Variables aleatorias discretas y continuas - ucm.es ESTADÍSTICA … · La distribución de Poisson...

of 12/12
Variables aleatorias discretas y continuas Variables aleatorias discretas Distribución uniforme Distribución binomial Distribución multinomial Distribución hipergeométrica Distribución multihipergeométrica Distribución de poisson Variables aleatorias continuas Distribución normal o de Gauss Distribución Gamma (Γ) Distribución exponencial Distribución Chi-cuadrado Distribución T de Student Distribución F de Snedecor POBLACIÓN Y MUESTRA Variables aleatorias discretas Distribución uniforme La distribución uniforme es la que corresponde a una variable que toma todos sus valores, x 1 , x 2 ... , x k , con igual probabilidad; el espacio muestral debe ser finito. Si la variable tiene k posibles valores, su función de probabilidad sería: donde k es el parámetro de la distribución (un parámetro es un valor que sirve para determinar la función de probabilidad o densidad de una variable aleatoria) La media y la varianza de la variable uniforme se calculan por las expresiones: El histograma de la función toma el aspecto de un rectángulo, por ello, a la distribución uniforme se le suele llamar distribución rectangular.
  • date post

    14-Oct-2019
  • Category

    Documents

  • view

    17
  • download

    0

Embed Size (px)

Transcript of Variables aleatorias discretas y continuas - ucm.es ESTADÍSTICA … · La distribución de Poisson...

  • Variables aleatorias discretas ycontinuas

    Variables aleatorias discretasDistribución uniformeDistribución binomialDistribución multinomialDistribución hipergeométricaDistribución multihipergeométricaDistribución de poisson

    Variables aleatorias continuasDistribución normal o de GaussDistribución Gamma (Γ)Distribución exponencialDistribución Chi-cuadradoDistribución T de StudentDistribución F de Snedecor

    POBLACIÓN Y MUESTRA

    Variables aleatorias discretasDistribución uniforme

    La distribución uniforme es la que corresponde a una variable que toma todos sus valores, x1, x2... , xk,con igual probabilidad; el espacio muestral debe ser finito.

    Si la variable tiene k posibles valores, su función de probabilidad sería:

    donde k es el parámetro de la distribución (un parámetro es un valor que sirve para determinar la función deprobabilidad o densidad de una variable aleatoria)

    La media y la varianza de la variable uniforme se calculan por las expresiones:

    El histograma de la función toma el aspecto de un rectángulo, por ello, a la distribución uniforme se lesuele llamar distribución rectangular.

    file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Variables%20aleatorias%20discretasfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20uniformefile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20binomialfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20multinomialfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20hipergeom%E9tricafile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20multihipergeom%E9tricafile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20de%20poissonfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Variables%20aleatorias%20continuasfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20normal%20o%20de%20Gaussfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20Gamma%20(%26%23915%3B)file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20exponencialfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20Chi-cuadrado%20(c2)file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20T%20de%20Studentfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#Distribuci%F3n%20F%20de%20Snedecorfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#POBLACI%D3N%20Y%20MUESTRA

  • Distribución binomial

    La distribución binomial es típica de las variables que proceden de un experimento que cumple lassiguientes condiciones:

    1) El experimento está compuesto de n pruebas iguales, siendo n un número natural fijo.

    2) Cada prueba resulta en un suceso que cumple las propiedades de la variable binómica o de Bernouilli,es decir, sólo existen dos posibles resultados, mutuamente excluyentes, que se denominangeneralmente como éxito y fracaso.

    3) La probabilidad del ‚éxito (o del fracaso) es constante en todas las pruebas. P(éxito) = p ; P(fracaso) = 1- p = q

    4) Las pruebas son estadísticamente independientes,

    En estas condiciones, la variable aleatoria X que cuenta el número de ‚éxitos en las n pruebas se llamavariable binomial. Evidentemente, el espacio muestral estar compuesto por los números enteros del 0 al n. Sesuele decir que una variable binómica cuenta objetos de un tipo determinado en un muestreo de n elementoscon reemplazamiento.

    La función de probabilidad de la variable binomial se representa como b(x,n,p) siendo n el número depruebas y p la probabilidad del ‚éxito. n y p son los parámetros de la distribución.

    La manera más fácil de calcular de valor de números combinatorios, como los incluidos en la expresiónanterior, es utilizando el triángulo de Tartaglia

    La media y la varianza de la variable binomial se calculan como:

    Media = µ = n p

    Varianza = σ2 = n p q

    Gráficamente el aspecto de la distribución depende de que sea o no simétrica Por ejemplo, el caso enque n = 4:

    file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#INICIO

  • Distribución multinomial

    La distribución multinomial es esencialmente igual a la binomial con la única diferencia de que cadaprueba tiene más de dos posibles resultados mutuamente excluyentes.

