52
Variable Splitting Methods Eric Chi November 20, 2017

others
• Category

## Documents

• view

2

0

### Transcript of Variable Splitting Methods · Two Typical Problems I Regularized estimation to get sparse solutions...

Variable Splitting Methods

Eric Chi

November 20, 2017

Two Typical Problems

I Regularized estimation to get sparse solutions

✓ = argmin✓

1

2ky � X✓k22 + �k✓k1

Arises in biomedical problems: genome wide associationstudies

y

θ

X= + ε

Two Typical Problems

I Regularized estimation to get low-rank solutions

Z = argminZ

1

2kX� Zk22 + �kZk⇤

Arises in collaborative filtering: Netflix

X = + ε

Z

Two Typical Problems

I Regularized estimation to get low-rank solutions

Z = argminZ

1

2kX� Zk22 + �kZk⇤

Arises in collaborative filtering: Netflix

X = + ε

Z

?

??

?

??

?

The Generic Problem

✓ = argmin✓

L(✓)|{z}Lack of fit

+ J(✓)|{z}Complexity

Reasons for success:

I Theory: Consistency and convergence rates when n, p ! 1I Computation: Fast and scalable algorithms for computing ✓

The Generic Problem

✓ = argmin✓

L(✓)|{z}Lack of fit

+ J(D✓)| {z }Complexity

Reasons for success:

I Theory: Consistency and convergence rates when n, p ! 1I Computation: Fast and scalable algorithms for computing ✓

What Variable Splitting Can Do For You

✓ = argmin✓

L(✓) + J(D✓)

Variable splitting is

I helpful when J(✓) is to work with but J(D✓) is not.I typically easy to derive and code

I e.g. Lasso solver in less than 10 lines of code.

I modestly accurate solutions in 10s to 100s of iterations.

Agenda

I Case Study: Convex Clustering II Variable Splitting

I Case Study: Convex Clustering II

I Case Study: ADMM for Lasso

The Clustering Problem

I Given p points in q dimensions

IX 2 Rq⇥p

I group similar points together.

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Clustering Problem

Many approaches:

I k-means, mixture models

I Hierarchical clustering

I Spectral clustering, ...

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Clustering Problem

Computational Issues

I Nonconvex formulations

I Local minimizers

I Instability (initializations, tuning parameters, or data)

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

Convex Clustering

I Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al.2011

minimizeu

1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

I Assign a centroid ui to each data point xi .I Convex Fusion Penalty

I shrinks cluster centroids togetherI sparsity in pairwise di↵erences of centroids

ui � uj = 0 () xi and xj belong to the same cluster

I � : tunes overall amount of regularization

I wij : fine tunes pairwise shrinkage

I Generalizes fused lasso

Convex Clustering

I Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al.2011

minimizeu

1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

I Assign a centroid ui to each data point xi .I Convex Fusion Penalty

I shrinks cluster centroids togetherI sparsity in pairwise di↵erences of centroids

ui � uj = 0 () xi and xj belong to the same cluster

I � : tunes overall amount of regularization

I wij : fine tunes pairwise shrinkage

I Generalizes fused lasso

Too many degrees of freedom!

Convex Clustering

I Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al.2011

minimizeu

1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

I Assign a centroid ui to each data point xi .I Convex Fusion Penalty

I shrinks cluster centroids togetherI sparsity in pairwise di↵erences of centroids

ui � uj = 0 () xi and xj belong to the same cluster

I � : tunes overall amount of regularization

I wij : fine tunes pairwise shrinkage

I Generalizes fused lasso

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

●●●●●● ●●

●●●●

●● ●●●●

●●

●●●

●●●●

● ●

●●

● ●●

●●●●

●●

●●

●●

●●●●●

●● ●

●●

●●●● ●●

●●

●●

●●●●

●●●

●●●●

●●

●●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9x

y

The Solution Path

minimize1

2

nX

i=1

kxi � uik2 + �X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

Two Interlocking Half-Moons

Senate Voting

A B

●●

Sessions

Shelby

Stevens

McCain

Hutchinson

Lincoln

Boxer

DoddLieberman

Cleland

Miller

Lugar

Breaux

Landrieu

Collins

Snowe

Carnahan

Baucus

Hagel

Nelson1

VoinovichNickles

Specter

Chafee

Hollings

Johnson

Jeffords

Byrd

●●

Sessions

Shelby

Stevens

McCain

Hutchinson

Lincoln

Boxer

DoddLieberman

Cleland

Miller

Lugar

Breaux

Landrieu

Collins

Snowe

Carnahan

Baucus Hagel

Nelson1

VoinovichNickles

Specter

Chafee

HollingsJohnson

Jeffords

Byrd

−0.5

0.0

0.5

1.0

−2 −1 0 1 2 −2 −1 0 1 2Principal Component 1

Prin

cipa

l Com

pone

nt 2

Party● (D)

(I)(R)

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version

Nonsmooth? Not the issue

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version

Affine transformation of u

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize1

2

nX

i=1

kxi � uik22 + �X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version

Convex Clustering: Variable Split Version

minimize1

2

pX

i=1

kxi � uik22 + �X

l

wlkvlk

subject to ul1 � ul2 � vl = 0

l = (l1, l2) with l1 < l2.

