Traveling Waves in a bistable Reaction-Diffusion...

29
Traveling Waves in a bistable Reaction-Diffusion System

Transcript of Traveling Waves in a bistable Reaction-Diffusion...

Page 1: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Traveling Waves in a bistable Reaction-Diffusion System

Page 2: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Wave phenomena in RD systems

∂u∂t

= f (u) + D∂2u∂x 2

, ∂u∂x ±∞

= 0

Keener & Sneyd (1998) Mathematical Physiology; p 270-275

f (u) = au(u −1)(α − u) 0 <α <1

f (u) = −u + H(u −α) 0 <α <1

With f cubic:

or

Piecewise linear:

1 α

McKean, 1970

f(u)

f(u)

U is the shape of the wave, z is the position along the wave front

Page 3: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Bistable well-mixed system

1 α Steady states:

u = 0, α, 1

Page 4: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

With diffusion

1 α

u=1

u=0 x

Page 5: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Moving Wave

u=1

u=0 x

Page 6: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Wave profile

z

Traveling wave coordinates: z=x-ct, U(z)=u(x,t)

u=1

u=0

Page 7: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

What is the wave profile? Traveling wave coordinates: z=x-ct, U(z)=u(x,t) Scaling and transformation of coordinates:

∂∂t→−c d

dz∂∂x

→ddz

∂u∂t

= f (u) +∂ 2u∂x 2

→ − c dUdz

= f (U) +d2Udz2PDE ODE

Uzz − cUz + f (U) = 0

Uz =WWz = cW − f (U)

2nd order (nonlin) ODE

Equivalent ODE system: We can study this qualitatively in the UW phase plane to get insight into the shape of the wave.

Page 8: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Example: f(u)=u(1-u)(u- α)

∂u∂t

= f (u) +∂ 2u∂x 2

W

U U

W

W’=0

U’=0

Uzz − cUz + f (U) = 0

Uz =WWz = cW − f (U)

(Rescaled)

Page 9: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Xpp file # bistable.ode # classic example of a wave joining 0 and 1 # u_t = u_xx + u(1-u)(u-a) # # -cu'=u''+u(1-u)(u-a) f(u)=u*(1-u)*(u-a) par c=0,a=.25 u'=up up'=-c*up-f(u) init u=1 @ xp=u,yp=up,xlo=-.5,xhi=1.5,ylo=-.5,yhi=.5 done

Bard Ermentrout’s XPP file

Bistable.ode

Page 10: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Interpretation: Each trajectory describes how U (and W) vary as z increases over range -∞< z < ∞

In bio applications: u= density>0, so we want: a positive bounded wave: Look for a positive bounded trajectory connecting two steady states.

W

U U

Page 11: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Here is a heteroclinic trajectory:

W

U

Page 12: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Here it is on its own:

U

W

Page 13: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

And here is the shape of the wave it represents:

U

z

Page 14: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

What is the speed of the wave? •  A reaction-diffusion equation with “bistable” kinetics will admit a traveling wave that looks like a moving “front”, with high level at back, and low level ahead.

•  But how fast does the wave move and does it ever stop?

There is a cute trick that allows us to answer this question for arbitrary function f(u).

Page 15: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Determining wave speed

∂u∂t

= f (u) +∂ 2u∂x 2

, z = x − ct

−c dUdz

− f (U) =∂ 2Udz2

−c dUdz

⎝ ⎜

⎠ ⎟ 2

− f (U) dUdz

⎝ ⎜

⎠ ⎟ =12ddz

dUdz

⎝ ⎜

⎠ ⎟ 2

−c dUdz

⎝ ⎜

⎠ ⎟ 2

−∞

∫ dz − f (U)uback

ufront

∫ dU =12

ddz

dUdz

⎝ ⎜

⎠ ⎟ 2

= 0−∞

−c dUdz

⎝ ⎜

⎠ ⎟ 2

−∞

∫ dz = f (U)uback

ufront

∫ dU

Multiply by dU/dz,

uback ufront

z

c

integrate,

Page 16: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

The wave speed:

Page 17: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Finally..

z

u=1

u=0

f(u)=u(1-u)(u- α)

Page 18: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Result!

But what does this tell us????

Page 19: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Which way does it move?

1 α

f(u)

1 α

f(u)

Always positive

Page 20: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Which way does it move?

1 α

f(u)

1 α

f(u)

> 0 < 0

c > 0 c < 0

Page 21: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Which way does it move?

1

f(u)

1

f(u)

c > 0 c < 0

Page 22: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Which way does it move?

1

f(u)

1

f(u)

c > 0 c < 0

Page 23: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

We can now answer the question:

Under what conditions would the wave stop?

Page 24: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Wave stops:

0 = c = − f (U)0

1

∫ dU dUdz

⎝ ⎜

⎠ ⎟ 2

−∞

∫ dz

f (U)0

1

∫ dU = 0

Speed is zero if:

i.e.: if :

Page 25: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Geometry of stalled wave:

1 α

f(u)

Page 26: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Maxwell condition:

1 α

f(u)

f (U)0

1

∫ dU = 0

“Equal areas”

“Maxwell condition”:

f (U)0

α

∫ dU = − f (U)α

1

∫ dU

Page 27: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Can we get an explicit solution for the wave speed?

Page 28: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Explicit solution? In some special cases, e.g. f(u) cubic or piecewise linear, can calculate wave speed fully by this method.

(See Keener & Sneyd p 274, Murray p 305)

f (u) = au(u −1)(α − u) 0 <α <1For

Speed of the wave is:

c =a2(1− 2α)

Page 29: Traveling Waves in a bistable Reaction-Diffusion Systemkeshet/MCB2012/SlidesLEK/TravWaves_ppt.pdf · 2012. 4. 12. · Bistable.ode! Interpretation:! Each trajectory describes how

Implications: Wave moves right (c>0) if α<1/2 Moves left (c<0) if α>1/2

Wave stops (c=0) precisely for one value of the parameter, α=1/2

f (u) = au(u −1)(α − u) 0 <α <1