Topics on the Igusa-Todorov functions

162
Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture Topics on the Igusa-Todorov functions Gustavo Mata July 30th

Transcript of Topics on the Igusa-Todorov functions

Page 1: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Topics on the Igusa-Todorov functions

Gustavo Mata

July 30th

Page 2: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

One of the most important conjectures in the RepresentationTheory of Artin Algebras is the finitistic dimension conjecture.

It states that the supremum of the projective dimensions for the f.g. modules with finite projective dimension over an Artin algebra isfinite.

In an attempt to prove the finitistic dimension conjecture, Igusaand Todorov defined two functions from the finitely generatedmodules over an Artin algebra to the natural numbers, whichgeneralizes the notion of projective dimension.

Nowadays, these functions are known as the Igusa-Todorovfunctions.

Page 3: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

One of the most important conjectures in the RepresentationTheory of Artin Algebras is the finitistic dimension conjecture.

It states that the supremum of the projective dimensions for the f.g. modules with finite projective dimension over an Artin algebra isfinite.

In an attempt to prove the finitistic dimension conjecture, Igusaand Todorov defined two functions from the finitely generatedmodules over an Artin algebra to the natural numbers, whichgeneralizes the notion of projective dimension.

Nowadays, these functions are known as the Igusa-Todorovfunctions.

Page 4: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

One of the most important conjectures in the RepresentationTheory of Artin Algebras is the finitistic dimension conjecture.

It states that the supremum of the projective dimensions for the f.g. modules with finite projective dimension over an Artin algebra isfinite.

In an attempt to prove the finitistic dimension conjecture, Igusaand Todorov defined two functions from the finitely generatedmodules over an Artin algebra to the natural numbers, whichgeneralizes the notion of projective dimension.

Nowadays, these functions are known as the Igusa-Todorovfunctions.

Page 5: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

One of the most important conjectures in the RepresentationTheory of Artin Algebras is the finitistic dimension conjecture.

It states that the supremum of the projective dimensions for the f.g. modules with finite projective dimension over an Artin algebra isfinite.

In an attempt to prove the finitistic dimension conjecture, Igusaand Todorov defined two functions from the finitely generatedmodules over an Artin algebra to the natural numbers, whichgeneralizes the notion of projective dimension.

Nowadays, these functions are known as the Igusa-Todorovfunctions.

Page 6: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 7: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 8: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 9: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 10: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 11: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 12: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 13: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 14: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 15: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 16: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 17: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 18: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We fix the following notation

A is an Artin algebra.

J⊂ A is the Jacobson ideal of A.

ModA and modA are the right A-modules and the finitelygenerated right A-modules, respectively.

S(A), P(A) and I(A) are the simple, projective and injectiveA-modules, respectively.

indA are the indescomposable A-modules.

Given M ∈ modA we denote by:

pd(M) its projective dimension.id(M) its injective dimension.Ω(M) its syzygy.

findim(A) is the finitistic dimension of A.

gldim(A) is the global dimension of A.

repdim(A) is the representation dimension of A.

Page 19: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following version of Fitting Lemma is used to define theIgusa-Todorov functions:

Lemma (Fitting Lemma)

Let R be a noetherian ring. Consider M ∈ ModR andf ∈ EndR(M).Then, ∀ X ⊂ M, such that X ∈ modR there is anon-negative integer

ηf (X ) = mink ∈ N : f |f m(X ) : f m(X )∼=→ f m+1(X ), ∀m ≥ k.

Page 20: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following version of Fitting Lemma is used to define theIgusa-Todorov functions:

Lemma (Fitting Lemma)

Let R be a noetherian ring. Consider M ∈ ModR andf ∈ EndR(M).Then, ∀ X ⊂ M, such that X ∈ modR there is anon-negative integer

ηf (X ) = mink ∈ N : f |f m(X ) : f m(X )∼=→ f m+1(X ), ∀m ≥ k.

Page 21: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following version of Fitting Lemma is used to define theIgusa-Todorov functions:

Lemma (Fitting Lemma)

Let R be a noetherian ring. Consider M ∈ ModR andf ∈ EndR(M).Then, ∀ X ⊂ M, such that X ∈ modR there is anon-negative integer

ηf (X ) = mink ∈ N : f |f m(X ) : f m(X )∼=→ f m+1(X ), ∀m ≥ k.

Page 22: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition

Let K0(A) be the abelian group generated by all symbols [M], withM ∈ modA, modulo the relations

1 [M]− [M1]− [M2] if M ∼= M1 ⊕M2,

2 [P] for each projective module P.

Let Ω : K0(A)→ K0(A) be the group endomorphism induced by Ω.That is

Ω([M]) = [Ω(M)].

If M ∈ modA, then 〈addM〉 denotes the subgroup of K0(A)generated by the classes of indecomposable (non projective)summands of M.

Page 23: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition

Let K0(A) be the abelian group generated by all symbols [M], withM ∈ modA, modulo the relations

1 [M]− [M1]− [M2] if M ∼= M1 ⊕M2,

2 [P] for each projective module P.

Let Ω : K0(A)→ K0(A) be the group endomorphism induced by Ω.That is

Ω([M]) = [Ω(M)].

If M ∈ modA, then 〈addM〉 denotes the subgroup of K0(A)generated by the classes of indecomposable (non projective)summands of M.

Page 24: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition

Let K0(A) be the abelian group generated by all symbols [M], withM ∈ modA, modulo the relations

1 [M]− [M1]− [M2] if M ∼= M1 ⊕M2,

2 [P] for each projective module P.

Let Ω : K0(A)→ K0(A) be the group endomorphism induced by Ω.That is

Ω([M]) = [Ω(M)].

If M ∈ modA, then 〈addM〉 denotes the subgroup of K0(A)generated by the classes of indecomposable (non projective)summands of M.

Page 25: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

remark

Observe that

for a finitely generated subgroup G ⊂ K0(A), the mapΩ|G : G → Ω(G ) is an isomorphism if and only if

rk(G ) = rk(Ω(G ))

In general Ω(〈addM〉) 6= 〈addΩ(M)〉.

Given a finitely generated subgroup G of K0(A), we define ηΩ(G )as in the Fitting Lemma.

Page 26: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

remark

Observe that

for a finitely generated subgroup G ⊂ K0(A), the mapΩ|G : G → Ω(G ) is an isomorphism if and only if

rk(G ) = rk(Ω(G ))

In general Ω(〈addM〉) 6= 〈addΩ(M)〉.

Given a finitely generated subgroup G of K0(A), we define ηΩ(G )as in the Fitting Lemma.

Page 27: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

remark

Observe that

for a finitely generated subgroup G ⊂ K0(A), the mapΩ|G : G → Ω(G ) is an isomorphism if and only if

rk(G ) = rk(Ω(G ))

In general Ω(〈addM〉) 6= 〈addΩ(M)〉.

Given a finitely generated subgroup G of K0(A), we define ηΩ(G )as in the Fitting Lemma.

Page 28: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

remark

Observe that

for a finitely generated subgroup G ⊂ K0(A), the mapΩ|G : G → Ω(G ) is an isomorphism if and only if

rk(G ) = rk(Ω(G ))

In general Ω(〈addM〉) 6= 〈addΩ(M)〉.

Given a finitely generated subgroup G of K0(A), we define ηΩ(G )as in the Fitting Lemma.

