Two Neutrino Double Beta (2 ) Decays into Excited States · 2016. 6. 17. · Two Neutrino Double...

32
Two Neutrino Double Beta (2νββ ) Decays into Excited States Björn Lehnert TU-Dresden, Germany Carleton University, Canada International School of Subnuclear Physics 54 th Course: The new physics frontiers in the LHC-2 era Erice, 17/06/2016

Transcript of Two Neutrino Double Beta (2 ) Decays into Excited States · 2016. 6. 17. · Two Neutrino Double...

  • Two Neutrino Double Beta (2νββ) Decays into Excited States

    Björn LehnertTU-Dresden, Germany

    Carleton University, Canada

    International School of Subnuclear Physics54th Course: The new physics frontiers in the LHC-2 eraErice, 17/06/2016

  • neutron number N

    prot

    on n

    umbe

    r Z

    Neutrinoless Double Beta (0νββ) Decay

    76Ge: 2039 keV

    2⌫�� : (Z,A) ! (Z + 2, A) + 2e� + 2⌫̄e0⌫�� : (Z,A) ! (Z + 2, A) + 2e�

    (T1/2 = 1.9 x 1021 yr)

    (T1/2 > 2.1 x 1025 yr)in 76Ge

    - Lepton Number Violation (LNV)- Neutrinos are Majorana particles- Indication of neutrino masswww.nndc.bnl.gov2

    Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

    http://www.nndc.bnl.gov

  • Standard Mechanism of 0νββ Decay

    • Nuclear Matrix Elements (NME) are model dependent and have large theoretical uncertainties (factor 2 - 3)

    • Conversion of T1/2 into neutrino mass dominated by uncertainty of NME calculation

    measured half-life

    effective Majorana

    neutrino mass

    phase space factor

    nuclear matrix element

    2⌫�� :⇣T 2⌫1/2

    ⌘�1= G2⌫ · |M2⌫ |2

    0⌫�� :⇣T 0⌫1/2

    ⌘�1= G0⌫ · |M0⌫ |2 · |mee|2

    atomic physics nuclear physics particle physics

    arXiv:0812.0479v2 (2009)

    mlightest [eV]3

    Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • light Majorana Higgs triplet SUSY particle right handed currents

    Non-Standard Mechanism of 0νββ Decay

    • If 0νββ decay is discovered, the LNV mechanism is not clear• Other approaches e.g. LHC• 0νββ observation in multiple isotopes can help to disentangle the mechanism• Strong motivation for different DBD experiments / isotopes• NMEs have to be knows precisely

    Possible processes (not exhaustive ) PHYSICAL REVIEW D 83, 113003 (2011)

    4Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • Improvement of Nuclear Matrix Elements

    2⌫�� :⇣T 2⌫1/2

    ⌘�1= G2⌫ · |M2⌫ |2

    0⌫�� :⇣T 0⌫1/2

    ⌘�1= G0⌫ · |M0⌫ |2 · |mee|2

    76Ge

    76Se0+

    2+1

    0+12+2

    Qββ=2039.1 keV

    0 keV

    559.1 keV

    1122.3 keV1216.1 keV

    559.1

    563.2

    1216

    .1

    657.0

    64%

    36%

    2039.1 keV

    76As2- 26.3 h

    0+

    • Measurement of 2νββ decays allow direct test of NME calculations

    5Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • • Decays into excited states give an additional possibility to test NME calculations and can constrain nuclear model parameters (gA, gpp in QRPA)

    • So far 2νββ 0+1 transition discovered in 100Mo (1995) and 150Nd (2004)

    76Ge

    76Se

    76As

    0+

    2+1

    0+12+2

    2- 26.3 h

    Qββ=2039.1 keV

    0 keV

    559.1 keV

    1122.3 keV1216.1 keV

    559.1

    563.2

    1216

    .1

    657.0

    64%

    36%

    1480.0 keV

    822.0 keV916.8 keV

    0+

    2⌫�� :⇣T 2⌫1/2

    ⌘�1= G2⌫ · |M2⌫ |2

    0⌫�� :⇣T 0⌫1/2

    ⌘�1= G0⌫ · |M0⌫ |2 · |mee|2

    Improvement of Nuclear Matrix Elements

    6Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • • Use ratio of NME and PSF which cancels some uncertainties (e.g. gA)

    • Then scale with measured ground state T1/2

    • Direct theoretical calculation with various nuclear models • Often very inconsistent

    2νββ Excited States: Overview

    Experimental approaches:

    7Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • • Use ratio of NME and PSF which cancels some uncertainties (e.g. gA)

    • Then scale with measured ground state T1/2

    • Direct theoretical calculation with various nuclear models • Often very inconsistent

    2νββ Excited States: Overview

    Experimental approaches:

    8Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • LAr cryostat

    HPGe detector

    array

    water tank

    clean room lock system

    GERDA = Germanium Detector Array

    Phase I:• Nov. 2011 till May 2013

    Phase II:• Since Dec. 2015

    HPGe detectors in liquid argon (LAr): Shielding, cooling, active scintillation veto

