Tomography and holotomography - Northwestern University

62
Tomography and holotomography School on X-ray micro and nanoprobes P. Cloetens ESRF, Grenoble, France [email protected] June 13, 2007

Transcript of Tomography and holotomography - Northwestern University

Page 1: Tomography and holotomography - Northwestern University

Tomography and holotomographySchool on X-ray micro and nanoprobes

P. Cloetens

ESRF, Grenoble, [email protected]

June 13, 2007

Page 2: Tomography and holotomography - Northwestern University

3D vs 2D Imaging

JJ Blandin, L SalvoConditions : ex situ, E=18 keV abs, 2 µm

Cavitation inducedby superplastic deformation

a single pore in 3D100 µm

Page 3: Tomography and holotomography - Northwestern University

3D vs 2D Imaging

0

2000

4000

6000

8000

10000

12000

0.5 1 1.5 2

ε

NV (mm-3)

10-4 s-1

Volume

NV

JJ Blandin, L SalvoConditions : ex situ, E=18 keV abs, 2 µm

Cavitation inducedby superplastic deformation

0

200

400

600

800

0.8 1 1.2 1.4 1.6 1.8

ε

n A (m

m-2

)

NA

Surface

3D observations needed

Page 4: Tomography and holotomography - Northwestern University

Outline (Synchrotron based) Tomography

‘Incoherent’ approachesHigh spatial resolutionIn-situ TomographyHigh temporal resolution (Real-time)Edge CTContrast agents

Coherent approachesEdge enhancementHolotomography

Page 5: Tomography and holotomography - Northwestern University

Tomography configurations

0D detector

source

1st generationscanner

transl

rot

1 datapoint

2 translations+ 1 rotation

1D detector

source

fan-beamscanner

rot

103 datapoints

1 translation+ 1 rotation

source

cone-beamscanner

2D detector

rot

106 datapoints

1 rotation

G. Peix (INSA-Lyon)

Page 6: Tomography and holotomography - Northwestern University

Synchrotron based µCT

source

Parallel beam case .....the whole object

is imaged, slice by slice

New parameters:distance: holotomography, 3DXRDenergy: edge CT, XANES

G Peix, INSA Lyon

Page 7: Tomography and holotomography - Northwestern University

Experimental setups

Parallel beam:Absorption TomographyPhase Contrast TomographyResolution limited by detector

500 nm best detector

Coherent X-ray beam

sample

Focused beam:Projection MicroscopyFluorescence mappingResolution limited by focus

Page 8: Tomography and holotomography - Northwestern University

3D Imaging from projections

X r

ays

θx

y

n

Px’)θ,(

x’

S)θ,ω(

ω

θ

ω

u

v

g(x,y) G(u,v)

FT-1D

FT-2D

Object: (Fourier transform of

the object)

Projection:

RealSpace

FourierSpace

Fourier-Slice-Theorem

ln I0(x ')I(x ')

= µ(x,y)ds∫e.g. absorption

Page 9: Tomography and holotomography - Northwestern University

Hard X-ray Tomography

N =max. sample thickness

resolution element

AbsorptionDepth of focusMultiple scattering

OpticsInteraction strengthPhoton statistics

3D Imaging from projections

Large N is possible

Page 10: Tomography and holotomography - Northwestern University

Depth of focus

N =depth of focus

Rayleigh resolution=

λNA2

0.61 λNA

=1

0.61NA=

resolution0.612λ

NA << 1λ << resolution

Hard X-rays particularly adapted to 3D microscopy

Page 11: Tomography and holotomography - Northwestern University

Depth of focus

1

10

100

1000

104

0.1 1 10 100

50 nm25 nm10 nm

N

Energy (keV)

Waterwindow

HardX-rays

e.g. 50 nm resolution at end water window: N = 60 7 keV : N = 750

Page 12: Tomography and holotomography - Northwestern University

Photonic Noise

NPhot∝ DΔx

4 exp(µD)

[µD(σ /µ)]2

Noise is function of the number of photons NPhot

(Flannery, 87)

⇒ high resolution with a high SNR :either long integration time or high photon flux

σ/µ : NSR, Δx : spatial resolution, D: sample diameter

⇒ with D constant : if Δx ↓ then NPhot ↑ as (1/Δx)4

D

µ

Page 13: Tomography and holotomography - Northwestern University

Optimal Energy• It has been shown that the SNR is optimized if

µ D ~ 2 (Flannery, 87)µ D ~ 2.22 (Graef & Engelke, 91)

D : sample diameter, µ : linear attenuation (assumes anhomogeneous sample)

• µ D ~ 2.2 ⇔ log (I0/I) ~ 2.2 ⇔ Transmission = I / I0 ~ 11% optimizes the dynamic range of the projection

• In practice, typically 20% of transmission

Page 14: Tomography and holotomography - Northwestern University

Parallel Beam Imaging

translationstage

rotationstage

ESRFcamera

Source: ID19: 1 wiggler, 2 undulators distance to source: 145 m (coherence)

Monochromator:double Si crystal (Δλ/λ=10-4)or multilayer (Δλ/λ=10-2)

Sample stagerotation stage (tomography)sample environment

Detectorpixel size: 0.28 µm - 40 µm14 bits CCD, FFM and FTM

Scan time10242 * 900 proj.