Page 29: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition (Igusa, Todorov)

The Igusa-Todorov function φA of M ∈ modA is defined as

φ(M) = ηΩ(〈addM〉).

Definition (Igusa, Todorov)

The Igusa-Todorov function ψA of M ∈ modA is defined as

ψ(M) = φ(M) + suppd(N) : N/Ωφ(M)(M) and pd(N) <∞.

Page 30: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition (Igusa, Todorov)

The Igusa-Todorov function φA of M ∈ modA is defined as

φ(M) = ηΩ(〈addM〉).

Definition (Igusa, Todorov)

The Igusa-Todorov function ψA of M ∈ modA is defined as

ψ(M) = φ(M) + suppd(N) : N/Ωφ(M)(M) and pd(N) <∞.

Page 31: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov)

Given M, N ∈ modA.

If pd(M) <∞, then φ(M) = ψ(M) = pd(M).

If M ∈ indA and pd(M) =∞, then φ(M) = ψ(M) = 0.

φ(M) ≤ φ(M ⊕ N) and ψ(M) ≤ ψ(M ⊕ N).

φ(Mk) = φ(M) and ψ(Mk) = ψ(M) if k ∈ Z+.

Proposition (Huard, Lanzilotta, Mendoza)

If M ∈ modA, then

φ(M) ≤ φ(Ω(M)) + 1 and

ψ(M) ≤ ψ(Ω(M)) + 1.

Page 32: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov)

Given M, N ∈ modA.

If pd(M) <∞, then φ(M) = ψ(M) = pd(M).

If M ∈ indA and pd(M) =∞, then φ(M) = ψ(M) = 0.

φ(M) ≤ φ(M ⊕ N) and ψ(M) ≤ ψ(M ⊕ N).

φ(Mk) = φ(M) and ψ(Mk) = ψ(M) if k ∈ Z+.

Proposition (Huard, Lanzilotta, Mendoza)

If M ∈ modA, then

φ(M) ≤ φ(Ω(M)) + 1 and

ψ(M) ≤ ψ(Ω(M)) + 1.

Page 33: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov)

Given M, N ∈ modA.

If pd(M) <∞, then φ(M) = ψ(M) = pd(M).

If M ∈ indA and pd(M) =∞, then φ(M) = ψ(M) = 0.

φ(M) ≤ φ(M ⊕ N) and ψ(M) ≤ ψ(M ⊕ N).

φ(Mk) = φ(M) and ψ(Mk) = ψ(M) if k ∈ Z+.

Proposition (Huard, Lanzilotta, Mendoza)

If M ∈ modA, then

φ(M) ≤ φ(Ω(M)) + 1 and

ψ(M) ≤ ψ(Ω(M)) + 1.

Page 34: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov)

Given M, N ∈ modA.

If pd(M) <∞, then φ(M) = ψ(M) = pd(M).

If M ∈ indA and pd(M) =∞, then φ(M) = ψ(M) = 0.

φ(M) ≤ φ(M ⊕ N) and ψ(M) ≤ ψ(M ⊕ N).

φ(Mk) = φ(M) and ψ(Mk) = ψ(M) if k ∈ Z+.

Proposition (Huard, Lanzilotta, Mendoza)

If M ∈ modA, then

φ(M) ≤ φ(Ω(M)) + 1 and

ψ(M) ≤ ψ(Ω(M)) + 1.

Page 35: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov)

Given M, N ∈ modA.

If pd(M) <∞, then φ(M) = ψ(M) = pd(M).

If M ∈ indA and pd(M) =∞, then φ(M) = ψ(M) = 0.

φ(M) ≤ φ(M ⊕ N) and ψ(M) ≤ ψ(M ⊕ N).

φ(Mk) = φ(M) and ψ(Mk) = ψ(M) if k ∈ Z+.

Proposition (Huard, Lanzilotta, Mendoza)

If M ∈ modA, then

φ(M) ≤ φ(Ω(M)) + 1 and

ψ(M) ≤ ψ(Ω(M)) + 1.

Page 36: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Proposition (Igusa, Todorov)

Given M, N ∈ modA.

If pd(M) <∞, then φ(M) = ψ(M) = pd(M).

If M ∈ indA and pd(M) =∞, then φ(M) = ψ(M) = 0.

φ(M) ≤ φ(M ⊕ N) and ψ(M) ≤ ψ(M ⊕ N).

φ(Mk) = φ(M) and ψ(Mk) = ψ(M) if k ∈ Z+.

Proposition (Huard, Lanzilotta, Mendoza)

If M ∈ modA, then

φ(M) ≤ φ(Ω(M)) + 1 and

ψ(M) ≤ ψ(Ω(M)) + 1.

Page 37: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 38: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 39: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 40: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 41: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 42: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 43: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 44: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 45: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 46: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider the radical square zero algebra A = kQJ2 , with Q as follows

1 // 2 // 3 // . . . // nyy

If S(A) = S1, . . . ,Sn, we have:

Ω(Si ) =

Si+1 if i = 1, . . . , n − 1,Sn if i = n.

Let us compute φ(S1 ⊕ Sn).

〈add(S1 ⊕ S2)〉 ∼= Z⊕ Z,Ω(〈add(S1 ⊕ S2)〉) ∼= 〈add(S2 ⊕ Sn)〉 ∼= Z⊕ Z,...Ωn−2(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn−1 ⊕ Sn)〉 ∼= Z⊕ ZΩn−1(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= ZΩn−1+k(〈add(S1 ⊕ S2)〉) ∼= 〈add(Sn ⊕ Sn)〉 ∼= Z,∀ k ≥ 0.

Hence φ(S1 ⊕ Sn) = n − 1.

Page 47: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, and C a full subcategory of modA. Wedefine

φdim(C) = supφ(M) : M ∈ ObC, and

ψdim(C) = supψ(M) : M ∈ ObC.In particular, we denote by

φdim(A) = φdim(modA),

ψdim(A) = ψdim(modA)

Page 48: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, and C a full subcategory of modA. Wedefine

φdim(C) = supφ(M) : M ∈ ObC, and

ψdim(C) = supψ(M) : M ∈ ObC.In particular, we denote by

φdim(A) = φdim(modA),

ψdim(A) = ψdim(modA)

Page 49: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, and C a full subcategory of modA. Wedefine

φdim(C) = supφ(M) : M ∈ ObC, and

ψdim(C) = supψ(M) : M ∈ ObC.In particular, we denote by

φdim(A) = φdim(modA),

ψdim(A) = ψdim(modA)

Page 50: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, and C a full subcategory of modA. Wedefine

φdim(C) = supφ(M) : M ∈ ObC, and

ψdim(C) = supψ(M) : M ∈ ObC.In particular, we denote by

φdim(A) = φdim(modA),

ψdim(A) = ψdim(modA)

Page 51: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Definition

Let A be an Artin algebra, and C a full subcategory of modA. Wedefine

φdim(C) = supφ(M) : M ∈ ObC, and

ψdim(C) = supψ(M) : M ∈ ObC.In particular, we denote by

φdim(A) = φdim(modA),

ψdim(A) = ψdim(modA)

Page 52: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebra A

findim(A) ≤ φdim(A) ≤ ψdim(A) ≤ gldim(A)

ψdim(A) ≤ 2.φdim(A).