    9Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

    Low background experiment: Reducing environmental radioactivity

  • Laboratori Nazionali del Gran Sasso in Italy

    1400m overburden (3500 m.w.e.)muon flux suppressed by factor 106L’Aquila

    outside labunderground labs

    GERDA

    10Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • most probable transition

    experimental sensitivity reaches

    predictions

    Theoretical predictions for 2νββ 0+1Best previous experimental result: 2νββ 0+1: T1/2 > 6.2·1021 yr nuclear model year T1/2

    HFB 1994 1.3·1021 yrQRPA 1994 4.0·1022 yrQRPA 1996 4.5·1022 yrQRPA 1996 7.5·1021 yrQRPA 1997 (1.0 - 3.1)·1023 yrQRPA 2014 (1.2 - 5.8)·1023 yrIBM-2 2014 6.4·1024 yrShM 2014 (2.3 - 2.6)·1024 yr

    Analysis: 76Ge 2νββ Decay into Excited States

    JETP Lett. 72 (2000)

    11Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • Phase I data set: 2700 2-detector events2-Detector coincidences

    2νββ

    most probable transition

    experimental sensitivity reaches

    predictions

    Analysis: 76Ge 2νββ Decay into Excited States

    12Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • Background Monte Carlo

    Analysis: 76Ge 2νββ Decay into Excited States

    Signal Monte Carlo (Geant4)

    • Cut and count analysis (background from sidebands)• Signal selection cuts:

    • 1 of 2 detector has one of the ɣ-energies• Other detector above certain threshold

    • Background rejection cuts:• Excluding background ɣ-lines (42K, 214Bi, 108mAg)

    • Select only detector-detector pairs which contribute to sensitivity• Tuning “ad-hoc” cut parameters to maximize sensitivity

    13Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • Background Monte Carlo

    Analysis: 76Ge 2νββ Decay into Excited States

    • Cut and count analysis (background from sidebands)• Signal selection cuts:

    • 1 of 2 detector has one of the ɣ-energies• Other detector above certain threshold

    • Background rejection cuts:• Excluding background ɣ-lines (42K, 214Bi, 108mAg)

    • Select only detector-detector pairs which contribute to sensitivity• Tuning “ad-hoc” cut parameters to maximize sensitivity

    14Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

    Signal Monte Carlo (Geant4)

  • • 5 events in signal region, 8.5 events expected • No signal observed• Detection efficiency 0.91%, exposure 22.3 kg·yr • Lower half-life limit: T1.2 > 3.7·1023 yr (90% CL)

    signal- region

    sideband region for

    background evaluation

    background model

    all 2-detector- events

    Analysis: 76Ge 2νββ Decay into Excited States

    15Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • Theoretical predictions for 2νββ 0+1Experimental results

    Analysis: 76Ge 2νββ Decay into Excited States

    nuclear model year T1/2HFB 1994 1.3·1021 yr

    QRPA 1994 4.0·1022 yrQRPA 1996 4.5·1022 yrQRPA 1996 7.5·1021 yrQRPA 1997 (1.0 - 3.1)·1023 yrQRPA 2014 (1.2 - 5.8)·1023 yrIBM-2 2014 6.4·1024 yrShM 2014 (2.3 - 2.6)·1024 yr

    decay mode T1/2 (90% CL)

    2νββ 2+1 >1.6·1023 yr

    2νββ 0+1 >3.7·1023 yr

    2νββ 2+1 >2.3·1023 yr

    J. Phys. G: Nucl. Part. Phys. 42 (2015) 115201

    • Half-life limits improved by 2 orders of magnitude• Most old NME calculations excluded for 0+1 mode

    • Sensitivity in Phase II of T1/2 > 1024 yr for 0+1 mode

    16Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • Conclusions

    • 0νββ decay tests LNV and Majorana nature of neutrinos• Standard interpretation: Dominant light Majorana neutrino exchange

    • Access to neutrino mass (mee)• Non-standard interpretation: Other LNV processes dominant or mixture

    • NMEs crucial to connect T1/2 and mee (or LNV parameter)• Currently large uncertainties for NMEs (factor 2-3)• Improvement with 2νββ decay measurements (ground or excited states)

    • Analysis for 76Ge with GERDA Phase I data• 2 orders of magnitude improvement• Many older NME calculations excluded

    • New generation of 0νββ will soon discover more 2νββ 0+1 transitions

    17Erice, 17/06/16 Bjoern Lehnert 2νββ into Excited States

  • Backup

    18

  • Cosmology

    Beta-decay

    Neutrinoless DBD

    KATRIN, MARE, EchoLimit: m < 2.3 eV (model independent)

    Planck, LSST, ...Limit: m < 0.28 eV (model dependent)

    GERDA, EXO, KamLAND-ZEN, ...Limit: m < 0.14 - 0.38 eV (model dependent)

    Experimental Overview of Neutrino Masses

    19

  • Schechter Valle

    • Standard process: Light Majorana neutrino exchange• There are also other lepton number violating processes that can trigger 0νββ• Schechter-Valle theorem:If 0νββ exists, it can always be interpreted as a neutrino Majorana mass term • Contribution of Majorana mass terms to neutrino mass might be very small

