u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle...

29
CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/1 u dE/dx measurement u Time of flight u Cherenkov detectors u Transition radiation detectors Particle Identification π Κ μ p π Κ μ p

Transcript of u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle...

Page 1: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/1

u dE/dx measurement

u Time of flight

u Cherenkov detectors

u Transition radiation detectors

Particle Identification

π

Κ

µ

p

π

Κ

µ

p

Page 2: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/2

Particle Identification

Particle identification is an important aspect of high

energy physics experiments.

Some physical quantities are only accessible with

sophisticated particle identification (B-physics, CP

violation, rare exclusive decays).

One wants to discriminate: π/K, K/p, e/π, γ/π0 ….

The applicable methods depend strongly on the

interesting energy domain.

Depending on the physics case either εxx or εxy

has to be optimized:

Efficiency:

Misidentification:

Rejection:

The performance of a detector can be expressed in

terms of the resolving power

xtagxxx NN=ε

ytagx

yxy NN −=ε

xyxxxyR εε=

Q

yxyx

QQD

σ

−=,

εxx

εxy

Particle Identification

Page 3: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/3

Particle ID using the specific energy loss dE/dx

( )222

ln1 γβ

β∝

dxdE

βγ0mp =Simultaneous measurement of p and dE/dx defines mass m, hence the particle identity

Average energy loss for e,µ,π,K,p in 80/20 Ar/CH4 (NTP)(J.N. Marx, Physics today, Oct.78)

π/K separation (2σ) requires a dE/dxresolution of < 5%

e

But: Large fluctuations + Landau tails !

Specific energy loss

p

K

πµ

p

K

πµ

p

K

πµ

Page 4: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/4

Improve dE/dx resolution and fight Landau tails

(M. Aderholz, NIM A 118 (1974), 419)

(B. Adeva et al., NIM A 290 (1990) 115)

1 wire 4 wiresL: most likely

energy lossA: average

energy loss

Don’t cut the track into too many slices ! There is an optimum for each total detector length L.

• Chose gas with high specific ionization• Devide detector length L in N gaps of thickness T.• Sample dE/dx N times

• calculate truncated mean, i.e. ignore samples with (e.g. 40%) highest values

• Also pressure increase can improve resolution, but reduced rel. rise due to density effect !

Specific energy loss (backup)

Page 5: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/5

Example ALPEPH TPC

Gas: Ar/CH4 90/10

Nsamples = 338, wire spacing 4 mmdE/dx resolution: 4.5% for Bhabhas, 5% for m.i.p.’s

log scale !

linear scale !

Specific energy loss

Page 6: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/6

log p [GeV/c]

∆E

(a.

u.)

log p [GeV/c]

∆E

(a.

u.)

dE/dx can also be used inSilicon detectors

Example DELPHI microvertex detector (3 x 300 µm Silicon)

Specific energy loss

Page 7: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/7

∆t for L = 1 m path length

σt = 300 psπ/K separation up to 1 GeV/c

Time of flight

cL

=

12

22−=

L

tcpm

start stop

Combine TOF with momentum measurement

++=

LdL

tdt

pdp

mdm 2γMass resolution

TOF difference of 2 particles at a given momentum

( ) ( )22

212

2222

2221

21 2/1/1

11mm

pLc

pcmpcmcL

cL

t −≈+−+=

−=∆

ββ

Particle ID using Time Of Flight (TOF)

)( 0βγmp =

Page 8: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/8

Example: CERN NA49 Heavy Ion experiment

detail of the grid

Small, but thick scint.8 x 3.3 x 2.3 cm

Long scint. (48 or 130 cm), read out on both sides

TOF requires fast detectors (plastic scintillator, gaseous detectors), approporiate signal processing (constant fraction discrimination, corrections + continuous stability monitoring.

Time of flight

Page 9: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/9

NA49 combined particle ID: TOF +

dE/dx (TPC)

T rel.

= T

/ T π

System resolution of the tile stack

L = 15 m

From γconversion

inscintillators

Time of flight

Page 10: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/10

Interaction of charged particles

1

ε

ωoptical absorptive X-ray

Cherenkovradiation

ionisation transition radiation

regime:

effect:

Re ε

Im ε schematically !

• A photon in a medium has to follow the dispersion relation

222

2 022 nck

nc

knc

==−=== εε

ωλ

ππνω

εββω

θθω11

coscos ===→⋅=⋅≅nvk

kvkvrr

→ Emission of Cherenkov photons if n1≥β

Remember energy loss due to ionisation…There are other ways of energy loss !

e-

θ

khh ,ω

0,mvr

• For soft collisions + energy and momentum conservation → real photons:

Page 11: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/11

Cherenkov detectors

Cherenkov radiation

Cherenkov radiation is emitted when a charged particle passes a dielectric medium with velocity

index refractive:1

nnthr =≥ ββ

lpart=βc∆t

llight=(c/n)∆tθ

wave front

1)(with1

cos ≥== λβ

θ nnnC

01

≈→= Cthr nθβ threshold

n1

arccosmax =θ ‘saturated’ angle (β=1)