Observe that an algebra with finite φ-dimension verifies thefinitistic dimension conjecture. This motivates the followingquestion. Question: does every algebra have finite φ-dimension?

Page 53: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebra A

findim(A) ≤ φdim(A) ≤ ψdim(A) ≤ gldim(A)

ψdim(A) ≤ 2.φdim(A).

Observe that an algebra with finite φ-dimension verifies thefinitistic dimension conjecture. This motivates the followingquestion. Question: does every algebra have finite φ-dimension?

Page 54: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebra A

findim(A) ≤ φdim(A) ≤ ψdim(A) ≤ gldim(A)

ψdim(A) ≤ 2.φdim(A).

Observe that an algebra with finite φ-dimension verifies thefinitistic dimension conjecture. This motivates the followingquestion. Question: does every algebra have finite φ-dimension?

Page 55: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebra A

findim(A) ≤ φdim(A) ≤ ψdim(A) ≤ gldim(A)

ψdim(A) ≤ 2.φdim(A).

Observe that an algebra with finite φ-dimension verifies thefinitistic dimension conjecture. This motivates the followingquestion. Question: does every algebra have finite φ-dimension?

Page 56: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following inequalities hold for an Artin algebra A

findim(A) ≤ φdim(A) ≤ ψdim(A) ≤ gldim(A)

ψdim(A) ≤ 2.φdim(A).

Observe that an algebra with finite φ-dimension verifies thefinitistic dimension conjecture. This motivates the followingquestion. Question: does every algebra have finite φ-dimension?

Page 57: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Let A be an Artin algebra. We say that A is of Ωn-finiterepresentation type if Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A = kQJ2 ), and

Truncated path algebras (A = kQJk

for k ≥ 2).

Monomial algebras are of Ω2-finite representation type, but ingeneral not of Ω1-finite representation type.

Page 58: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Let A be an Artin algebra. We say that A is of Ωn-finiterepresentation type if Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A = kQJ2 ), and

Truncated path algebras (A = kQJk

for k ≥ 2).

Monomial algebras are of Ω2-finite representation type, but ingeneral not of Ω1-finite representation type.

Page 59: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Let A be an Artin algebra. We say that A is of Ωn-finiterepresentation type if Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A = kQJ2 ), and

Truncated path algebras (A = kQJk

for k ≥ 2).

Monomial algebras are of Ω2-finite representation type, but ingeneral not of Ω1-finite representation type.

Page 60: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Let A be an Artin algebra. We say that A is of Ωn-finiterepresentation type if Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A = kQJ2 ), and

Truncated path algebras (A = kQJk

for k ≥ 2).

Monomial algebras are of Ω2-finite representation type, but ingeneral not of Ω1-finite representation type.

Page 61: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Let A be an Artin algebra. We say that A is of Ωn-finiterepresentation type if Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A = kQJ2 ), and

Truncated path algebras (A = kQJk

for k ≥ 2).

Monomial algebras are of Ω2-finite representation type, but ingeneral not of Ω1-finite representation type.

Page 62: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Let A be an Artin algebra. We say that A is of Ωn-finiterepresentation type if Ωn(modA) is of finite representation type.

Examples of algebras of Ω1-finite representation type are:

Special biserial algebras,

Radical square zero algebras (A = kQJ2 ), and

Truncated path algebras (A = kQJk

for k ≥ 2).

Monomial algebras are of Ω2-finite representation type, but ingeneral not of Ω1-finite representation type.

Page 63: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider A = kQJ2 . If M ∈ modA, then Ω(M) is a semisimple

A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 , then φdim(A) ≤ φ(⊕S∈S(A)S) + 1 ≤ |Q0|.

The previous result can be generalizated to truncated pathalgebras as follows.

Theorem (Barrios, Mata, Rama)

If A = kQJk

, then φdim(A) ≤ fk(n) where

fk(m) =

0 if m = 0,2(m−1k

)+ 1 if m ≡ 1 (mod k),

2(m−2k

)+ 2 if m ≡ 2 (mod k),

2⌈m−2k

⌉+ 1 otherwise.

Page 64: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider A = kQJ2 . If M ∈ modA, then Ω(M) is a semisimple

A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 , then φdim(A) ≤ φ(⊕S∈S(A)S) + 1 ≤ |Q0|.

The previous result can be generalizated to truncated pathalgebras as follows.

Theorem (Barrios, Mata, Rama)

If A = kQJk

, then φdim(A) ≤ fk(n) where

fk(m) =

0 if m = 0,2(m−1k

)+ 1 if m ≡ 1 (mod k),

2(m−2k

)+ 2 if m ≡ 2 (mod k),

2⌈m−2k

⌉+ 1 otherwise.

Page 65: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider A = kQJ2 . If M ∈ modA, then Ω(M) is a semisimple

A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 , then φdim(A) ≤ φ(⊕S∈S(A)S) + 1 ≤ |Q0|.

The previous result can be generalizated to truncated pathalgebras as follows.

Theorem (Barrios, Mata, Rama)

If A = kQJk

, then φdim(A) ≤ fk(n) where

fk(m) =

0 if m = 0,2(m−1k

)+ 1 if m ≡ 1 (mod k),

2(m−2k

)+ 2 if m ≡ 2 (mod k),

2⌈m−2k

⌉+ 1 otherwise.

Page 66: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider A = kQJ2 . If M ∈ modA, then Ω(M) is a semisimple

A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 , then φdim(A) ≤ φ(⊕S∈S(A)S) + 1 ≤ |Q0|.

The previous result can be generalizated to truncated pathalgebras as follows.

Theorem (Barrios, Mata, Rama)

If A = kQJk

, then φdim(A) ≤ fk(n) where

fk(m) =

0 if m = 0,2(m−1k

)+ 1 if m ≡ 1 (mod k),

2(m−2k

)+ 2 if m ≡ 2 (mod k),

2⌈m−2k

⌉+ 1 otherwise.

Page 67: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider A = kQJ2 . If M ∈ modA, then Ω(M) is a semisimple

A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 , then φdim(A) ≤ φ(⊕S∈S(A)S) + 1 ≤ |Q0|.

The previous result can be generalizated to truncated pathalgebras as follows.

Theorem (Barrios, Mata, Rama)

If A = kQJk

, then φdim(A) ≤ fk(n) where

fk(m) =

0 if m = 0,2(m−1k

)+ 1 if m ≡ 1 (mod k),

2(m−2k

)+ 2 if m ≡ 2 (mod k),

2⌈m−2k

⌉+ 1 otherwise.

Page 68: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider A = kQJ2 . If M ∈ modA, then Ω(M) is a semisimple

A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 , then φdim(A) ≤ φ(⊕S∈S(A)S) + 1 ≤ |Q0|.

The previous result can be generalizated to truncated pathalgebras as follows.

Theorem (Barrios, Mata, Rama)

If A = kQJk

, then φdim(A) ≤ fk(n) where

fk(m) =

0 if m = 0,2(m−1k

)+ 1 if m ≡ 1 (mod k),

2(m−2k

)+ 2 if m ≡ 2 (mod k),

2⌈m−2k

⌉+ 1 otherwise.

Page 69: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider A = kQJ2 . If M ∈ modA, then Ω(M) is a semisimple

A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 , then φdim(A) ≤ φ(⊕S∈S(A)S) + 1 ≤ |Q0|.