Equality constrained optimization...

Convex Clustering: Variable Split Version

minimize1

2

pX

i=1

kxi � uik22 + �X

l

wlkvlk

subject to ul1 � ul2 � vl = 0

l = (l1, l2) with l1 < l2.

Lagrange Multipliers

Lagrange Multipliers

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +⌫

2kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

Typically need to solve this iteratively.

The Dual & AMA

L(u, v,�) = f (u) + g(v) + h�, c� Au� BviD(�) = argmin

u,vL(u, v,�)

for any feasible (u, v)

D(�) = argminu,v

L(u, v,�) L(u, v,�) = f (u) + g(v)

D(�) f (u) + g(v)

Therefore,

D(�?) = max�

D(�) minu,v

f (u) + g(v) = f (u?) + g(v?)

D(�?) f (u?) + g(v?)

D(�?) = f (u?) + g(v?)

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,(5)

L(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi

(u?, v?) is a solution if there is a �? st (u?, v?,�?) is a stationarypoint of the Lagrangian,

rL(u?, v?,�?) = 0.

ame

minimize f (u) + g(v)

subject to Au+ Bv = c,(6)

(u?, v?) = argminu,v

L(u, v,�?)

(u?, v?) is a solution if there is a �? st (u?, v?,�?) is a stationarypoint of the Lagrangian,

rL(u?, v?,�?) = 0.

By Nexcis - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3831272

Lagrange Multipliers

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +⌫

2kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

Typically need to solve this iteratively.

The Dual & AMA

L(u, v,�) = f (u) + g(v) + h�, c� Au� BviD(�) = argmin

u,vL(u, v,�)

for any feasible (u, v)

D(�) = argminu,v

L(u, v,�) L(u, v,�) = f (u) + g(v)

D(�) f (u) + g(v)

Therefore,

D(�?) = max�

D(�) minu,v

f (u) + g(v) = f (u?) + g(v?)

D(�?) f (u?) + g(v?)

D(�?) = f (u?) + g(v?)

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,(5)

L(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi

(u?, v?) is a solution if there is a �? st (u?, v?,�?) is a stationarypoint of the Lagrangian,

rL(u?, v?,�?) = 0.

ame

minimize f (u) + g(v)

subject to Au+ Bv = c,(6)

(u?, v?) = argminu,v

L(u, v,�?)

(u?, v?) is a solution if there is a �? st (u?, v?,�?) is a stationarypoint of the Lagrangian,

rL(u?, v?,�?) = 0.

Augmented Lagrangian Methodaugmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +⌫

2kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +⌫

2kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

ALM: Augmented Lagrangian Method

augmented Lagrangian method (ALM)

L⌫(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi+ ⌫

2kc� Au� Bvk2

2

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +⌫

2kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

The Augmented Lagrangian

augmented Lagrangian method (ALM)

(um+1, vm+1) = argminu,v

L⌫(u, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).(8)

ALM: Augmented Lagrangian Method

augmented Lagrangian method (ALM)

(um+1, vm+1) = argminu,v

L⌫(u, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).(8)

ALM: Augmented Lagrangian Method

augmented Lagrangian method (ALM)

(um+1, vm+1) = argminu,v

L⌫(u, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).(8)

1. Alternating Direction Method of Multipliers (ADMM)

2. Alternating Minimization Algorithm (AMA)

(Gabay & Mercier 1976, Glowinski & Marrocco 1975)

(Tseng 1991)

Unfortunately, the minimization of the augmented Lagrangian overu and v jointly is often di�cult. ADMM and AMA adopt di↵erentstrategies in simplifying the minimization subproblem in the ALMupdates . ADMM minimizes the augmented Lagrangian one blockof variables at a time. This yields the algorithm

u

m+1 = argminu

L⌫(u, vm,�m)

v

m+1 = argminv

L⌫(um+1, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).

(9)

Goal: Simpler algorithms

augmented Lagrangian method (ALM)

(um+1, vm+1) = argminu,v

L⌫(u, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).(8)

AMA: Alternating Minimization AlgorithmAMA

AMA takes a slightly di↵erent tack and updates the first block u

without augmentation, assuming f (u) is strongly convex. Thischange is accomplished by setting the positive tuning constant ⌫to be 0. The overall algorithm iterates according to

u

m+1 = argminu

L0

(u, vm,�m)

v

m+1 = argminv

L⌫(um+1, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).

(10)

Goal: Simpler algorithms

augmented Lagrangian method (ALM)

(um+1, vm+1) = argminu,v

L⌫(u, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).(8)

ui =1

1 + p⌫yi +

p⌫

1 + p⌫x

yi = xi +X

l1=i

[�l + ⌫vl ]�X

l2=i

[�l + ⌫vl ].

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ui =1

1 + p⌫yi +

p⌫

1 + p⌫x

yi = xi +X

l1=i

[�l + ⌫vl ]�X

l2=i

[�l + ⌫vl ].

