TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal...

12

Click here to load reader

Transcript of TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal...

Page 1: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

TTRIGONOMETRÍA RIGONOMETRÍA La palabra trigonometría proviene del griego: trigonos (triángulo) y metria (medida). En sus

orígenes esta rama de la matemática se utilizó para resolver problemas de agrimensura y astronomía, pero con el desarrollo de la ciencia se ha convertido en un instrumento indispensable en la física, la ingeniería, la medicina y todo otro proceso en el que se encuentren comportamientos que se repiten cíclicamente. Sirve para estudiar fenómenos vibratorios, como por ejemplo la luz, el sonido, la electricidad., etc.

Sistemas de Medición de Ángulos Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el: Sistema sexagesimal, cuya unidad de medida angular es el grado sexagesimal, que es la

noventa-ava parte del ángulo recto y se simboliza 1º. La sesenta-ava parte de un grado es un minuto (1’) y la sesenta-ava parte de un minuto es un segundo (1”).

"160

'1'160º11

90rectoángulo

=== o

Un ángulo llano mide 180º y un giro completo, 360º. Sistema circular o radial, cuya unidad de medida es el radián. La proporcionalidad que existe

entre la longitud s de los arcos de dos circunferencias concéntricas cualesquiera determinados por un ángulo central α y los radios r correspondientes, permite tomar como medida del ángulo

el cociente rs

radioarco

= . Un ángulo central de 1 radián es aquél que determina un arco que tiene

una longitud igual al radio.

s = r, por lo tanto 1rs

= .

Un radián es la medida del ángulo con vértice en el centro de la circunferencia y cuyos lados determinan sobre ella un arco s de longitud igual al radio r.

α

Ejemplo: Si β determina un arco de 6 cm en una circunferencia de 2 cm de radio, entonces la

medida en radianes de β es: 3cm2cm6

rs

== . En el sistema circular, β mide 3 radianes, o decimos

que mide 3, sin indicar la unidad de medida.

La medida en radianes de un ángulo de un giro es π=π 2r

r..2 . La de un ángulo llano, que es la

mitad de un giro, 2π : 2 = π La de un ángulo recto, entonces, 2π .

Para relacionar un sistema de medición con otro, observamos la siguiente tabla:

Page 2: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

Ángulo Sistema sexagesimal Sistema circular

1 giro 360º 2 π

llano 180º π

recto 90º π/2

¿A cuántos grados sexagesimales equivale un radián? Haciendo uso de las proporciones y teniendo en cuenta la medida del ángulo llano, por ejemplo:

π 180º

1 "45'17º57º1801≅

π⋅

Nota: π es aproximadamente igual a 3,14. Un ángulo de π radianes equivale a un ángulo de 180º. Pero π ≠ 180. Actividad Nº 1: a) Expresar en radianes las medidas de los ángulos, si es posible, utilizando fracciones de π: 30º 45º 60º 120º b) Expresar en grados sexagesimales los siguientes ángulos medidos en radianes: 2 1/2 π/2 2π Razones trigonométricas de un ángulo agudo B

Recordemos las definiciones de las razones trigonométricas.

sen α =hipotenusa

opuestocateto hipotenusa

adyacentecatetocos =α αC A

tg α = adyacentecatetoopuestocateto

Estas razones dependen sólo del ángulo α y no de las medidas de los lados del triángulo construido.

Las definiciones de las razones trigonométricas de ángulos agudos pueden extenderse para cualquier ángulo. Para eso, consideramos el ángulo α en el plano cartesiano, haciendo coincidir su vértice con el origen de un sistema cartesiano ortogonal, y su lado inicial con el semieje positivo de las x.

x0 α

r Py0

yPdeordenadaopuestocateto 0

rOPhipotenusasen ===α

Page 3: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

α r

y0 P

x0

rx

OPPdeabscisa

hipotenusaadyacentecatetocos 0===α

0xsixy

adyacentecatetoopuestocatetotg 0

0

0 ≠==α

También definimos las razones trigonométricas recíprocas de las anteriores, llamadas

cosecante, secante y cotangente:

