko, V.D.Bartenev, A.Bazhanov, N.A.Blinov, N.S.Borisov,

S.B.Borzakov, Yu.T.Borzunov, T.N.Borzunova, E.I.Bunyatova, V.F.Burinov, Yu.P.Bushuev, L.P.Chernenko, E.V.Chernykh, V.F.Chumakov, S.A.Dolgii, A.N.Fedorov, V.V.Fimushkin, M.Finger1, M.Finger,Jr., L.B.Golovanov, D.K.Guriev, A.Janata2, A.D.Kirillov, V.G.Kolomiets, E.V.Komogorov, A.D.Kovalenko, I.G.Konskii, N.I.Kochelev, V.A.Krasnov, E.S.Kuzmin, N.A.Kuzmin, V.P.Ladygin, A.B.Lazarev, A.N.Livanov, P.K.Maniakov, E.A.Matyushevsky, A.A.Morozov, A.B.Neganov, G.P.Nikolaevsky, A.A.Nomofilov, Tz.Panteleev3, Yu.K.Pilipenko, I.L.Pisarev, Yu.A.Plis, R.V.Polyakova, V.Yu.Prytkov, P.A.Rukoyatkin, V.I.Sharov, T.V.Shavrina, S.N.Shilov, R.A.Shindin, Yu.A.Shishov, V.B.Shutov, O.N.Schevelev, M.Slunechka, V.Slunechkova, A.Yu.Starikov, L.N.Strunov, Yu.A.Usov, T.A.Vasiliev, V.I.Volkov, E.I.Vorobiev, I.P.Yudin, I.V.Zaitsev, V.N.Zhmyrov,

• Joint Institute for Nuclear Research, Dubna• 1 Charles University, Praha, Czech Republic• 2 Institute for Nuclear Research, Rez, Czech Republic• 3 Institute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria

V.G.Baryshevsky, K.G.Batrakov, T.I.Klimkovich, S.L.Cherkas• RNNP,Belorussian State University, Belorussia A.I.Kovalev, A.N.Prokofiev, V.A.Schedrov, A.A.Zhdanov• Peterburg Institute of Nuclear Physics, Gatchina G.M.Gurevich• Institute for Nuclear Research, RAS, Moscow V.G.Antonenko, Yu.P.Polunin• Russian Scientific Center "Kurchatov Institute", Moscow F.Lehar. A. de Lesquen• DAPNIA, Saclay, France A.A.Belyaev, A.A.Lukhanin• Kharkov Institute of Physics and Technology, Kharkov, Ukraine

Page 44: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 55

Nucleon-Nucleon Formalism Throughout the project and results publications we used the NN formalism and notations for elastic nucleon-nucleon scattering observables from Bystricky J., Lehar F., Winternitz P. J. Phys. (Paris). 1978. v.39. p. 1.Assuming parity conservation, time-reversal invariance, the Pauli principle, and isospin invariance, the nucleon-nucleon scattering matrix can be written in term of only five invariant amplitudesM(k', k) = ½ [(a+b)+(a-b)(σ1,n)(σ2,n)+(c+d)(σ1,m)(σ2,m)+(c-d)(σ1,l)(σ2,l)+e(σ1+σ2,n)], (1)

where σ1 and σ2 are the Pauli 2x2 matrices acting on the first and second nucleon wavefunctions, and k and k' are unit vectors in the direction of the incident and scatteredparticles, respectively. The invariant amplitudes a, b, c, d and e are complex functions oftwo variables, e. g., the center of mass (c. m.) energy k and scattering angle θ. In the forward direction at θ=0, total angular momentum conservation implies that e=0 and a-b=c+d. Similarly at 180º one obtains e=0 and a-b=c-d. The center of mass basis vectors are given by

l = (k'+k)/(|k'+k|), m = (k'-k)/(|k'-k|), n = (k'xk)/(|k'xk|). (2)

Page 45: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 56

For the pp, nn, and np interactions, the scattering matrix can be written in term of two

matrices M0 and M1 having the same form as Eq. (1)

M(k',k) = ¼ M0 [1-(τ1, τ2)] + ¼ M1 [3+(τ1, τ2)], (3)

where τ1 and τ2 are isosinglet and isotriplet scattering matrices. Ignoring electromagnetic

interaction, one can write

M(pp→pp) = M(nn→nn) = M1,

M(np→np) = M(pn→pn) = ½ (M1+M0), (4)

M(np→pn) = M(pn→np) = ½ (M1-M0).

This formalism uses a four-subscript notation Xsrbt for experimental quantities.

Subscripts s, r, b, and t refer to the polarization components of the scattered, recoil,

beam, and target particles, respectively.

For any c. m. observable Xpqik, the following expression holds

dσ/dΩ Xpqik = ¼ Tr ( σ1p σ2q M σ1i σ2k M+), (5)

where

dσ/dΩ = I0000 = ¼ Tr ( M M+), (6)

is the unpolarized differential cross section.