The previous result can be generalizated to truncated pathalgebras as follows.

Theorem (Barrios, Mata, Rama)

If A = kQJk

, then φdim(A) ≤ fk(n) where

fk(m) =

0 if m = 0,2(m−1k

)+ 1 if m ≡ 1 (mod k),

2(m−2k

)+ 2 if m ≡ 2 (mod k),

2⌈m−2k

⌉+ 1 otherwise.

Page 70: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider A = kQJ2 . If M ∈ modA, then Ω(M) is a semisimple

A-module.

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 , then φdim(A) ≤ φ(⊕S∈S(A)S) + 1 ≤ |Q0|.

The previous result can be generalizated to truncated pathalgebras as follows.

Theorem (Barrios, Mata, Rama)

If A = kQJk

, then φdim(A) ≤ fk(n) where

fk(m) =

0 if m = 0,2(m−1k

)+ 1 if m ≡ 1 (mod k),

2(m−2k

)+ 2 if m ≡ 2 (mod k),

2⌈m−2k

⌉+ 1 otherwise.

Page 71: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

If A is a monomial algebra, then Ω2(M) is a direct sum of rightideals (Huisgen-Zimmermann). Hence:

Theorem (Lanzilotta, Mata)

If A = kQ/I is a monomial algebra, thenφdim(A) ≤ dimkA− |Q0|+ 2.

More in general.

Theorem (Lanzilotta, Mata)

If A is an Artin algebra of Ωn-finite representation type, thenφdim(A) <∞ and ψdim(A) <∞.

Page 72: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

If A is a monomial algebra, then Ω2(M) is a direct sum of rightideals (Huisgen-Zimmermann). Hence:

Theorem (Lanzilotta, Mata)

If A = kQ/I is a monomial algebra, thenφdim(A) ≤ dimkA− |Q0|+ 2.

More in general.

Theorem (Lanzilotta, Mata)

If A is an Artin algebra of Ωn-finite representation type, thenφdim(A) <∞ and ψdim(A) <∞.

Page 73: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

If A is a monomial algebra, then Ω2(M) is a direct sum of rightideals (Huisgen-Zimmermann). Hence:

Theorem (Lanzilotta, Mata)

If A = kQ/I is a monomial algebra, thenφdim(A) ≤ dimkA− |Q0|+ 2.

More in general.

Theorem (Lanzilotta, Mata)

If A is an Artin algebra of Ωn-finite representation type, thenφdim(A) <∞ and ψdim(A) <∞.

Page 74: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finiterepresentation type. We recall that:

an algebra A is selfinjective if P(A) = I(A).

an algebra A is m-Gorenstein if id(A) = id(Aop) = m.

The following is a very nice characterization of selfinjectivealgebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements areequivalent

A is selfinjective,

φdim(A) = 0,

ψdim(A) = 0.

Page 75: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finiterepresentation type. We recall that:

an algebra A is selfinjective if P(A) = I(A).

an algebra A is m-Gorenstein if id(A) = id(Aop) = m.

The following is a very nice characterization of selfinjectivealgebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements areequivalent

A is selfinjective,

φdim(A) = 0,

ψdim(A) = 0.

Page 76: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finiterepresentation type. We recall that:

an algebra A is selfinjective if P(A) = I(A).

an algebra A is m-Gorenstein if id(A) = id(Aop) = m.

The following is a very nice characterization of selfinjectivealgebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements areequivalent

A is selfinjective,

φdim(A) = 0,

ψdim(A) = 0.

Page 77: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finiterepresentation type. We recall that:

an algebra A is selfinjective if P(A) = I(A).

an algebra A is m-Gorenstein if id(A) = id(Aop) = m.

The following is a very nice characterization of selfinjectivealgebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements areequivalent

A is selfinjective,

φdim(A) = 0,

ψdim(A) = 0.

Page 78: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finiterepresentation type. We recall that:

an algebra A is selfinjective if P(A) = I(A).

an algebra A is m-Gorenstein if id(A) = id(Aop) = m.

The following is a very nice characterization of selfinjectivealgebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements areequivalent

A is selfinjective,

φdim(A) = 0,

ψdim(A) = 0.

Page 79: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finiterepresentation type. We recall that:

an algebra A is selfinjective if P(A) = I(A).

an algebra A is m-Gorenstein if id(A) = id(Aop) = m.

The following is a very nice characterization of selfinjectivealgebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements areequivalent

A is selfinjective,

φdim(A) = 0,

ψdim(A) = 0.

Page 80: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finiterepresentation type. We recall that:

an algebra A is selfinjective if P(A) = I(A).

an algebra A is m-Gorenstein if id(A) = id(Aop) = m.

The following is a very nice characterization of selfinjectivealgebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements areequivalent

A is selfinjective,

φdim(A) = 0,

ψdim(A) = 0.

Page 81: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now cosider algebras that are not nesseraly of Ωn-finiterepresentation type. We recall that:

an algebra A is selfinjective if P(A) = I(A).

an algebra A is m-Gorenstein if id(A) = id(Aop) = m.

The following is a very nice characterization of selfinjectivealgebras.

Theorem (Huard, Lanzilotta)

Let A be an Artin algebra. Then the following statements areequivalent

A is selfinjective,

φdim(A) = 0,

ψdim(A) = 0.

Page 82: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We define ⊥A = M ∈ modA : Exti (M,A) = 0, ∀i ≥ 1.

Theorem (Lanzilotta, Mata)

For any Artin algebra A, the Igusa-Todorov functions vanish over⊥A, that is,

φdim(⊥A) = ψdim(⊥A) = 0.

Page 83: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We define ⊥A = M ∈ modA : Exti (M,A) = 0, ∀i ≥ 1.

Theorem (Lanzilotta, Mata)

For any Artin algebra A, the Igusa-Todorov functions vanish over⊥A, that is,

φdim(⊥A) = ψdim(⊥A) = 0.

Page 84: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

As a consequence of the previous result, we obtain

Theorem (Lanzilotta, Mata)

For any Artin algebra A such that id(A) = n <∞, it follows that

findim(A) ≤ φdim(A) ≤ ψdim(A) ≤ n.

Theorem (Garcıa Elsener, Schiffler; Lanzilotta, Mata)

If A is a m-Gorenstein algebra, then

findim(A) = φdim(A) = ψdim(A) = m.

Page 85: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

As a consequence of the previous result, we obtain

Theorem (Lanzilotta, Mata)

For any Artin algebra A such that id(A) = n <∞, it follows that

findim(A) ≤ φdim(A) ≤ ψdim(A) ≤ n.

Theorem (Garcıa Elsener, Schiffler; Lanzilotta, Mata)

If A is a m-Gorenstein algebra, then

findim(A) = φdim(A) = ψdim(A) = m.

Page 86: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

As a consequence of the previous result, we obtain

Theorem (Lanzilotta, Mata)

For any Artin algebra A such that id(A) = n <∞, it follows that

findim(A) ≤ φdim(A) ≤ ψdim(A) ≤ n.

Theorem (Garcıa Elsener, Schiffler; Lanzilotta, Mata)

If A is a m-Gorenstein algebra, then

findim(A) = φdim(A) = ψdim(A) = m.