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ui =1

1 + p⌫yi +

p⌫

1 + p⌫x

yi = xi +X

l1=i

[�l + ⌫vl ]�X

l2=i

[�l + ⌫vl ].

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ui =1

1 + p0yi +

p0

1 + p0x

yi = xi +X

l1=i

[�l + 0vl ]�X

l2=i

[�l + 0vl ].

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(11)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ui =1

1 + p⌫yi +

p⌫

1 + p⌫x

yi = xi +X

l1=i

[�l + ⌫vl ]�X

l2=i

[�l + ⌫vl ].

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ui =1

1 + p⌫yi +

p⌫

1 + p⌫x

yi = xi +X

l1=i

[�l + ⌫vl ]�X

l2=i

[�l + ⌫vl ].

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ui = xi +X

l1=i

�l �X

l2=i

�l

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(12)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ui =1

1 + p⌫yi +

p⌫

1 + p⌫x

yi = xi +X

l1=i

[�l + ⌫vl ]�X

l2=i

[�l + ⌫vl ].

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ui =1

1 + p⌫yi +

p⌫

1 + p⌫x

yi = xi +X

l1=i

[�l + ⌫vl ]�X

l2=i

[�l + ⌫vl ].

vl = argminv

1

2kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

Proximal Map

For � > 0 the function

prox�⌦(v) = argminv

�⌦(v) +

1

2kv � vk22

is the proximal map of the function ⌦(v).

Minimizer always exists and is unique for norms

Proximal maps for common norms

Table: Proximal maps for common norms.

Norm ⌦(v) prox�⌦(v)

`1 kvk1h1� �

|vl |

i

+vl

`2 kvk2h1� �

kvk2

i

+v

`1 kvk1 v � P�S(v)

`1,2P

g2G kvgk2h1� �

kvgk2

i

+vg

What’s the Di↵erence?

0

50

100

150

200

100 200 300 400 500p

Squa

re ro

ot o

f run

tim

e (s

ec)

What’s the Di↵erence?

0

50

100

150

200

100 200 300 400 500p

Squa

re ro

ot o

f run

tim

e (s

ec)

3.5 hrs2.9 hrs

16 min

Remarks

I Both AMA and ADMM convergeI Both AMA and ADMM can be accelerated

I Beck and Teboulle (2009)I Goldstein, O’Donoghue, and Setzer (2012)

I AMA and ADMM look very similar but...I Convergence speed

IAMA is clearly faster

I ConvergenceI

ADMM converges when ⌫ > 0

IAMA converges when ⌫ 1/p

I AMA requires stronger assumptionsI

Smooth part of objective needs to be strongly convex

minimize✓

1

2ky � X✓k22 + �k✓k1

Augmented Lagrangian

L(✓, v,�) = 1

2nky � X✓k22 + �kvk1 + ⌫

2k✓ � v + �k22.

✓k = minimize✓

1

2nky � X✓k22 +

2k✓ � v

k�1 + �k�1k22.

v

k = minimizev

�kvk1 + ⌫

2kv � ✓k � �k�1k22.

�k = �k�1 + ✓k � v

k .

minimize✓

1

2ky � X✓k22 + �kvk1 subject to ✓ = v,

Augmented Lagrangian

L(✓, v,�) = 1

2nky � X✓k22 + �kvk1 + ⌫

2k✓ � v + �k22.

✓k = minimize✓

1

2nky � X✓k22 +

2k✓ � v

k�1 + �k�1k22.

v

k = minimizev

�kvk1 + ⌫

2kv � ✓k � �k�1k22.

�k = �k�1 + ✓k � v

k .

minimize✓

1

2ky � X✓k22 + �kvk1 subject to ✓ = v,

Augmented Lagrangian

L(✓, v,�) = 1

2nky � X✓k22 + �kvk1 + ⌫

2k✓ � v + �k22.

✓k = minimize✓

1

2nky � X✓k22 +

2k✓ � v

k�1 + �k�1k22.

v

k = minimizev

�kvk1 + ⌫

2kv � ✓k � �k�1k22.

�k = �k�1 + ✓k � v

k .

minimize✓

1

2ky � X✓k22 + �kvk1 subject to ✓ = v,

Augmented Lagrangian

L(✓, v,�) = 1

2nky � X✓k22 + �kvk1 + ⌫

2k✓ � v + �k22.

✓k = minimize✓

1

2nky � X✓k22 +

2k✓ � v

k�1 + �k�1k22.

v

k = minimizev

�kvk1 + ⌫

2kv � ✓k � �k�1k22.

�k = �k�1 + ✓k � v

k .

Getting started

I Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.(2011), “Distributed Optimization and Statistical Learning viathe Alternating Direction Method of Multipliers,” Found.Trends Mach. Learn., 3, 1-122.

I Tseng, P. (1991), “Applications of a Splitting Algorithm toDecomposition in Convex Programming and VariationalInequalities,” SIAM Journal on Control and Optimization, 29,119-138.