Number of emitted photons per unitlength and unit wavelength interval

.with 1

sin21

12

2

2

2

22

2

222

22

constdxdE

NdEhcc

dxdNd

zn

zdxd

NdC

===∝

=

−=

νλ

λλ

θλ

απβλ

απλ

dN/dλ

λ

dN/dE

Ε

θC

Page 12: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/12

Cherenkov detectors

Energy loss by Cherenkov radiation small compared to ionization (≈1%)

medium n θmax (β=1) Nph (eV-1 cm-1)air 1.000283 1.36 0.208isobutane 1.00127 2.89 0.941water 1.33 41.2 160.8quartz 1.46 46.7 196.4

( )dEEEc

LNi

i

E

EQep ∏∫= εε

αθ

2

1

)(sin2.. h

Number of detected photo electrons

EcmeVN total ∆⋅⋅= −− ε110 370

∆E = E2 - E1 is the width of the sensitive window of the photodetector (photomultiplier, photosensitive gas detector...)

Example: for a detector withand a Cherenkov angle ofone expects photo electrons

cmLeVEtotal 112.0 =⋅=∆ε

18.. =epN

o30=Cθ

Page 13: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/13

Cherenkov detectors

Particle ID with Cherenkov detectors

( )222

22

11

1

11

pmn

nN

+⋅−=

−≈β

PM

particle

mirrorradiator medium

principle

Example:study of anAerogelthreshold detector for the BELLE experiment at KEK (Japan)

Goal: π/K separation

Detectors can exploit ...

• Nph(β): threshold detector• θ(β): differential and

Ring Imaging Cherenkov detectors “RICH”

Threshold Cherenkov detectors

(do not measure θC)

0 1 2 3 4 5 6

pkaon [GeV/c]

0.00.10.20.30.40.50.60.70.80.91.01.1

β ka

on ;

ligh

t yie

ld (

a.u.

)

n=1.03

n=1.02

n=1.01

βkaon

β kao

n

Page 14: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/14

The Belle Detectoredited by S. MoriKEK Progress Report 2000-4.

Cherenkov detectors

Page 15: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/15

.. . . .... . ..

Cherenkov detectors

Ring Imaging Cherenkov detectors (RICH)

RICH detectors determine θC by intersecting the Cherenkov cone with a photosensitive plane

→ requires large area photosensitive detectors, e.g.• wire chambers with photosensitive detector gas• PMT arrays

(J. Seguinot, T. Ypsilantis, NIM 142 (1977) 377)

+⋅=

⋅=

=p

mpnp

EnnC

221arccos1arccos1arccosβ

θ

θβ σθ

β

σ⋅= tan

Detect N photons (p.e.) →..

..

ep

ep

θσ

σ ≈→ minimize σθ→ maximize Np.e.

n = 1.28C6F14 liquid

n = 1.0018C5F12 gas

π/K π/K/p K/p

π/h π/K/p K/p

DELPHI

Page 16: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/16

Cherenkov detectors

A RICH with two radiators to cover a large momentum range. π/K/p separation 0.7 - 45 GeV/c:DELPHI and SLD

Two particles from a hadronic jet (Z-decay) in the DELPHI gas and liquid radiator + hypothesis for π and K

(W. Adam et al. NIM A 371 (1996) 240)

Principle of operation of a RICH detectors

2 radiators + 1 photodetector

C6F14 (1 cm, liquid)

C5F12 (40 cm, gas)C4F10 (50 cm, gas)

spherical mirror

PhotodetectorTMAE-based

DELPHI RICH

Page 17: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/17

Cherenkov detectors

The mirror cage of the DELPHI Barrel RICH (288 parabolic mirrors)

Page 18: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/18

Cherenkov detectors

“Marriage” of mirror cage and central detector partof the DELPHI Barrel RICH.

Page 19: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/19

Cherenkov detectors

Performance of DELPHI RICH (barrel) in hadronic Z decays

Liquid radiator gas radiator

pK π K

p

(E. S

chyn

s, P

hD th

esis

, Wup

pert

al U

nive

rsity

199

7)

π

Page 20: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/20

Cherenkov detectors (backup)

radiator (C 6F14)

quartz window (2mm)collection mesh

70 mm

cathode meshsense wires, 4 mm spacing

cadhode pads (8x8mm 2),CsI deposited

Printed Circuid Board (PCB)

2 mm2 mm

Photo detectors for RICH counters

� Gas based detectorsAdmix photosensitive agent (TEA, TMAE) to detector gasexample DELPHI:

- 54 kV

MWPC

TPC like detector (CH4 + C2H6 + TMAE)

C cone^

x-y projectionz from drift time

quartz box

example ALICE: A MWPC with CsI deposited cathode pads

Drawbacks:- slow response because of long drift times (many µs)- λ thr(TMAE) = 220 nm => only sensitive to UV light