0

0

00 yx

.op.cat.ady.catgcot

xr

.ady.cat.hipsec

yr

.op.cathipeccos ==α==α==α

Las fórmulas anteriores son válidas cuando no se anulen los denominadores. También se verifican

las siguientes relaciones:

α=α

α=α

α=α

αα

=αtg

1gcotcos

1secsen

1eccoscossentg

Por ejemplo, queremos determinar los valores de las relaciones trigonométricas de un ángulo α

cuyo lado terminal pasa por el punto P = (−3 , 4) 54(r =+= 4tg3cos4sen −

=α−

== 355 −− gcotseccos === 434 -3

α

r

P 4

y

x0 = −3, y0 = 4

ec

355

)3 22

ααα

αα

x

((op(

=+

Para un ángulo cualquiera, puede aplicarse el teorema de Pitágoras: (cat. op.)2 + (cat. ady.)2 = (hipotenusa)2 Dividimos ambos miembros por (hipotenusa)2:

1.hip

.ady.cat.hip

.op.cat

.)hip(

.)hip.)hip(

.)ady.cat.)hip(

.).cat

22

2

2

2

2

2

2

=

+

α

x0

P y0

Resulta, entonces:

(sen α)2 + (cos α)2 = 1

donde por comodidad escribimos sen 2 α + cos 2 α = 1 y que llamamos identidad pitagórica.

Page 4: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

Esta identidad, por ejemplo, nos permite calcular las funciones trigonométricas de un ángulo α

sabiendo que es agudo y que 53

=αsen .

Entonces, si sen 2 α + cos 2 α = 1 ⇒ cos 2 α = 1 − sen 2 α ⇒ α−=α 2sen1cos

y como α < π/2 54

2516

531coscoscos

2==

−=α⇒α=α

34

tg1gcot

45

cos1sec

35

sen1eccos

43

5453

cossentg

=α=α

=α==αα

Actividad Nº 2:

Sabiendo que cos α = 32

, hallar las restantes relaciones trigonométricas de α.

Con frecuencia se utilizan expresiones que vinculan a cada una de las relaciones trigonométricas

con las demás para poder utilizar, en cada caso, la expresión más conveniente. Por ejemplo, podríamos expresar la tangente de α en función del coseno:

α

α−±=α

αα

=αcos

cos1tg:pitagóricaidentidadlautilizandoycossentg

2.

Análogamente, podemos expresar el coseno de α en función de la tangente de α:

1cos

1tgcos

cos1tgcossentg

cossentg 2

22

22

2

22 −

α=α⇒

α

α−=α⇒

α

α=α⇒

αα

α+=α⇒

+α=α⇒

α=+α

222

22

tg1

1cos1tg

1coscos

11tg

Más adelante veremos cómo seleccionar el signo del resultado. Actividad Nº 3: a) Expresar la secante se α en función de la cosecante de α. b) Expresar la tangente de α como función del seno de α. La circunferencia trigonométrica – Ángulos orientados Cuando trabajamos en radianes, las medidas de los ángulos son números reales. Si definimos

ángulos orientados esta medida puede tomar valores negativos. Al trabajar con un ángulo en un sistema de coordenadas cartesianas, éste está generado por la rotación de una semirrecta o rayo que parte del semieje positivo de las x.

Page 5: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

Si el lado gira en sentido contrario a las agujas del reloj, se dice que el ángulo es positivo. Y es negativo cuando está generado en sentido horario.

Puede, además, realizar más de un giro completo. Para referirnos a su ubicación, consideramos el plano cartesiano divido en cuatro sectores,

llamados cuadrantes y una circunferencia con centro en el origen y radio 1 que llamaremos circunferencia trigonométrica.

