Upsilon Cross Section - Purdue Universityjones105/talks/meier_Upsilon_Aug... · 2015. 8. 10. ·...

29
8/7/2015 1/29 Michael Meier, Purdue University Upsilon Cross Section Michael Meier, Matthew Jones Purdue University CDF Collaboration August 7, 2015

Transcript of Upsilon Cross Section - Purdue Universityjones105/talks/meier_Upsilon_Aug... · 2015. 8. 10. ·...

  • 8/7/2015 1/29 Michael Meier, Purdue University

    Upsilon Cross Section

    Michael Meier, Matthew Jones

    Purdue University

    CDF Collaboration

    August 7, 2015

  • 8/7/2015 2/29 Michael Meier, Purdue University

    Upsilon Cross Section

    • NΥ(nS) is the Υ(nS) signal yield in the fitted peak

    • A is the geometric detector acceptance depending on valid region of detector

    • ε is the reconstruction efficiency with selection cuts for fiducial muons

    • ∫ L dt is the integrated luminosity

    ypdtLA

    NnSBr

    dydp

    d

    T

    nS

    T

    )(2

    ))((

  • 8/7/2015 3/29 Michael Meier, Purdue University

    Acceptance • Measured with Monte Carlo in bins of pT and run

    period ▪ Function of time because of dead wires,

    chambers, etc.

    • Ratio of Number accepted to Total Number Generated

    • Number Accepted – CMUP-CMU or CMUP-CMX ▪ Rapidity |y| < 0.6 ▪ Decay vertex |z| < 60 cm ▪ One muon fiducial in CMU and CMP with pT > 4 ▪ One muon fiducial in CMU or CMX with pT > 3 ▪ Valid region of detector – depends on CMU, CMP, CMX

    • Total Number Generated ▪ Rapidity |y| < 0.6

    Gen Total

    Accepted

    N

    NA

  • 8/7/2015 4/29 Michael Meier, Purdue University

    Valid Detector Regions

    • CMU

    ▪ Veto 1/3 of 8W and east end of 6E

    • CMP

    ▪ Remove dead wires as a function of run number

    • CMX

    ▪ Skip wedges 15 and 20

    ▪ Hole for soleniod cryo (side 1, wedges 5 and 6)

    ▪ Miniskirts (wedges 15 to 20) missing before Run 227704

    ▪ Keystone wedges (side 0, wedges 5 and 6) missing before Run 233112

    ▪ Small hole on the west (side 0, wedge 14) between Run 190695 and Run 210009

  • 8/7/2015 5/29 Michael Meier, Purdue University

    Upsilon Trigger • UPSILON_CMUP_CMU(_DPS)

    ▪ L1_TWO_CMU1.5_LUMI_280 » 2 muon stubs in CMU with pt > 1.5 GeV/c » 2 XFT tracks with pt > 1.52 GeV/c

    ▪ L2_CMUP1.5_PT3_CMU1.5_PT1.5DPS » 1 CMUP muon with pt > 3.04 GeV/c » 1 CMU muon with pt > 1.52 GeV/c

    ▪ L3_UPSILON_CMUP3_CMU1.5 » 1 CMUP muon with pt > 3.0 GeV/c, Δx(CMU) 1.5 GeV/c » 1 XFT track with pt > 1.52 GeV/c, 1 XFT track with pt > 2.04 GeV/c, signal in CSX

    ▪ L2_CMUP1.5_PT3_CSX1.5_PT2_CSX_DPS » 1 CMUP muon with pt > 3.04 GeV/c » 1 CMX muon with pt > 2.04 GeV/c

    ▪ L3_UPSILON_CMUP3_CMX2 » 1 CMUP muon with pt > 3.0 GeV/c, Δx(CMU)

  • 8/7/2015 6/29 Michael Meier, Purdue University

    Selection Cuts • Muon cuts

    ▪ CDF Muon Object, |Δz0(mu1,mu2)| < 5.0 cm, opposite charge (mu1,mu2), Δphi(mu1,mu2) > 2.25 degrees, |z0| < 60.0 cm

    • CMUP–CMU ▪ CMUP muon matched to XFT track

    pT > 4.05 GeV, Δx(CMU)

  • 8/7/2015 7/29 Michael Meier, Purdue University

    Efficiency

    • Efficiency is measured with the Muon+SVT sample (jbmu)

    • B_SEMI_CMUP4_TRACK2_D120 ▪ L1_CMUP6_PT4_NCLC64

    » 1 muon stub in CMU with pt > 6.0 GeV/c

    » 1 XFT track with pt > 4.09 GeV/c

    ▪ L2_CMUP6_PT4_D0_&_TRK2_D120_DPHI90_DPS » 1 XFT track with pt > 4.09 GeV/c and 1 CMUP muon