Fast response (<100 ns), but still only sensitive to UV light

Page 21: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/21

� Vacuum based detectorsPhotomultiplier tubes, Hybrid Photo Diodes.example HERMES (DESY)

3870 PMTs, Philips XP1911/UV, Ø 3/4”+ light funnels

ca. 2.5 m

3D view of one half detector

Double radiatorC4F10 gas Aerogel

Online Event Display

σθ ~ 8 mrad

Np.e. (aerogel) = 8

Np.e. (C4F10) = 12

“gas ring”

“aerogel ring”

Cherenkov detectors (backup)

Page 22: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/22

Standoff Box 10752 PMTs in water

Magnetic Shield

Mirrors

Support tube for 12 barboxes containing 12 fused silica bars each

e- (9.0 GeV)

e+(3.1 GeV)

Bucking coil

The DIRC of BaBar(asymmetric B-factory at SLAC)Detector for Inernally Relfected Cherenkov light

e-

e+

Quartz Barbox

Standoff box

Compensating coil

Support tube (Al)

Assembly flange‘exploded’ view of the

DIRC

P. Cole et al, NIM A 343 (1999) 456I. Adam et al., SLAC-PUB-8345

Cherenkov detectors (backup)

Page 23: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/23

Basic principle of the DIRC

Transport of C-light by internal reflection in quartz bar.Detection by PMT array. Stand off tank filled with water for ref. index matching.

u Nquartz = 1.47,u θcrit. = 43º, θc

max = 47ºu T = 99.9 % / mu R = 99.96 %u ~200-400 bouncesu loss ~10-20% = f(θdip)

Cherenkov detectors (backup)

Page 24: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/24

DIRC: Event reconstruction is a bit more difficult !Cherenkov “ring” is decomposed into disjointed segments.

uσθ = 9.8 mrad, (7.0 mrad from ØPMT=28 mm, 5.4 mrad fromdn/dE).

uNp.e. ~ 30 uπ/K separation of 3.1 σ at p = 3 GeV/c

Cherenkov detectors (backup)

Page 25: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/25

Transition radiation detectors

Transition radiation detectors

radiators) (plastic eV20 frequency

plasma

31

0

2

=

∝=

pe

ep

p

meN

WW

ωε

ω

γγωα

h

h Only high energy e± will emit TR. Identification of e±

medium vacuum

Electromagnetic radiation is emitted when a charged particle traverses a medium with a discontinuous refractive index, e.g. the boundaries between vacuum and a dielectric layer.

A (too) simple picture

m Radiated energy per medium/vacuum boundary

(there is an excellent review article by B. Dolgoshein (NIM A 326 (1993) 434))

TR predicted by Ginzburg and Franck in 1946

(G. Garibian, Sov. Phys. JETP63 (1958) 1079)

A correct relativistic treatment shows that…

electron

Page 26: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/26

Transition radiation detectors

1371

≈∝≈ αωh

WN ph

m Number of emitted photons / boundary is small

Need many transitions → build a stack of many thin

foils with gas gaps

m Emission spectrum of TR

Typical energy: γωω phh 41≈

→ photons in the keV range

• Simulated emission spectrum of a CH2 foil stack

γθ 1∝

m X-rays are emitted with a sharp maximum at small angle

→ TR stay close to track

Page 27: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/27

Transition radiation detectors

TR Radiators:

u stacks of CH2 foils are usedu hydrocarbon foam and fiber materials Low Z material preferred to keep re-absorption small (∝Z5)

• Detector should be sensitive for 3 ≤ Eγ ≤ 30 keV.

• Mainly used: Gaseous detectors: MWPC, drift chamber, straw tubes…

• Detector gas: σphoto effect ∝ Z5

→ gas with high Z required,e.g. Xenon (Z=54)

TR X-ray detectors:

R D R D R D R D sandwich of radiator stacks and detectors→ minimize re-absorption

Intrinsic problem:detector “sees” TR and dE/dx

Pul

se h

eigh

t (1

cm

Xe)

t

dE/dx≈200 e-

TR (10 keV)≈500 e-

Discrimination by threshold

Page 28: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/28

ATLAS Transition Radiation Tracker

A prototypeendcap “wheel”.

X-ray detector:straw tubes (4mm)(in total ca.400.000 !)

Xe based gas

TRT protoype performance

Pion fake rateat 90% electrondetection efficiency:

π90 = 1.58 %

Page 29: u dE/dx measurementasai/work/Particle_detector...CERN Summer Student Lectures 2002 Particle Detectors Christian Joram V/3 Particle ID using the specific energy lossdE/dx ( 2 2) 2 ln

CERN Summer Student Lectures 2002Particle Detectors Christian Joram V/29

Particle Identification

Summary:

u A number of powerful methods are available to identify particles over a large momentum range.

u Depending on the available space and the environment, the identification power can vary significantly.

A very coarse plot ….

p [GeV/c]10-1 100 101 102 103 104

RICHdE/dxTOF

TR

π/K separation

e± identification