Page 46: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 57

Page 47: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 58

Page 48: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 59

Page 49: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 60

Neutron Beam Parameters

• The beam of free quasi-monochromatic neutrons is obtained by break-up of deuterons at 0º in the Beryllium target BT (20 cm×8×8 cm2).

• Neutron beam is formed by a set of collimators C1–C4.• The deuteron beam momentum Pd is known with accuracy of ~1 %.

• The neutron beam has the momentum Pn = Pd /2 with a gaussian momentum

spread of FWHM ~ 5 %.• Intensity of prepared neutron beam at Tn = 2.0 GeV was ~4∙106 n/cycle.

• For the ΔσL measurements, the neutron spins are rotated from vertical direction to the direction of beam momentum by spin rotating magnet SRM.

Page 50: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 61

Experimental set-up for the ΔσL,T(np) measurements. Layout of the detectors for the neutron transmission measurement.

C4 − last neutron beam collimator, 25 mm in diameter; M1, M2 − monitor neutron detector modules; PPT − polarized proton target; T1, T2, T3 − neutron transmission detector modules; CH2 − converters; NP − neutron beam profile monitor; A − anticoincidence scintillation counters; S1 − S4 − coincidence scintillation counters; PC − multiwire proportional chambers.

Page 51: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 62

Time dependence of neutron

beam polarization

PB during the 2001 data

taking run.

Page 52: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 63

Characteristic of the polarized

proton target in 2001 data taking

run

Page 53: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 64

Page 54: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 65

Page 55: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 66

Page 56: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 67

Page 57: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 68

Measurements of the ΔσL,T (np) and A00kk(np) and

A00nn(np) energy dependences using L and T orientations of beam and target polarizations will be possible in the near future when the new high intensity source of polarized deuterons (CIPIOS) will be put in operation at the Nuclotron and when the T mode of target polarization will be ready.

During the last period, in frame of the project experimental program, the studies of elastic np→pn charge exchange process were carried out using high intensity unpolarized neutron beams and cryogenic H2 and D2 targets (l=34 cm). The results of these measurements will be presented below.

Page 58: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 69

Some characteristics of the spectrometer.Accuracies:

θx : bin 1.97 mrad, instrum. error 0.83 mrad for PCs Gx-1x, bin 1.79 mrad, instrum. error 0.76 mrad for PCs Gx-2x.

θy : bin 0.61 mrad, instrum. error 0.26 mrad for PCs Gy-3y.

σP/P: measured at the extracted deuteron beam 1.40 % using PCs Gx, 1x “or” 2x,(3x “and” 4x) or (3x “or” 4x), 1.37 % using PCs Gx, 2x, 3x and 4x only.

Page 59: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 70

Detected events distribution in the θ vs φ plane

Page 60: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 71

The momentum spectra of charged secondaries for H2 and D2 liquid targets at the neutron beam energies of 1.0 and 1.2 GeV.

Page 61: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 72

Separation of the p and d particlesin the TOF vs Momentum plane

Page 62: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 73

Page 63: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 74

Information from the detectors for target surrounding DTS allows to suppress

the contributions from other (inelastic) np-reaction channels.

The momentum spectra of charged secondaries at the neutron beam energy of

1.8 GeV.

a- with liquid hydrogen target b- with liquid deuterium target

Page 64: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 75

Page 65: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 76

Systematical errors. Estimations for data at Tn = 1.4 GeV.

Sources of systematic error Absolute values of the Rdp error

1. Total PC efficiency 0.0041 2. Trigger PC efficiency 0.0039 3. Efficiency of the DTS 0.0238 4. Efficiency of TOF 0.0046 5. d-admixtures determination 0.0053 6. Error in shift determination of the H2 and D2 elastic peak center positions 0.0245 7. Number of H/D nuclei in the targets 0.0014

Total: 0.0354

Page 66: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 77

ACCELERATOR RUN TIME REQUEST

Page 67: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 78

COSTS CALCULATION

Page 68: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 79

Scientific publications (last 3 years)1. "MEASUREMENT OF ΔσL (np) AT 1.39, 1.69, 1.89 AND 1.99 GeV." European Physical Journal C37 (2004) 79-90. 73 соавтора.2. "MEASUREMENT OF THE TOTAL CROSS-SECTION DIFFERENCE ΔσL (np) AT

1.39, 1.69, 1.89 AND 1.99 GeV." Preprint JINR E1-2004-87. 73 соавтора.3. "Measurements of Energy Behaviours of Spin Dependent Neutron-Proton Observables over a GeV Region." 75 соавторов. Czech. J. Phys. 54, p.p. B173-178, 2004.4. "Measurements of Energy Behaviours of Spin Dependent Neutron-Proton

Observables over a GeV Region." 75 соавторов. In: Proceedings of the XVI International Seminar on High Energy Physics

Problems. Relativistic Nuclear Physics and Quantum Chromodynamics. Dubna, June 10-

15, 2002. Ed. by A.N. Sissakian, V.V. Burov, A.I. Malakhov. E1,2-2004-76, Vol. II, p.p. 90-95. Dubna, 2004.5. "Measurements of Energy Behaviours of Spin Dependent Neutron-Proton

Observables over a GeV Region." 75 соавторов. In: Proceedings of the X Workshop on High Energy Spin Physics (NATO ARW

DUBNA SPIN-03), Dubna, September 16-20, 2003. Ed. by A.V. Efremov, O.V. Teryaev. E1,2-2004-80, p.p. 406-410. Dubna, 2004.