En la figura, como r = 1 tenemos que:

000 y

1y

rysen ===α ⇒ el

segmento de ordenadas está relacionado con el sen α

000 x

1x

rxcos ===α ⇒ el

segmento de abscisas está relacionado con el cos α

II cuadrante P1

III cuadrante

γ

β

α

P3

I cuadrante

P0

P2

IV cuadrante

Para hallar el segmento asociado al sen β, se construye en el segundo cuadrante el triángulo

rectángulo con las componentes de P1 y el segmento de ordenadas corresponde a seno de β. Análogamente sucede con los ángulos del tercer y cuarto cuadrante, donde el segmento de ordenada se asocia con el seno del ángulo y el segmento de abscisa, con el coseno del ángulo.

Las medidas de un ángulo γ del tercer cuadrante están comprendidas entre π < γ <3π/2 ó 3π < γ < 7π/2 ó π + 2πk < γ < 3π/2 + 2πk donde k∈Z+ ∪{0}, esto si el ángulo es positivo.

Las medidas de γ del tercer cuadrante, si es un ángulo negativo, están comprendidas entre −π/2 < γ < −π ó −5π/2 < γ < −3π ó −π/2 + 2πk < γ −π + 2πk donde k ∈Z− ∪ {0}.

Los signos de los valores de las relaciones trigonométricas de los distintos cuadrantes dependen de

los signos de las coordenadas del punto sobre el lado terminal del ángulo. Esta información se resume en la siguiente tabla, que podrá completar: Actividad Nº 4: a)

sen α cos α tg α cosec α sec α cotg α I + + + II − III − IV −

b) Si π<β<π 529

, ¿qué se puede asegurar respecto del signo de senβ, cosβ y tgβ?

Page 6: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

Razones trigonométricas de ángulos notables Para los ángulos de 0, π/2, π y 3π/2, teniendo en cuenta las coordenadas del punto P asociado a cada ángulo en la circunferencia trigonométrica, podemos deducir y completar: Actividad Nº 5:

1α 0 π/2 π 3π/2 P (0; 1)

sen α 1 cos α 0 tg α no existe

O −1 1

−1

Para los ángulos de π/6, π/4 y π/3 radianes pueden calcularse las razones trigonométricas usando

recursos geométricos. Damos aquí una tabla que contiene los valores de los ángulos notables pertenecientes al primer cuadrante.

α

0 6π

sen α

0 21

22

23

1

cos α

1 23

22

21

0

tg α

0 33

1

3

no existe

Actividad Nº 6: Construye y observa la circunferencia trigonométrica y completa en los casos en que existan:

=π==π−=π=

π− sec0eccos)5(tg)4cos(

2sen

Reducción al primer cuadrante Se nos puede presentar el siguiente problema: Hallar el valor de α sabiendo que se encuentra en el

primer cuadrante y que sen α = 0,26331.

Page 7: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

Para resolverlo es suficiente con marcar en la calculadora científica el número 0,26331 y oprimir las teclas INV (inversa) o SHIFT, y SIN (seno). Si el modo en el que está la calculadora es en grados sexagesimales, ésta devolverá 15º 16’. Si el modo es en radianes, responderá 0,26645.

Si en cambio queremos determinar el valor de la medida de un ángulo sabiendo que se halla en el segundo cuadrante, es menor que un giro y sen α = 0,26331, y procedemos de la misma forma que en la situación anterior, la respuesta será la misma: 15º 16’, que no es correcta porque este ángulo no pertenece al segundo cuadrante.

La respuesta correcta es 164º 44’. Pero ¿cómo llegar a dicha respuesta?

α−=α−

α=

ββ

=β tgcos

sencossentg

Observamos en la circunferencia trigonométrica unángulo ubicado en el segundo cuadrante (β) de modoque si P0 = (x0, y0) entonces P1= (−x0, y0). Llamamosα al ángulo del primer cuadrante del que conocemossus relaciones trigonométricas. Los triángulos OM0P0 y OM1P1 son simétricosrespecto del eje y. Por lo tanto, sen β = y0 = sen α cos β = −x0 = −cos α

P1 P0

α

M1 O 1M0

cosec β = α=α

eccossen

1sen

1

α−=α−

=β seccos1

cos1sec

α−=α−

=β gcottg1

tg1gcot

¿Cómo es β respecto de α? α y β son ángulos suplementarios, es decir α + β = π ⇒ β = π − α. Las relaciones anteriores

pueden generalizarse para cualquier par de ángulos suplementarios. Completen a continuación: sen (π − α) = sen α cos (π − α) = .............. tg (π − α) =.................... cosec (π − α) = ............. sec (π − α) = ............... cotg (π − α) = ................ Sea ahora un ángulo γ ubicado en el tercer cuadrante, de modo que P0 = (x0 , y0) y P2= (−x0, −y0).