Page 87: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Algebra with infinite φ-dimension

Example (Barrios, Mata)

Let A = kQI be an algebra where Q and I are as follow

1

α1

""α1,,

β1

22

β1

<< 2

α2

α2

β2

β2

4

α4

BB

α4

LL

β4

RR

β4

\\

3

α3

bbα3

llβ3

rr

β3

||

I = 〈αiαi+1 − αi αi+1, βiβi+1 − βi βi+1, αiαi+1, αi αi+1,βiβi+1, βi βi+1, for i ∈ Z4, J

3〉.Then φdim(A) =∞

Page 88: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Algebra with infinite φ-dimension

Example (Barrios, Mata)

Let A = kQI be an algebra where Q and I are as follow

1

α1

""α1,,

β1

22

β1

<< 2

α2

α2

β2

β2

4

α4

BB

α4

LL

β4

RR

β4

\\

3

α3

bbα3

llβ3

rr

β3

||

I = 〈αiαi+1 − αi αi+1, βiβi+1 − βi βi+1, αiαi+1, αi αi+1,βiβi+1, βi βi+1, for i ∈ Z4, J

3〉.Then φdim(A) =∞

Page 89: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Algebra with infinite φ-dimension

Example (Barrios, Mata)

Let A = kQI be an algebra where Q and I are as follow

1

α1

""α1,,

β1

22

β1

<< 2

α2

α2

β2

β2

4

α4

BB

α4

LL

β4

RR

β4

\\

3

α3

bbα3

llβ3

rr

β3

||

I = 〈αiαi+1 − αi αi+1, βiβi+1 − βi βi+1, αiαi+1, αi αi+1,βiβi+1, βi βi+1, for i ∈ Z4, J

3〉.Then φdim(A) =∞

Page 90: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Algebra with infinite φ-dimension

Example (Barrios, Mata)

Let A = kQI be an algebra where Q and I are as follow

1

α1

""α1,,

β1

22

β1

<< 2

α2

α2

β2

β2

4

α4

BB

α4

LL

β4

RR

β4

\\

3

α3

bbα3

llβ3

rr

β3

||

I = 〈αiαi+1 − αi αi+1, βiβi+1 − βi βi+1, αiαi+1, αi αi+1,βiβi+1, βi βi+1, for i ∈ Z4, J

3〉.Then φdim(A) =∞

Page 91: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider M1n , M

1n ∈ indA, with n ∈ Z+, as follows

M1n M1

n

kn

i2

%%i3--

i1

11

i4

;;k3n+1

0

0

0

0

0

0

BB

0

LL

0

RR

0

\\

0

0

cc0

ll0

rr

0

kn

i4

%%i1--

i3

11

i2

;;k3n+1

0

0

0

0

0

0

BB

0

LL

0

RR

0

\\

0

0

cc0

ll0

rr

0

Page 92: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Consider M1n , M

1n ∈ indA, with n ∈ Z+, as follows

M1n M1

n

kn

i2

%%i3--

i1

11

i4

;;k3n+1

0

0

0

0

0

0

BB

0

LL

0

RR

0

\\

0

0

cc0

ll0

rr

0

kn

i4

%%i1--

i3

11

i2

;;k3n+1

0

0

0

0

0

0

BB

0

LL

0

RR

0

\\

0

0

cc0

ll0

rr

0

Page 93: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

with the maps im : kn → k3n+1, for m ∈ 1, 2, 3, 4, are defined by:

i1(ej) = fj ∀j ∈ 1, . . . n i2(ej) = fn+j ∀j ∈ 1, . . . ni3(ej) = fn+j+1 ∀j ∈ 1, . . . n i4(ej) = f2n+j+1 ∀j ∈ 1, . . . n

where e1, . . . , en and f1, . . . , f3n+1 are the canonical bases ofkn and k3n+1, respectively.

In an analogous way we define M2n ,M

3n ,M

4n and M2

n , M3n , M

4n .

Page 94: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

with the maps im : kn → k3n+1, for m ∈ 1, 2, 3, 4, are defined by:

i1(ej) = fj ∀j ∈ 1, . . . n i2(ej) = fn+j ∀j ∈ 1, . . . ni3(ej) = fn+j+1 ∀j ∈ 1, . . . n i4(ej) = f2n+j+1 ∀j ∈ 1, . . . n

where e1, . . . , en and f1, . . . , f3n+1 are the canonical bases ofkn and k3n+1, respectively.

In an analogous way we define M2n ,M

3n ,M

4n and M2

n , M3n , M

4n .

Page 95: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

with the maps im : kn → k3n+1, for m ∈ 1, 2, 3, 4, are defined by:

i1(ej) = fj ∀j ∈ 1, . . . n i2(ej) = fn+j ∀j ∈ 1, . . . ni3(ej) = fn+j+1 ∀j ∈ 1, . . . n i4(ej) = f2n+j+1 ∀j ∈ 1, . . . n

where e1, . . . , en and f1, . . . , f3n+1 are the canonical bases ofkn and k3n+1, respectively.

In an analogous way we define M2n ,M

3n ,M

4n and M2

n , M3n , M

4n .

Page 96: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Then, ∀i ∈ 1, 2, 3, 4, we have :

M in M i

n for n ≥ 2 and

M i1∼= M i

1.

We can compute the syzygies of the previous modules for n ≥ 2and i ∈ Z4.

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 ,

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 .

We have φ(M in ⊕ M i

n) = n − 1 for any n ≥ 2.Hence φdim(A) =∞.

Page 97: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Then, ∀i ∈ 1, 2, 3, 4, we have :

M in M i

n for n ≥ 2 and

M i1∼= M i

1.

We can compute the syzygies of the previous modules for n ≥ 2and i ∈ Z4.

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 ,

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 .

We have φ(M in ⊕ M i

n) = n − 1 for any n ≥ 2.Hence φdim(A) =∞.

Page 98: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Then, ∀i ∈ 1, 2, 3, 4, we have :

M in M i

n for n ≥ 2 and

M i1∼= M i

1.

We can compute the syzygies of the previous modules for n ≥ 2and i ∈ Z4.

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 ,

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 .

We have φ(M in ⊕ M i

n) = n − 1 for any n ≥ 2.Hence φdim(A) =∞.

Page 99: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Then, ∀i ∈ 1, 2, 3, 4, we have :

M in M i

n for n ≥ 2 and

M i1∼= M i

1.

We can compute the syzygies of the previous modules for n ≥ 2and i ∈ Z4.

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 ,

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 .

We have φ(M in ⊕ M i

n) = n − 1 for any n ≥ 2.Hence φdim(A) =∞.

Page 100: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Then, ∀i ∈ 1, 2, 3, 4, we have :

M in M i

n for n ≥ 2 and

M i1∼= M i

1.

We can compute the syzygies of the previous modules for n ≥ 2and i ∈ Z4.

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 ,

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 .

We have φ(M in ⊕ M i

n) = n − 1 for any n ≥ 2.Hence φdim(A) =∞.

Page 101: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Then, ∀i ∈ 1, 2, 3, 4, we have :

M in M i

n for n ≥ 2 and

M i1∼= M i

1.

We can compute the syzygies of the previous modules for n ≥ 2and i ∈ Z4.

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 ,

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 .

We have φ(M in ⊕ M i

n) = n − 1 for any n ≥ 2.Hence φdim(A) =∞.