Page 69: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 80

6. "MEASUREMENTS OF ENERGY BEHAVIOURS OF SPIN-DEPENDENT np – OBSERVABLES OVER 1.2 - 3.7 GEV REGION." 75 соавторов. In: Book of Abstracts of the XVII International Baldin Seminar on High Energy Physics Problems. Relativistic Nuclear Physics and Quantum

Chromodynamics. Dubna, September 27- October 2, 2004. E1,2-2004-144, p.p. 131-132. Dubna, 2004.7. "MEASUREMENTS OF ENERGY BEHAVIOURS OF SPIN-DEPENDENT np – OBSERVABLES OVER 1.2 - 3.7 GEV REGION." 75 соавторов. In: Proceedings of of the XVII International Baldin Seminar on High Energy Physics Problems. Relativistic Nuclear Physics and Quantum

Chromodynamics. Dubna, September 27- October 2, 2004. E1,2-2005-103, p.p. 161-177. Dubna, 2005.8. "Measurements of the Total-Cross-Section Difference ΔσL(np) at 1.39, 1.69,

1.89, and 1.99 GeV." 73 соавтора. Ядерная физика. т. 68, № 11, 2005, сс. 1858–1873. 73 соавтора.9. "Measurements of the Total-Cross-Section Difference ΔσL(np) at 1.39, 1.69,

1.89, and 1.99 GeV." 73 соавтора. Physics of Atomic Nuclei, Vol. 68, No. 11, 2005, pp. 1796–1811. (From Ядерная физика. т. 68, № 11, 2005, сс. 1858–1873.)10. "Measurements of energy behaviours of spin-dependent np - observables over 1.2 - 3.7 GeV region. Dubna "Delta-Sigma" experiment." 75 соавторов. Czech. J. Phys. 55 (2005) A289-A305.

Page 70: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 81

11. "First measurement of the cross-section ratio Rdp(0) in charge-exchange (np) reaction on H2/D2 at 0o and Tn = 1 GeV. Dubna "Delta-Sigma" experiment." 38 соавторов. Czech. J. Phys. 55 (2005) A 307-A314.12. "Veto-system in measurement of the elastic (n,p) charge-exchange using H2/D2 – target at Tn = 1 GeV. Dubna "Delta-Sigma" experiment." 10 соавторов. Czech. J. Phys. 55 (2005) A399-A405.13. "MEASUREMENTS OF ENERGY BEHAVIOURS OF SPIN-DEPENDENT np – OBSERVABLES OVER 1.2 - 3.7 GEV REGION." 75 соавторов. In: Proceedings of the XI Advanced Research Workshop on High Energy Spin Physics. (DUBNA-SPIN-05), Dubna, September 27 - October 1, 2005. Ed. by A.V. Efremov and S.V. Goloskokov, Dubna 2006. p.p.424-430.14. "Measurements of neutron-proton spin observables at 0o using highest energy polarized d, n probes." 45 соавторов. Czech. J. Phys. 56 (2006) C343-C357.15. "Measurements of energy behaviours of spin-dependent np - observables over 1.2 – 3.7 GeV region. Dubna "Delta-Sigma" experiment." 72 соавтора. Czech. J. Phys. 56 (2006) C359-C368.16. "New measurement of the cross-section ratio Rdp(0) in charge-exchange (np) reaction on H2/D2 at 0o and Tn = 1; 1.2 GeV. Dubna "Delta-Sigma“ experiment." 38 соавторов. Czech. J. Phys. 56 (2006) C369-C377.17. "Measurements of neutron-proton spin observables at 0° using highest energy polarized d, n probes. Dubna "Delta-Sigma" experiment." 45 соавторов. Czech. J. Phys. 56 (2006) C343-C357.

Page 71: Veksler  and  Baldin  Laboratory  of   High   Energy   Physics

Dubna SPIN-09 Delta-Sigma experimentt 82

Вторая премия ОИЯИ за 2003 год в области научно-методических исследований

"Создание детектирующего комплекса установки "ДЕЛЬТА-СИГМА" для одновременных измерений под 0° на пучке монохроматических L/T-поляризованных нейтронов ЛВЭ ОИЯИ - полного комплекта np-наблюдаемых для прямого определения всех амплитуд нуклон-нуклонного рассеяния вперед, впервые при высоких энергиях". Авторы: Л.Н. Струнов, В.И. Шаров,

А.А. Номофилов, А.А. Морозов, Е.В. Черных, Р.А. Шиндин, А.Н. Ливанов, В.Ю. Прытков, Н.А. Кузьмин, И.В. Зайцев.