    20

  • NME

    only 1+: only GT

    all states: GT + Fermi

    21

  • decay final state particles candidates2νβ-β- (Z,A) → (Z+2,A) + 2e- + 2ν 35

    2νECEC (Z,A) + 2e- → (Z-2,A) + 2ν 342νβ+EC (Z,A) + e- → (Z-2,A) + e+ + 2ν 192νβ+β+ (Z,A) → (Z-2,A) + 2e+ + 2ν 6

    -

    Other DBD Isotopes

    Isobar A=76

    ZnGa

    AsGe

    protons Z

    Se

    Rb

    Brm

    ass

    exce

    ss (M

    eV)

    Kr

    Sr

    22

  • Effective neutrino mass:

    Beyond SM process(particle physics)

    matrix element(nuclear physics)

    phase space factor(atomic physics)

    (only for dominant light Majorana neutrino exchange)

    DBD Isotopes

    0νββ half-life (mee = 1eV)

    PHYSICAL REVIEW C 87, 014315 (2013)

    2⌫�� :⇣T 2⌫1/2

    ⌘�1= G2⌫ · |M2⌫ |2

    0⌫�� :⇣T 0⌫1/2

    ⌘�1= G0⌫ · |M0⌫ |2 · |mee|2

    23

  • 0νββ Global Picture

    24

  • Sensitivity: (for Gaussian background)

    Advantage 76Ge:• Well known HPGe detector technology• Excellent energy resolution O(0.1%)• Intrinsic low background (Semiconductor)

    Sensitivity and Experimental Approaches

    Disadvantages 76Ge:• Expensive enrichment (7.8% to 87%)• Difficult to scale• Q-value < 2614 keV of 208Tl

    25

  • The$GERDA$Collabora0on$

    ITEP%Moscow%

    Kurchatov%%Ins3tute%

    16$ins0tu0ons$~100$members$

    h5p://www.mpi

  • GERDA TimelineCommissioning

    very early GERDA spectrum

    mini-shrouds (MS)

    Test with HV potentials on

    MS• Larger 42Ar contribution than expected• 1.5 years of commissioning to understand and mitigate 42K background

    • Conclusion: • 42K is charged and attracted by HV• Installation of mini-shroud in Phase I

    Phase IIPhase I Transition to Phase II

    Dec 2015May 2013Nov 20112010

    27

  • High Purity Germanium (HPGe) Detectors

    • standard technology since 1980s• 76Ge intrinsic in germanium 7.8%• 76Ge enrichment to 87%• very good energy resolution 0.1%

    28

  • High Purity Germanium Detectors

    Semi-coaxial Ge detector:• Standard design for gamma spectroscopy • Major detector for Phase I• Large up to 3 kg• Thick n+ electrode ≈2 mm

    Broad Energy Ge (BEGe) detector:• Major detector for Phase II• Small around 600 g• Thin n+ electrode

  • 100Mo 0+1

    • 2.6 kg of enriched metallic 100Mo• 600 cm3 HPGe detector• 3.3% efficiency @ 540 keV• Exp [2]: T1/2 = 7.5±1.2·1020 yr• QRPA: T1/2 = (1.6 - 2.2)·1021 yr • IBM-2: T1/2 = 2.2·1022 yr

    • Gammas: 539.5 keV and 590.8 keV • [1] First discovered in 1995 by Barabash et al.: Phys. Lett. B, vol. 345, pp. 408–413 (1995)• [2] Latest measurement by NEMO-3 Collaboration: Nucl. Phys. A, vol. 925, pp. 25–36 (2014)

    [2]

    30

  • 150Nd 0+1• Gammas: 333.9 keV and 406.5 keV• [1] First discovered in 2004 by Barabash et al.: JETP Lett., vol. 79, pp. 10–12 (2004)• [2] Latest measurement by Barabash et al.: Phys. Rev. C, vol. 79, no. 4, p. 045501 (2009)

    [2]

    [2]

    • 3 kg of natural Nd2O3 (153 g 150Nd)• HPGe: 2.3% efficiency @ 334 keV• [2]: T1/2 = 1.33+0.63-0.36·1020 yr• IBM-2: T1/2 = 1.9·1021 yr

    31

  • CUORICINO: 130Te

    • 11.3 kg of TeO2 bolometers• ɣ: 536 keV and 1257 keV; β 1.3·1023 yr [Phys. Rev. C 85 045503 (2012)]• QRPA: T1/2 = (0.5 - 1.4)·1023 yr • IBM-2: T1/2 = 2.2·1025 yr

    EXO-200: 136Xe

    • 80 kg liquid enriched Xe TPC• Complicated analysis without segmentation • ɣ: 761 keV and 819 keV; β: 1.2·1023 yr [PhD Thesis Yung-Ruey Yen (2013)]• IBM-2: T1/2 = 2.5·1025 yr

    single site multi siteϵ=0.5% ϵ=3.0%

    ϵ=1.3%Future CUORE19 towers x 13 floors

    32