P0 Los triángulos OM0P0 y OM2P2 , donde quedandefinidas las relaciones trigonométricas de α y γrespectivamente, son simétricos respecto del origen decoordenadas. Entonces sen γ = −y0 = − sen α

cos γ = −x0 = − cos α

O M2

M0 α

P2

1

Page 8: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

α=α−α−

=γγ

=γ tgcossen

cossentg α=

α=

γ=γ gcot

tg1

tg1gcot

α−=α−

=γ eccossen1

sen1eccos α−=

α−=

γ=γ sec

cos1

cos1sec

Los ángulos α y γ difieren en π, o sea γ − α = π de donde γ = π + α Entonces podemos

generalizar las relaciones entre sus razones trigonométricas: sen (π + α) = −sen α cos (π + α) = .................. tg (π + α) = .................... cosec (π + α) = ............... sec (π + α) = .................. cotg (π + α) = ................. Actividad Nº 7: Calcular, usando la tabla de ángulo notables:

a)

π

65sen b)

π

45cos c)

π

32tg d)

π

67eccos

Sea δ un ángulo ubicado en el cuarto cuadrante, de modo que P0 = (x0, y0) y P3 = (x0, −y0). Pero

también podemos considerar un ángulo ϕ < 0 (generado en sentido horario) cuyo lado terminal OP3 también está en el cuarto cuadrante.

P0

Los triángulos OM0P0 y OM0P3 , donde quedandefinidas las relaciones trigonométricas de α y δ (yϕ) respectivamente, son simétricos respecto del ejede abscisas Entonces sen δ = sen ϕ = −y0 = − sen α cos δ = cos ϕ = x0 = cos α

M0

α

P3

O 1

α−=αα−

=δδ

=ϕ=δ tgcossen

cossentgtg

....................................

1..............

1eccosec ===ϕ=δcos

....................................

1..............

1secsec ===ϕ=δ

....................................

1..............

1gcotgcot ===ϕ=δ

Page 9: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

Se dice que α y ϕ son ángulos opuestos. Entonces ϕ = −α y pueden generalizarse las relaciones entre sus razones trigonométricas:

sen (−α) = −sen α cos (−α) = .................. tg (−α) = ........................ cosec (−α) = .................. sec (−α) = ................... cotg (−α) = ..................... Actividad Nº 8:

a) Para los ángulos 4

y5

π=ε

π=λ hallar los ángulos simétricos en los demás cuadrantes.

b) Aplicando las propiedades entre ángulos simétricos y la tabla de valores de ángulos notables, hallar los valores exactos de:

=

π−=

π=

π

=

π−

=

π=

π

43gcot

32eccos

67sen

4tg

65sec

34cos

c) Simplificar cada expresión:

=α−α+πα−π=α−π+α−

=α+π

α−−

α−πα+π

=α−+α−π

)(gcot·)(sec·)(sen)(cos)(sen

)(tg)(tg

)cos()cos()(sen)(sen

22

Ángulos Complementarios

h β

α

a b

En el triángulo rectángulo, los ángulos agudos α y β

son complementarios, es decir α + β = 2π , donde

β = 2π − α. Además β=

β==α cos

.hipde.ady.cat

hasen

y β=β

==α sende.op.catbcos

.hiph
Page 10: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

En consecuencia: sen (2π − α) = cos α cos(

2π − α) = sen α

tg (2π − α) = α=

αα

=α−

π

α−π

gcotsencos

)2

(cos

)2

(sen α=

α=

α−π

=α−π tg

gcot1

)2

(tg

1)2

(gcot

α=α

=α−

π=α−

π seccos

1

)2

(sen

1)2

(eccos y análogamente sec )2

( α−π = cosec α

Actividad Nº 9:

a) Si sen α = 1/3 y α se halla en el primer cuadrante, ¿cuánto vale sen )2

( α−π ? ¿Y cotg )