Page 102: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Then, ∀i ∈ 1, 2, 3, 4, we have :

M in M i

n for n ≥ 2 and

M i1∼= M i

1.

We can compute the syzygies of the previous modules for n ≥ 2and i ∈ Z4.

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 ,

Ω(M in) = M i+1

n−1 ⊕ S7n+2i+2 .

We have φ(M in ⊕ M i

n) = n − 1 for any n ≥ 2.Hence φdim(A) =∞.

Page 103: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Another example of an algebra with infinite φ-dimension was givenby Hanson and Igusa, independently.

The examples are both radical cube zero algebras,so their finitisticdimensions are finite.

Page 104: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Another example of an algebra with infinite φ-dimension was givenby Hanson and Igusa, independently.

The examples are both radical cube zero algebras,so their finitisticdimensions are finite.

Page 105: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Another example of an algebra with infinite φ-dimension was givenby Hanson and Igusa, independently.

The examples are both radical cube zero algebras,so their finitisticdimensions are finite.

Page 106: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

For an artin algebra A, we know that gldim(A) = gldim(Aop)(Auslander).This motivates the following questions.

Question 1: φdim(A) = φdim(Aop) for every Artin algebra?

Question 2: ψdim(A) = ψdim(Aop) for every Artin algebra?

Page 107: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

For an artin algebra A, we know that gldim(A) = gldim(Aop)(Auslander).This motivates the following questions.

Question 1: φdim(A) = φdim(Aop) for every Artin algebra?

Question 2: ψdim(A) = ψdim(Aop) for every Artin algebra?

Page 108: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

For an artin algebra A, we know that gldim(A) = gldim(Aop)(Auslander).This motivates the following questions.

Question 1: φdim(A) = φdim(Aop) for every Artin algebra?

Question 2: ψdim(A) = ψdim(Aop) for every Artin algebra?

Page 109: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

For an artin algebra A, we know that gldim(A) = gldim(Aop)(Auslander).This motivates the following questions.

Question 1: φdim(A) = φdim(Aop) for every Artin algebra?

Question 2: ψdim(A) = ψdim(Aop) for every Artin algebra?

Page 110: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

For an artin algebra A, we know that gldim(A) = gldim(Aop)(Auslander).This motivates the following questions.

Question 1: φdim(A) = φdim(Aop) for every Artin algebra?

Question 2: ψdim(A) = ψdim(Aop) for every Artin algebra?

Page 111: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

For Question 1 we have the following results

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 is a radical square zero algebra, then

φdim(A) = φdim(Aop).

Theorem (Barrios, Mata, Rama)

If A = kQJk

is a truncated path algebra, then

φdim(A) = φdim(Aop).

Page 112: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

For Question 1 we have the following results

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 is a radical square zero algebra, then

φdim(A) = φdim(Aop).

Theorem (Barrios, Mata, Rama)

If A = kQJk

is a truncated path algebra, then

φdim(A) = φdim(Aop).

Page 113: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

For Question 1 we have the following results

Theorem (Lanzilotta, Marcos, Mata)

If A = kQJ2 is a radical square zero algebra, then

φdim(A) = φdim(Aop).

Theorem (Barrios, Mata, Rama)

If A = kQJk

is a truncated path algebra, then

φdim(A) = φdim(Aop).

Page 114: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Since the notion of m-Gorenstein is symmetric (A is m-Gorensteinif and only if Aop is m-Gorenstein ), then

Corollary

If A is Gorenstein, then

φdim(A) = ψdim(A) = ψdim(Aop) = φdim(Aop)

Page 115: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Since the notion of m-Gorenstein is symmetric (A is m-Gorensteinif and only if Aop is m-Gorenstein ), then

Corollary

If A is Gorenstein, then

φdim(A) = ψdim(A) = ψdim(Aop) = φdim(Aop)

Page 116: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Example of an algebra A such that ψdim(A) 6= ψdim(Aop)

Example

If A = kQJ2 is a radical square zero algebra, with Q as follows

1 // 2 // 3 // . . . // nyy

Then ψdim(A) = φdim(A) = n − 1 and ψdim(Aop) = 2n − 3.

Page 117: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Example of an algebra A such that ψdim(A) 6= ψdim(Aop)

Example

If A = kQJ2 is a radical square zero algebra, with Q as follows

1 // 2 // 3 // . . . // nyy

Then ψdim(A) = φdim(A) = n − 1 and ψdim(Aop) = 2n − 3.

Page 118: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Example of an algebra A such that ψdim(A) 6= ψdim(Aop)

Example

If A = kQJ2 is a radical square zero algebra, with Q as follows

1 // 2 // 3 // . . . // nyy

Then ψdim(A) = φdim(A) = n − 1 and ψdim(Aop) = 2n − 3.

Page 119: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following theorem is very useful to bound the projectivedimension of modules.It is used by several authors to prove thefinitistic dimenension conjecture in several cases.

Theorem (Igusa, Todorov)

Suppose that 0 // M1// M2

// M3// 0 is a short

exact sequence of f.g. A-modules and M3 has finite projectivedimension. Then pd(M3) ≤ ψ(M1 ⊕M2) + 1.

Page 120: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following theorem is very useful to bound the projectivedimension of modules.It is used by several authors to prove thefinitistic dimenension conjecture in several cases.

Theorem (Igusa, Todorov)

Suppose that 0 // M1// M2

// M3// 0 is a short

exact sequence of f.g. A-modules and M3 has finite projectivedimension. Then pd(M3) ≤ ψ(M1 ⊕M2) + 1.

Page 121: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following theorem is very useful to bound the projectivedimension of modules.It is used by several authors to prove thefinitistic dimenension conjecture in several cases.

Theorem (Igusa, Todorov)

Suppose that 0 // M1// M2

// M3// 0 is a short

exact sequence of f.g. A-modules and M3 has finite projectivedimension. Then pd(M3) ≤ ψ(M1 ⊕M2) + 1.

Page 122: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The next two results of Igusa and Todorov use the above theorem.

Corollary (Igusa, Todorov)

Suppose that A is an Artin algebra with J3 = 0, then

findim(A) ≤ ψ(A/J ⊕ A/J2) + 2.

Corollary (Igusa, Todorov)

If repdim(A) ≤ 3 then findim(A) <∞.

Page 123: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The next two results of Igusa and Todorov use the above theorem.

Corollary (Igusa, Todorov)

Suppose that A is an Artin algebra with J3 = 0, then

findim(A) ≤ ψ(A/J ⊕ A/J2) + 2.

Corollary (Igusa, Todorov)

If repdim(A) ≤ 3 then findim(A) <∞.

Page 124: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The next two results of Igusa and Todorov use the above theorem.

Corollary (Igusa, Todorov)

Suppose that A is an Artin algebra with J3 = 0, then

findim(A) ≤ ψ(A/J ⊕ A/J2) + 2.

Corollary (Igusa, Todorov)

If repdim(A) ≤ 3 then findim(A) <∞.

Page 125: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following two results also use the previous theorem.

Theorem (Xu)

Let A be a finite dimensional algebra given by a quiver withrelations. Suppose that I is a nilpotent ideal of A such that IJ = 0and A/I is a monomial algebra. Then findim(A) <∞.

Theorem (Wang)

Suppose A is a left artinian ring with J2l+1 = 0 and AJ l

is of finiterepresentation type. Then findim(A) <∞.