    » 1 SVT track with pt > 2 GeV/c, SVT chi2

  • 8/7/2015 8/29 Michael Meier, Purdue University

    Trigger Efficiency • JPsi candidates from all tracks in Muon+SVT sample

    ▪ |Δz0(mu1,mu2)| < 5.0 cm, opposite charge (mu1,mu2), Δphi(mu1,mu2) > 2.25 degrees

    ▪ Both tracks |z0| < 60.0 cm, XFT matched, XFT fiducial

    • Require 1 CMUP muon with pt > 4.0 GeV/c, has CMUP L1 trigger, is fiducial in CMUP ▪ If both muon candidates pass these cuts, then consider the one with higher

    pt as the CMUP muon

    • Require other track to be fiducial in CMU, pass CMU acceptance (be in a valid region of detector), and have pt > 3.0 GeV/c ▪ Check for hits in CMU (CdfMuon) and Δx(CMU)

  • 8/7/2015 9/29 Michael Meier, Purdue University

    CMU Efficiency

    • Required ▪ fiducial in CMU ▪ pass CMU

    acceptance ▪ pt > 3.0 GeV/c

    • Passed Cuts ▪ has CMU hits

    (CDFMuon object) ▪ Δx(CMU)

  • 8/7/2015 10/29 Michael Meier, Purdue University

    CMUP Efficiency • Required

    ▪ fiducial in CMU & CMP

    ▪ pass CMU and CMP acceptance

    ▪ pt > 3.0 GeV/c

    • Passed Cuts ▪ has CMUP hits

    (CDFMuon object) ▪ Δx(CMU)

  • 8/7/2015 11/29 Michael Meier, Purdue University

    CMX Efficiency • Required

    ▪ fiducial in CMX ▪ pass CMX

    acceptance ▪ pt > 3.0 GeV/c

    • Passed Cuts ▪ has CMX hits

    (CDFMuon object) ▪ Δx(CMX)

  • 8/7/2015 12/29 Michael Meier, Purdue University

    Trigger Efficiency Plots

    • Trigger Efficiency is CMUP efficiency times CMU(CMX) efficiency

    • CMUP-CMU (top plot)

    • CMUP-CMX (bottom plot)

  • 8/7/2015 13/29 Michael Meier, Purdue University

    XFT Efficiency and Vertex Efficiency

    • XFT Efficiency

    ▪ Measured using unbiased sample tracks from the kaon in B± → J/ψ K± decays reconstructed with jpmm dataset

    • Vertex Efficiency

    ▪ Measured using minimum bias events up to run 203799

    • Not yet included in cross section calculations!

    0039.09648.0XFT

    0035.09550.0 vertex

  • 8/7/2015 14/29 Michael Meier, Purdue University

    • Previous measurement with 29 run periods instead of 28 ▪ first 5 run periods cover different run numbers

    • Measured using JPSI_CMUP4_CMU_L2_DPS and JPSI_CMUP4_CMX_L2_DPS ▪ Requires 4 GeV/c CMUP muon in Level 2 and JPsi in Level 3

    • Require unbiased leg to be CMUP and pt > 4.0 GeV/c • Satisfies Level 2 if has

    XFT track and muon stub in CMU or CMX within range of cells from CMU or CMX look-up tables

    • Efficiency calculated from yield of JPsi passing and failing Level 2 requirements

    Level 2 Efficiency (Previous Measurement)

    CMU+CMU (black) CMU+CMX (red)

    Not yet included in cross section calculations!

  • 8/7/2015 15/29 Michael Meier, Purdue University

    Upsilon Sample

    • Upsilon candidates in jbmm data sample ▪ |Δz0(mu1,mu2)| < 5.0 cm, opposite charge (mu1,mu2),

    Δphi(mu1,mu2) > 2.25 degrees ▪ Both muons |z0| < 60.0 cm, XFT matched, XFT fiducial ▪ One muon with pt>4.05 GeV/c, other muon with pt>3.05 GeV/c

    • CMUP-CMU ▪ CMUP muon with pt > 4.0 GeV/c, fiducial in CMUP, pass CMU

    and CMP acceptance, Δx(CMU)

  • 8/7/2015 16/29 Michael Meier, Purdue University

    Upsilon Mass Plots • Plots of upsilon mass in

    bins of pt and run period for CMUP-CMU and CMUP-CMX

    • Yields found in each bin of pt and run period

    • 28 run periods • 8 pt bins

    ▪ 0 to 2 GeV/c ▪ 2 to 4 GeV/c ▪ 4 to 6 GeV/c ▪ 6 to 8 GeV/c ▪ 8 to 12 GeV/c ▪ 12 to 17 GeV/c ▪ 17 to 23 GeV/c ▪ 23 to 40 GeV/c