2( α−π ?

b) Sabiendo que α pertenece al tercer cuadrante y que cos α = −2/3, calcular tg )2

( α−π y

sen )2

α−π( .

c) Expresar los siguientes ángulos en radianes y calcular sus razones trigonométricas (utilizando simetrías y la tabla de ángulos notables):

α = 120º α = 225º α = 330º α = 495º α = −765º Algunas Identidades Trigonométricas Las siguientes identidades son de utilidad para distintos procedimientos, como cálculos de límites

e integrales. No es necesario memorizarlas porque suelen estar incluidas en tablas de derivadas , integrales, etc. Simplemente enumeramos sólo algunas de ellas.

Para α y β cualesquiera: sen (α ± β ) = sen α cos β ± cos α sen β cos (α + β ) = cos α cos β − sen α sen β cos (α − β ) = cos α cos β + sen α sen β

βα−

β+α=β+α

tgtg1tgtg)(tg

Para cualquier α: sen (2α) = 2 sen α cos α cos (2α) = cos2α − sen2α

α−

α=α 2tg1

tg2)2(tg

Page 11: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

2cos1

2sen α−

=

α

2cos1

2cos

α+=

α

α+

α=

α

cos1sen

2tg

2

)2(cos12cos α+=α

2

)2(cos12sen α−=α

Actividad Nº 10: Verificar las siguientes identidades (se aconseja trabajar en cada miembro de la igualdad

sustituyendo las expresiones por otras identidades conocidas hasta llegar a una igualdad evidente). Ejemplo:

αα

=αα

⇒+αα

=+α

α⇒α

α+α=+αα

cossen

cossen1

cossen1

cos1sen

coscossen1secsen

a) α+

α=α−α

sen1costgecs b)

α

α−=α 2

22

eccosgcot1sen

c) (cosec α + cotg α − 1) · (cosec α − cotg α +1) = 2 cotg α d) sen2α + 2 cos2α +cos2α cotg2α = cosec2α Resolución de Triángulos rectángulos Resolver trigonométricamente un triángulo rectángulo consiste en, dados algunos elementos del

triángulo, obtener los restantes. Ejemplo 1: Resolver el triángulo rectángulo dados la hipotenusa a = 20 cm y ' 35º28B̂ = C

c A B

a Entonces los datos son: a y y las incógnitas C , b yc.

B̂ ˆ

Como C y B son complementarios, resulta C = 90º - BC = 61º 25’

b

Page 12: TRIGONOMETRÍA - · PDF fileTrigonometría Ángulo Sistema sexagesimal Sistema circular 1 giro 360º 2 π llano 180º π recto 90º π/2 ¿A cuántos grados sexagesimales equivale

Trigonometría

Como sen B = cm568,94784,0·cm20B̂senabab

===⇒

Además, cos cm562,178781,0·cm20B̂cosacacB̂ ===⇒=

Actividad Nº 11: a) Para un triángulo rectángulo similar al del ejemplo, hallar c, B y C sabiendo que a = 15 cm. y

b = 9 cm. b) Un alambre carril recto de 320 m. une dos estaciones A y B y tiene una pendiente de 0,532.

Calcular la diferencia de altura sobre el nivel del mar entre A y B. Rta: 150,23 m. c) Calcular la longitud que debe tener una escalera para que apoyada en una pared alcance una

altura de 2,85 m al formar con el plano de la base un ángulo de 58º 1’. Rta: 3,36 m. d) Un globo sujetado por un cable de 180 m. es inclinado por el viento formando el cable un

ángulo de 60º con la horizontal. Calcular la distancia del globo al suelo.