Page 126: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following two results also use the previous theorem.

Theorem (Xu)

Let A be a finite dimensional algebra given by a quiver withrelations. Suppose that I is a nilpotent ideal of A such that IJ = 0and A/I is a monomial algebra. Then findim(A) <∞.

Theorem (Wang)

Suppose A is a left artinian ring with J2l+1 = 0 and AJ l

is of finiterepresentation type. Then findim(A) <∞.

Page 127: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following two results also use the previous theorem.

Theorem (Xu)

Let A be a finite dimensional algebra given by a quiver withrelations. Suppose that I is a nilpotent ideal of A such that IJ = 0and A/I is a monomial algebra. Then findim(A) <∞.

Theorem (Wang)

Suppose A is a left artinian ring with J2l+1 = 0 and AJ l

is of finiterepresentation type. Then findim(A) <∞.

Page 128: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following two results also use the previous theorem.

Theorem (Xu)

Let A be a finite dimensional algebra given by a quiver withrelations. Suppose that I is a nilpotent ideal of A such that IJ = 0and A/I is a monomial algebra. Then findim(A) <∞.

Theorem (Wang)

Suppose A is a left artinian ring with J2l+1 = 0 and AJ l

is of finiterepresentation type. Then findim(A) <∞.

Page 129: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following two results also use the previous theorem.

Theorem (Xu)

Let A be a finite dimensional algebra given by a quiver withrelations. Suppose that I is a nilpotent ideal of A such that IJ = 0and A/I is a monomial algebra. Then findim(A) <∞.

Theorem (Wang)

Suppose A is a left artinian ring with J2l+1 = 0 and AJ l

is of finiterepresentation type. Then findim(A) <∞.

Page 130: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now introduce the notion of Igusa-Todorov algebra.

Definition (Wei)

Let A be an Artin algebra and n ∈ N. Then A is said to be(n)-Igusa-Todorov if there exists an A-module V such that forany A-module M there is an exact sequence

δ : 0 // V1// V2

// Ωn(M) // 0

with V0,V1 ∈ addV .V is called a Igusa-Todorov module.

Page 131: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now introduce the notion of Igusa-Todorov algebra.

Definition (Wei)

Let A be an Artin algebra and n ∈ N. Then A is said to be(n)-Igusa-Todorov if there exists an A-module V such that forany A-module M there is an exact sequence

δ : 0 // V1// V2

// Ωn(M) // 0

with V0,V1 ∈ addV .V is called a Igusa-Todorov module.

Page 132: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We now introduce the notion of Igusa-Todorov algebra.

Definition (Wei)

Let A be an Artin algebra and n ∈ N. Then A is said to be(n)-Igusa-Todorov if there exists an A-module V such that forany A-module M there is an exact sequence

δ : 0 // V1// V2

// Ωn(M) // 0

with V0,V1 ∈ addV .V is called a Igusa-Todorov module.

Page 133: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following result also uses Igusa-Todorov’s theorem.

Theorem (Wei)

If A is an Igusa-Todorov algebra, then findim(A) <∞.

Examples of Igusa-Todorov algebras

Every algebra A with repdim(A) ≤ 3 is 0-Igusa-Todorov.

Truncated path algebras are 1-Igusa-Todorov.

Monomial algebras are 2-Igusa-Todorov.

Ωn-finite representation type algebras are Igusa-Todorov.

Page 134: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following result also uses Igusa-Todorov’s theorem.

Theorem (Wei)

If A is an Igusa-Todorov algebra, then findim(A) <∞.

Examples of Igusa-Todorov algebras

Every algebra A with repdim(A) ≤ 3 is 0-Igusa-Todorov.

Truncated path algebras are 1-Igusa-Todorov.

Monomial algebras are 2-Igusa-Todorov.

Ωn-finite representation type algebras are Igusa-Todorov.

Page 135: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following result also uses Igusa-Todorov’s theorem.

Theorem (Wei)

If A is an Igusa-Todorov algebra, then findim(A) <∞.

Examples of Igusa-Todorov algebras

Every algebra A with repdim(A) ≤ 3 is 0-Igusa-Todorov.

Truncated path algebras are 1-Igusa-Todorov.

Monomial algebras are 2-Igusa-Todorov.

Ωn-finite representation type algebras are Igusa-Todorov.

Page 136: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following result also uses Igusa-Todorov’s theorem.

Theorem (Wei)

If A is an Igusa-Todorov algebra, then findim(A) <∞.

Examples of Igusa-Todorov algebras

Every algebra A with repdim(A) ≤ 3 is 0-Igusa-Todorov.

Truncated path algebras are 1-Igusa-Todorov.

Monomial algebras are 2-Igusa-Todorov.

Ωn-finite representation type algebras are Igusa-Todorov.

Page 137: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following result also uses Igusa-Todorov’s theorem.

Theorem (Wei)

If A is an Igusa-Todorov algebra, then findim(A) <∞.

Examples of Igusa-Todorov algebras

Every algebra A with repdim(A) ≤ 3 is 0-Igusa-Todorov.

Truncated path algebras are 1-Igusa-Todorov.

Monomial algebras are 2-Igusa-Todorov.

Ωn-finite representation type algebras are Igusa-Todorov.

Page 138: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following result also uses Igusa-Todorov’s theorem.

Theorem (Wei)

If A is an Igusa-Todorov algebra, then findim(A) <∞.

Examples of Igusa-Todorov algebras

Every algebra A with repdim(A) ≤ 3 is 0-Igusa-Todorov.

Truncated path algebras are 1-Igusa-Todorov.

Monomial algebras are 2-Igusa-Todorov.

Ωn-finite representation type algebras are Igusa-Todorov.

Page 139: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

The following result also uses Igusa-Todorov’s theorem.

Theorem (Wei)

If A is an Igusa-Todorov algebra, then findim(A) <∞.

Examples of Igusa-Todorov algebras

Every algebra A with repdim(A) ≤ 3 is 0-Igusa-Todorov.

Truncated path algebras are 1-Igusa-Todorov.

Monomial algebras are 2-Igusa-Todorov.

Ωn-finite representation type algebras are Igusa-Todorov.

Page 140: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Question: Are all Artin algebras Igusa-Todorov?

Let Λ(V ) be the exterior algebra of a vector space V over a field k.

Proposition (Rouquier, Conde)

If k is an uncountable field, Λ(km) is not Igusa-Todorov for m ≥ 3.

Page 141: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Question: Are all Artin algebras Igusa-Todorov?

Let Λ(V ) be the exterior algebra of a vector space V over a field k.

Proposition (Rouquier, Conde)

If k is an uncountable field, Λ(km) is not Igusa-Todorov for m ≥ 3.

Page 142: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Question: Are all Artin algebras Igusa-Todorov?

Let Λ(V ) be the exterior algebra of a vector space V over a field k.

Proposition (Rouquier, Conde)

If k is an uncountable field, Λ(km) is not Igusa-Todorov for m ≥ 3.

Page 143: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Given an Artin algebra A we say that a value t ∈ N, witht ≤ φdim(A), is admissible for A if there exists M ∈ modA suchthat φ(M) = t. If t ≤ φdim(A) is not admissible for A, we saythat there is a gap at t for A.