    CMUP-CMU Run Period 10

    0 < pt < 2 GeV/c

    CMUP-CMU Run Period 10

    2 < pt < 4 GeV/c

  • 8/7/2015 17/29 Michael Meier, Purdue University

    Calculations • Cross Section as a function of run period

    ▪ Sum yield over acceptance for all pt bins

    ▪ Divide by luminosity in that run period

    • Cross Section as function of pt bin ▪ Sum yield over acceptance and efficiency for all run

    periods

    ▪ Divide by total luminosity in all run periods

    binspt periodrun bin,pt

    periodrun bin,pt

    periodrun periodrun

    1)periodrun (

    A

    N

    yL

    periodrun periodrun periodrun bin,pt

    periodrun bin,pt

    total

    1)binpt (

    A

    N

    pyL T

  • 8/7/2015 18/29 Michael Meier, Purdue University

    Upsilon “Cross Section” (run period)

    • Yield/lum for each run period (for all pt bins)

  • 8/7/2015 19/29 Michael Meier, Purdue University

    Upsilon “Cross Section” (run period)

    • Shows time dependence for cross section

    Average: 55.38 ± 0.13 χ2 = 1146.27 χ2 = 171.34

    Average: 30.37 ± 0.09 χ2 = 830.65 χ2 = 498.90

  • 8/7/2015 20/29 Michael Meier, Purdue University

    Upsilon Cross Section (run period) • Yield/(lum*eff*acc) for each run period (sum over all pt bins)

  • 8/7/2015 21/29 Michael Meier, Purdue University

    Upsilon Cross Section (run period)

    • Reduced time dependence for CMUP-CMU

    Average: 638.43 ± 4.2 χ2 = 107.48 χ2 = 55.71

  • 8/7/2015 22/29 Michael Meier, Purdue University

    Upsilon Cross Section (run period)

    • CMUP-CMX time dependence needs more analysis

    Average: 697.56 ± 7.0 χ2 = 97.42 χ2 = 59.17

  • 8/7/2015 23/29 Michael Meier, Purdue University

    Previous Measurements

    • Current Work for |y|< 0.6

    ▪ CMUP-CMU = 638.43 ± 4.2 pb

    ▪ CMUP-CMX = 697.56 ± 7.0 pb

    • D0 Run II (1.96 TeV) for |y|< 0.6

    ▪ PRL 94, 232001 (2005): 732 ± 19(stat) ± 73(syst) ± 48 (lumi) pb

    ▪ PRL 100, 049902 (2008): 628 ± 16(stat) ± 63(syst) ± 38 (lumi) pb

    • CDF Run I (1.8 TeV) for |y| < 0.4

    ▪ PRL 88, 161802 (2002): 680 ± 15(stat) ± 18(syst) ± 26 (lumi) pb

    ▪ PRL 75, 4358 (1995): 753 ± 29(stat) ± 72(syst) pb

  • 8/7/2015 24/29 Michael Meier, Purdue University

    Upsilon Cross Section (pt) – No Level 2 Eff • Yield/(lum*eff*acc*Δy*Δpt) for each pt bin (for all run periods)

  • 8/7/2015 25/29 Michael Meier, Purdue University

    Upsilon Cross Section (pt) – No Level 2 Eff • Log scale for Yield/(lum*eff*acc*Δy*Δpt)

  • 8/7/2015 26/29 Michael Meier, Purdue University

    Future Work

    • Reduced time dependence for CMUP_CMU

    • CMUP_CMX still shows slight time dependence

    ▪ Look into CMX muons and phi dependence

    • Include Level 2 efficiency

    ▪ Not yet included in cross section calculations!

    CMU+CMU (black) CMU+CMX (red)

    Level 2 Efficiency

  • 8/7/2015 27/29 Michael Meier, Purdue University

    Backup Slides

  • 8/7/2015 28/29 Michael Meier, Purdue University

    CMP Dead Wires • JPsi signal reconstructed in the Muon+SVT sample (jbmu) • Monte Carlo sample of muons used to map occupancy of CMP

    chambers ▪ CMP occupancy depends on chamber number, due to different

    material in front of the various regions of the detector

    • Assume ratio of number of counts in a given CMP chamber to total number of counts in the CMP system is the same in data and Monte Carlo

    • Expected number of counts (Nexpected) in a CMP chamber (i) in a run given by:

    • Must have 100 counts (mu) in a CMP chamber ▪ Runs are combined to have the expected number of counts in a

    chamber

    • Measure the actual number counts (Nactual) in the same set of runs

    • Compute the Poisson probability to count Nactual given Nexpected • Consider the CMP chamber (wire) dead for probability < 1%

    totalData

    totalMC

    iMC

    ,i NN

    NN ,

    ,

    ,

    expected

  • 8/7/2015 29/29 Michael Meier, Purdue University

    Plot of CMP Dead Wires

    • Dead CMP wire number vs Run Index (run number) • Only bins with probability < 1% are filled