    Si tenemos K resultados posibles (Ei , i = 1, ... , K) con probabilidades fijas (pi , i = 1, ... , K), la variableque expresa el número de resultados de cada tipo obtenidos en n pruebas independientes tiene distribuciónmultinomial.

    La probabilidad de obtener x1 resultados E1, x2 resultados E2, etc. se representa como:

    Los parámetros de la distribución son p1,..., pK y n.

    Distribución hipergeométrica

    Una variable tiene distribución hipergeométrica si procede de un experimento que cumple lassiguientes condiciones:

    1) Se toma una muestra de tamaño n, sin reemplazamiento, de un conjunto finito de N objetos.

    2) K de los N objetos se pueden clasificar como ‚éxitos y N - K como fracasos.

    X cuenta el número de ‚éxitos obtenidos en la muestra. El espacio muestral es el conjunto de losnúmeros enteros de 0 a n, ó de 0 a K si K < n.

    En este caso, la probabilidad del ‚éxito en pruebas sucesivas no es constante pues depende delresultado de las pruebas anteriores. Por tanto, las pruebas no son independientes entre sí.

    La función de probabilidad de la variable hipergeométrica es:

    file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#INICIO

  • Los parámetros de la distribución son n, N y K.

    Los valores de la media y la varianza se calculan según las ecuaciones:

    Si n es pequeño, con relación a N (n

  • Distribución de poisson

    Una variable de tipo poisson cuenta ‚éxitos (es decir, objetos de un tipo determinado) que ocurren enuna región del espacio o del tiempo.

    El experimento que la genera debe cumplir las siguientes condiciones:

    1. El número de éxitos que ocurren en cada región del tiempo o del espacio es independiente de lo queocurra en cualquier otro tiempo o espacio disjunto del anterior.

    2. La probabilidad de un ‚éxito en un tiempo o espacio pequeño es proporcional al tamaño de este y nodepende de lo que ocurra fuera de él.

    3. La probabilidad de encontrar uno o más ‚éxitos en una región del tiempo o del espacio tiende a cero amedida que se reducen las dimensiones de la región en estudio.

    Como consecuencia de estas condiciones, las variables Poisson típicas son variables en las que secuentan sucesos raros.

    La función de probabilidad de una variable Poisson es:

    El parámetro de la distribución es λ que es igual a la media y a la varianza de la variable.

    Esta característica puede servirnos para identificar a una variable Poisson en casos en que se presentenserias dificultades para verificar los postulados de definición.

    La distribución de Poisson se puede considerar como el límite al que tiende la distribución binomialcuando n tiende a y p tiende a 0, siendo np constante (y menor que 7); en esta situación sería difícil calcularprobabilidades en una variable binomial y, por tanto, se utiliza una aproximación a través de una variablePoisson con media l = n p.

    La varianza de la variable aproximada es ligeramente superior a la de la variable binomial.

    Las variables Poisson cumplen la propiedad de que la suma de variables Poisson independientes es otraPoisson con media igual a la suma las medias.

    El aspecto de la distribución depende muchísimo de la magnitud de la media. Como ejemplo, mostramostres casos con λ = 0,5 (arriba a la izquierda), λ = 1,5 (arriba a la derecha) y λ = 5 (abajo) Obsérvese que laasimetría de la distribución disminuye al crecer λ y que, en paralelo, la gráfica empieza a tener un aspectoacampanado.

  • Variables aleatorias continuas

    Distribución normal o de Gauss

    La distribución normal fue definida por De Moivre en 1733 y es la distribución de mayor importancia enel campo de la estadística.

    Una variable es normal cuando se ajusta a la ley de los grandes números, es decir, cuando sus valoresson el resultado de medir reiteradamente una magnitud sobre la que influyen infinitas causas de efectoinfinitesimal.

    Las variables normales tienen una función de densidad con forma de campana a la que se llamacampana de Gauss.

    Su función de densidad es la siguiente:

    file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#INICIO

  • Los parámetros de la distribución son la media y la desviación típica, µ y σ, respectivamente. Comoconsecuencia, en una variable normal, media y desviación típica no deben estar correlacionadas en ningúncaso (como desgraciadamente ocurre en la inmensa mayoría de las variables aleatorias reales que seasemejan a la normal.