Theorem (Barrios, Mata, Rama)

Let A be a finite dimensional algebra. If φdim(A) > 0, then 1 ∈ Nis an admissible value for A. If also φdim(A) is finite, thenφdim(A)− 1 ∈ N is an admissible value for A.

remark

If 0 < φdim(A) ≤ 3,then there are no gaps for A.

Page 144: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Given an Artin algebra A we say that a value t ∈ N, witht ≤ φdim(A), is admissible for A if there exists M ∈ modA suchthat φ(M) = t. If t ≤ φdim(A) is not admissible for A, we saythat there is a gap at t for A.

Theorem (Barrios, Mata, Rama)

Let A be a finite dimensional algebra. If φdim(A) > 0, then 1 ∈ Nis an admissible value for A. If also φdim(A) is finite, thenφdim(A)− 1 ∈ N is an admissible value for A.

remark

If 0 < φdim(A) ≤ 3,then there are no gaps for A.

Page 145: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Given an Artin algebra A we say that a value t ∈ N, witht ≤ φdim(A), is admissible for A if there exists M ∈ modA suchthat φ(M) = t. If t ≤ φdim(A) is not admissible for A, we saythat there is a gap at t for A.

Theorem (Barrios, Mata, Rama)

Let A be a finite dimensional algebra. If φdim(A) > 0, then 1 ∈ Nis an admissible value for A. If also φdim(A) is finite, thenφdim(A)− 1 ∈ N is an admissible value for A.

remark

If 0 < φdim(A) ≤ 3,then there are no gaps for A.

Page 146: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Given an Artin algebra A we say that a value t ∈ N, witht ≤ φdim(A), is admissible for A if there exists M ∈ modA suchthat φ(M) = t. If t ≤ φdim(A) is not admissible for A, we saythat there is a gap at t for A.

Theorem (Barrios, Mata, Rama)

Let A be a finite dimensional algebra. If φdim(A) > 0, then 1 ∈ Nis an admissible value for A. If also φdim(A) is finite, thenφdim(A)− 1 ∈ N is an admissible value for A.

remark

If 0 < φdim(A) ≤ 3,then there are no gaps for A.

Page 147: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Given an Artin algebra A we say that a value t ∈ N, witht ≤ φdim(A), is admissible for A if there exists M ∈ modA suchthat φ(M) = t. If t ≤ φdim(A) is not admissible for A, we saythat there is a gap at t for A.

Theorem (Barrios, Mata, Rama)

Let A be a finite dimensional algebra. If φdim(A) > 0, then 1 ∈ Nis an admissible value for A. If also φdim(A) is finite, thenφdim(A)− 1 ∈ N is an admissible value for A.

remark

If 0 < φdim(A) ≤ 3,then there are no gaps for A.

Page 148: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Example of an Algebra with a gap

Example (Barrios-Mata)

Let A = kQJ2 , where Q is the following quiver:

1

1′

2

0

OO

2′

0′

OO

2′′

3

@@

3′

??^^

3′′.

``

Page 149: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Example of an Algebra with a gap

Example (Barrios-Mata)

Let A = kQJ2 , where Q is the following quiver:

1

1′

2

0

OO

2′

0′

OO

2′′

3

@@

3′

??^^

3′′.

``

Page 150: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Example of an Algebra with a gap

Example (Barrios-Mata)

Let A = kQJ2 , where Q is the following quiver:

1

1′

2

0

OO

2′

0′

OO

2′′

3

@@

3′

??^^

3′′.

``

Page 151: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We have:

φ(S3 ⊕ P3′S0

) = 1, φ(S1 ⊕ S1′) = 3, φ(S0 ⊕ S0′) = 4,

φ(S3 ⊕ S3′′) = 5, φ(⊕S∈S(A)Si ) = 6,

φdim(A) = φ(⊕S∈S(A)S) + 1 = 7,

However there is no A-module M with φ(M) = 2.

Page 152: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We have:

φ(S3 ⊕ P3′S0

) = 1, φ(S1 ⊕ S1′) = 3, φ(S0 ⊕ S0′) = 4,

φ(S3 ⊕ S3′′) = 5, φ(⊕S∈S(A)Si ) = 6,

φdim(A) = φ(⊕S∈S(A)S) + 1 = 7,

However there is no A-module M with φ(M) = 2.

Page 153: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We have:

φ(S3 ⊕ P3′S0

) = 1, φ(S1 ⊕ S1′) = 3, φ(S0 ⊕ S0′) = 4,

φ(S3 ⊕ S3′′) = 5, φ(⊕S∈S(A)Si ) = 6,

φdim(A) = φ(⊕S∈S(A)S) + 1 = 7,

However there is no A-module M with φ(M) = 2.

Page 154: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We have:

φ(S3 ⊕ P3′S0

) = 1, φ(S1 ⊕ S1′) = 3, φ(S0 ⊕ S0′) = 4,

φ(S3 ⊕ S3′′) = 5, φ(⊕S∈S(A)Si ) = 6,

φdim(A) = φ(⊕S∈S(A)S) + 1 = 7,

However there is no A-module M with φ(M) = 2.

Page 155: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We have:

φ(S3 ⊕ P3′S0

) = 1, φ(S1 ⊕ S1′) = 3, φ(S0 ⊕ S0′) = 4,

φ(S3 ⊕ S3′′) = 5, φ(⊕S∈S(A)Si ) = 6,

φdim(A) = φ(⊕S∈S(A)S) + 1 = 7,

However there is no A-module M with φ(M) = 2.

Page 156: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We have:

φ(S3 ⊕ P3′S0

) = 1, φ(S1 ⊕ S1′) = 3, φ(S0 ⊕ S0′) = 4,

φ(S3 ⊕ S3′′) = 5, φ(⊕S∈S(A)Si ) = 6,

φdim(A) = φ(⊕S∈S(A)S) + 1 = 7,

However there is no A-module M with φ(M) = 2.

Page 157: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We have:

φ(S3 ⊕ P3′S0

) = 1, φ(S1 ⊕ S1′) = 3, φ(S0 ⊕ S0′) = 4,

φ(S3 ⊕ S3′′) = 5, φ(⊕S∈S(A)Si ) = 6,

φdim(A) = φ(⊕S∈S(A)S) + 1 = 7,

However there is no A-module M with φ(M) = 2.

Page 158: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

We have:

φ(S3 ⊕ P3′S0

) = 1, φ(S1 ⊕ S1′) = 3, φ(S0 ⊕ S0′) = 4,

φ(S3 ⊕ S3′′) = 5, φ(⊕S∈S(A)Si ) = 6,

φdim(A) = φ(⊕S∈S(A)S) + 1 = 7,

However there is no A-module M with φ(M) = 2.

Page 159: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Theorem

If A is a finite dimensional algebra with a gap t,then

findim(A) < t < φdim(A).

Hence the finitistic fimension conjecture holds for A.

Page 160: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Theorem

If A is a finite dimensional algebra with a gap t,then

findim(A) < t < φdim(A).

Hence the finitistic fimension conjecture holds for A.

Page 161: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

Theorem

If A is a finite dimensional algebra with a gap t,then

findim(A) < t < φdim(A).

Hence the finitistic fimension conjecture holds for A.

Page 162: Topics on the Igusa-Todorov functions

Igusa-Todorov functions φ-dimension and ψ-dimension Finitistic dimension conjecture

¡Gracias!Obrigado!

Thank you!