Torque Slip Characteristics

24
TORQUE SLIP CHARACTERISTICS OF INDUCTION MOTOR By Avinash Srivastava Ravi Kumar (MTECH CAID MSRIT)

description

explans the torque slip characteristics of induction motorand explains the euivalent circuit diagram

Transcript of Torque Slip Characteristics

Page 1: Torque Slip Characteristics

TORQUE SLIP CHARACTERISTICS OF INDUCTION MOTOR

 

By Avinash SrivastavaRavi Kumar(MTECH CAID MSRIT)

Page 2: Torque Slip Characteristics

Basic Induction Motor Concepts

The Development of Induced Torque in an Induction Motor

ind R SkB B

If the induction motor’s rotor were turning at synchronous speed

the rotor bars would be stationary relative to the magnetic field

no induced voltageno rotor current

no rotor magnetic field Induced torque = 0

Rotor will slow down due to friction

Page 3: Torque Slip Characteristics

 Slip of induction motorThe speed of induction motor must always be less than the synchronous speed and as the load increased the spree of the motor will decrease. The difference between the speed of the stator and the actual speed of the rotor is known as the slip speed of induction motor.

Where   nslip = slip speed of the machine

nsync = speed of the magnetic field.

nm = mechanical shaft speed of the motor

The slip can be expressed in rpm and radians per second, but usually it is expressed as a fraction or percentage of synchronous speed

Slip may also be described in terms of angular velocity, . 

slip sync mn n n

, 100% 100%slip sync m

sync sync

n n nSlip s

n n

%100xssync

msync

Page 4: Torque Slip Characteristics

The Electrical Frequency on the RotorWhen the rotor is stationary, rotor conductor are being cut by the rotating flux at the synchronous speed , the frequency of rotor  current (or emf) is the same as that of supply frequency.

And rotor frequency may be expressed as:

  since slip is given by 

And since nsync=120fe / P,

This shows that the relative difference between synchronous speed and the rotor speed will determine the rotor frequency.

sync m

sync

n nS

n

r ef sf

msyncr nnP

f 120

Page 5: Torque Slip Characteristics

The Equivalent Circuit of an Induction Motor

– The Transformer Model of an Induction Motor

The transformer model or an induction motor, with rotor and stator  connected by an ideal transformer of turns ratio aeff.

 

Page 6: Torque Slip Characteristics

– The Rotor Circuit Model

– The reactance of an induction motor rotor depends on the inductance of the rotor and the frequency of the voltage and current in the rotor.  With a rotor inductance of LR, the rotor reactance is: 

– The rotor current flow is

0

2

,

2

R r R r R

r e

R e R R

X L f L

Since f sf

X s f L sX

0

00

R R RR

RR R R RR

E E EI

RR jX R jsX jXs

Page 7: Torque Slip Characteristics

– The Final Equivalent CircuitTo produce the final per-phase equivalent circuit for an induction motor, it is necessary to refer the rotor part of the model over to the stator side.If the effective turns ratio of an induction motor is aeff , then the transformed rotor voltage becomes

The rotor current

And the rotor impedance

If we make the following definitions:R2 = a2

eff RR;  X2 = a2eff XR0

The final per-phase equivalent circuit is as shown below

'1 0R eff RE E a E

2R

eff

II

a

22 0

Reff R

RZ a jX

s

Page 8: Torque Slip Characteristics

The Derivation of the Induction Motor Induced-Torque Equation

• The Derivation of the Induction Motor Induced-Torque Equation• Torque speed equation based upon the power flow diagram of an induction motor. We know that, 

• By definition, air gap power is the power transferred from the stator to the rotor via the air gap in the induction machine. Based upon the induction motor equivalent circuit, the air gap power may be defined as:

• Our next task is to find I2 (current flow in the rotor circuit). The easiest way is via the construction of the Thevenin equivalent circuit.  

 

conv AGind ind

m sync

P Por

2 22

2 22

, :

3

AG per phase

AG

RP I

shence total air gap power

RP I

s

Page 9: Torque Slip Characteristics

Calculation via thevenin equivalent method 

Page 10: Torque Slip Characteristics

1. Derive the thevenin voltage (potential divider rule):

     Hence the magnitude of thevenin voltage: 

  

Since Xm >> X1 , Xm >> R1, therefore the magnitude may be approximated to: 

2. Find the thevenin impedance 

Take out the source and replace it with a short circuit, and derive the equivalent impedances.

 

Since Xm >> X1, Xm >> R1,

 

1 1

mTH

m

jXV V

R jX jX

221 1

mTH

m

XV V

R X X

1

mTH

m

XV V

X X

1 1

1 1

mTH

m

jX R jXZ

R jX jX

2

11

1

mTH

m

TH

XR R

X X

X X

Page 11: Torque Slip Characteristics

 Representing the stator circuit by the thevenin equivalent, and adding back the rotor circuit, we can derive I2, 

Hence the magnitude will be, 

Hence air gap power,

Hence, induced torque,

22

2( )

TH

TH TH

VI

RR j X Xs

2 2

22

2

TH

TH TH

VI

RR X Xs

2

2

22

22

3 THAG

TH TH

V RP

sRR X Xs

2

2

22

22

3 TH

TH TH

indsync

V RsRR X Xs

Page 12: Torque Slip Characteristics

If a graph of Torque and speed were plotted based upon changes in slip

Page 13: Torque Slip Characteristics

Comments on the Induction Motor Torque Speed Curve • Induced Torque is zero at synchronous speed.• The graph is nearly linear between no load and full load (at near 

synchronous speeds).• Max torque is known as pull out torque or breakdown torque• Starting torque is very large.• Torque for a given slip value would change to the square of the applied 

voltage.• If the rotor were driven faster than synchronous speed, the motor would 

then become a generator.• If we reverse the direction of the stator magnetic field, it would act as a 

braking action to the rotor – plugging.

Page 14: Torque Slip Characteristics

To be continued by Avinash…………

Page 15: Torque Slip Characteristics

Maximum (Pullout) Torque in an Induction Motor

Based upon the maximum power transfer theorem, maximum power transfer will be achieved when the magnitude of source impedance matches the load impedance. Since the source impedance is as follows:

Hence maximum power transfer occurs during

Hence max power transfer is possible when slip is as follows:

Put in the value of Smax into the torque equation,

2source TH THZ R jX jX

2222TH TH

RR X X

s

2

max 222TH TH

Rs

R X X

2

max22

2

3

2

TH

sync TH TH TH

V

R R X X

Page 16: Torque Slip Characteristics

• From above equation we conclude that:1. Torque is related to the square of the applied voltage2. Torque is also inversely proportional to the machine impedances3. Slip during maximum torque is dependent upon rotor resistance4. Torque is also independent to rotor resistance as shown in the maximum 

torque equation • By adding more resistance to the machine impedances, we can vary:1. Starting torque2. Max pull out speed

Page 17: Torque Slip Characteristics

Variations in Induction Motor Torque-Speed Characterictics

Page 18: Torque Slip Characteristics

A torque-speed characteristic curve combining  high-resistance effects at low speeds (high slip) with low resistance effects at high speed (low slip). 

Page 19: Torque Slip Characteristics

Effect of rotor resistance on torque-slip or torque-speed relation

Page 20: Torque Slip Characteristics

Effect of change in supply voltage on the torque and slip (or speed)

Page 21: Torque Slip Characteristics

Effect  of varying  supply voltage and supply frequency 

Page 22: Torque Slip Characteristics

Current – speed characteristics 

Page 23: Torque Slip Characteristics

Torque speed curve and operating region 

Page 24: Torque Slip Characteristics