    La curva normal cumple las siguientes propiedades:

    1) El máximo de la curva coincide con la media.

    2) Es perfectamente simétrica respecto a la media (g1 = 0).

    3) La curva tiene dos puntos de inflexión situados a una desviación típica de la media. Es convexa entreambos puntos de inflexión y cóncava en ambas colas.

    4) Sus colas son asintóticas al eje X.

    Para calcular probabilidades en intervalos de valores de la variable, habría que integrar la función dedensidad entre los extremos del intervalo. por desgracia (o por suerte), la función de densidad normal no tieneprimitiva, es decir, no se puede integrar. Por ello la única solución es referirse a tablas de la función dedistribución de la variable (calculadas por integración numérica) Estas tablas tendrían que ser de triple entrada(µ, σ, valor) y el asunto tendría una complejidad enorme.

    Afortunadamente, cualquier que sea la variable normal, X, se puede establecer una correspondencia desus valores con los de otra variable con distribución normal, media 0 y varianza 1, a la que se llama variablenormal tipificada o Z. La equivalencia entre ambas variables se obtiene mediante la ecuación:

  • La función de distribución de la variable normal tipificada está tabulada y, simplemente, consultando enlas tablas se pueden calcular probabilidades en cualquier intervalo que nos interese.

    De forma análoga a lo pasaba con las variables Poisson, la suma de variables normalesindependientes es otra normal.

    Histograma de una normal idealizada Histograma de una muestra de una variable normal

    Distribución Gamma (Γ)

    La distribución gamma se define a partir de la función gamma, cuya ecuación es:

    La función de densidad de la distribución gamma es:

    α y β son los parámetros de la distribución.

    La media y la varianza de la variable gamma son:

    file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#INICIO

  • Distribución exponencial

    Es un caso particular de la distribución gamma cuando α = 1. Su función de densidad es:

    Su parámetro es β.

    La media y la varianza de la distribución exponencial son:

    Distribución Chi-cuadrado ((c2)2) Es otro caso particular de la distribución gamma para el caso β = 2 y α = n / 2, siendo n un númeronatural.

    Su función de densidad es:

    file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#INICIOfile:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#INICIO

  • El parámetro de la distribución c2 es n y su media y su varianza son, respectivamente:

    Otra forma de definir la distribución c2 es la siguiente: Supongamos que tenemos n variables aleatoriasnormales independientes, X1,..., Xn, con media µi y varianza (i = 1 ... n), la variable definida como

    tiene distribución c2 con n grados de libertad y se le denomina c2n.

    Variables chi-cuadrado con valores de progresivamente

    mayores son cada vez menos asimétricas.

    file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#INICIO

  • Supongamos dos variables aleatorias independientes, una normal tipificada, Z , y otra con distribuciónc2 con n grados de libertad, la variable definida según la ecuación:

    tiene distribución t con n grados de libertad.

    La función de densidad de la distribución t es:

    El parámetro de la distribución t es n, su número de grados de libertad.

    Esta distribución es simétrica respecto al eje Y y sus colas se aproximan asintóticamente al eje X. Essimilar a la distribución Z salvo que es platicúrtica y, por tanto, más aplanada.

    Cuando n tiende a infinito, t tiende asintóticamente a Z y se pueden considerar prácticamente igualespara valores de n mayores o iguales que 30..

    Variables T con valores de n progresivamente mayoresson cada vez menos platicúrticas

    Distribución T de Student

  • Comparación entre la variable T y la normal tipificado.

    Distribución F de Snedecor

    Sean U y V dos variables aleatorias independientes con distribución c2 con n1 y n2 grados de libertad,respectivamente. La variable definida según la ecuación:

    tiene distribución F con n1, n2 grados de libertad.

    La función de densidad de la distribución F es:

    Los parámetros de la variable F son sus grados de libertad n1 y n2.

    Las distribuciones F tienen una propiedad que se utiliza en la construcción de tablas que es la siguiente:

    Llamemos n1,n2 al valor de una distribución F con n1 y n2 grados de libertad que cumple lacondición, P(F > f n1,n2) = α; llamemos f n1,n2 al valor de una distribución F con n1 y n2 grados de libertadque cumple la condición, P(F > f n1,n2) = 1- α. Ambos valores están relacionados de modo que uno es elinverso del otro.

    fa,a, 1-a,

    1-a,

    Variables F con distintos valores de 1, 2

    file:///Volumes/ALMACEN1/paginas%20web/estadistica%20basica/estadistica_basica%201.htm#INICIO