~5 minutes, 2GB20482 * 1500 proj.

~15 minutes, 12 GB

X-rays

Page 15: Tomography and holotomography - Northwestern University

CCD based detectors

CCD

lightoptics

scintillator

Resolutions down to 5 µmThin powder converter screens (e.g. GADOX)

Resolutions better than 5 µmTransparant crystals (e.g. YAG:Ce, LAG:Eu )with microscope objective

optics

CCD

scintillator

α X-rays

Pb-glass

mirror

(A. Koch, J. Borrel)

X-ray → visible light conversion(De)magnification onto CCD

using light optics or fibre optics

Page 16: Tomography and holotomography - Northwestern University

Converter screens: resolution - efficiency

0.001

0.01

0.1

1

10 100

Gadox 5 µm

Gadox 10 µm

YAG 5 µm

YAG 25 µm

LAG 5 µm

LAG 25 µm

abso

rbed

ene

rgy

frac

tion

Energy (keV)

0.001

0.01

0.1

1

10 100

Gadox 5 µm

Gadox 10 µm

YAG 5 µm

YAG 25 µm

LAG 5 µm

LAG 25 µm

abso

rbed

ene

rgy

frac

tion

Energy (keV)

Absorbed fraction

•25 µm thick scintillator - 2 µm resolution - up to 40 keV•5 µm thick scintillator - 1 µm resolution - up to 20 keV•1 µm thick scintillator - 0.5 µm resolution @ 11 keV

New screens: GGG, LSO (Scintax EU project)Move to UV for higher resolution and efficiency?

•YAG:Ce (Y3Al5O12)

•LAG:Eu,Tb (Lu3Al5O12)

•GGG:Eu (Gd3Ga5O12)

•LSO Eu,Tb,Sm (Lu2SiO5)

Page 17: Tomography and holotomography - Northwestern University

Rhinoceros molar : 250 Rhinoceros molar : 250 µµmm

Tafforeau, P., Bentaleb, I., Jaeger, J.-J. and Martin, C., Palaeogeography PalaeoclimatologyPalaeoecology. 246: 206-227 (2007)

See also: T. Smith, P. Tafforeau et al, PNAS (2007)

Page 18: Tomography and holotomography - Northwestern University

Rhinoceros molar : 10 Rhinoceros molar : 10 µµmm

Page 19: Tomography and holotomography - Northwestern University

Rhinoceros molar : 1.4 Rhinoceros molar : 1.4 µµmm

Page 20: Tomography and holotomography - Northwestern University

Rhinoceros molar : 0.28 Rhinoceros molar : 0.28 µµmm

Tafforeau, P., Bentaleb, I., Jaeger, J.-J. and Martin, C., Palaeogeography PalaeoclimatologyPalaeoecology. 246: 206-227 (2007)

See also: T. Smith, P. Tafforeau et al, PNAS (2007)

enamel laminations and mineralization in rhinoceros enamel

Page 21: Tomography and holotomography - Northwestern University

In-situ TomographyFollow 3D structure and composition as function of

time (fast tomography)temperature (furnace, cryostat)strain (tensile stage)...

Real-time Tomographyscan time << evolution timeHigh Energy Beamline ID15

Sequential Tomographyinterrupt evolution between successive scans

Page 22: Tomography and holotomography - Northwestern University

In-situ CT: Damage in Composites

L. Babout, E MaireConditions : in situ, E=30 keV abs/phase, 2 µm

E. I.xy

z

E. I.xy

z

Ep=0,022xy

z

Ep=0,030xy

z

Ep=0,052xy

z

Ep=0,088xy

z

<Ep>=0.126xy

z

Ep

0,1 0,125 0,15

trac

tio

nExample: hard matrixAl2124(T6) + 4%ZrO2SiO2

Failure due tocoalescence of cracksand local configuration

A

C

B

Preferred damage initiation: particle rupture in mode I

Page 23: Tomography and holotomography - Northwestern University

Fast Tomography: Liquid Foams

J Lambert, I Cantat, R Delannay, R Mokso, P Cloetens, J Glazier, F Graner, PRL, in press

Coarsening: pressure driven growth or disappearance of bubbles

3D Growth LawDoes the ‘scaling state’ exist in 3D?

2 minutes/scan (2GB data)

Page 24: Tomography and holotomography - Northwestern University

Liquid Foams: the scaling state

R. Mokso et al

2048 pixels Plateau borders

Volumes: 2048x2048x1024Acquisition times: 25s (400 proj.) - 54s (900 proj.)

Page 25: Tomography and holotomography - Northwestern University

Liquid Foams: the scaling state

First experimental evidence of a scaling state in 3DR Mokso, J Lambert, I Cantat, P Cloetens, R Delannay, J Glazier, F Graner

First evidence by Potts model simulations:G Thomas, R de Almeida, F Graner

Normalized average bubble volumeas a function of the number of faces

Young fast bubbling foamf

Aged shaving foamf

Page 26: Tomography and holotomography - Northwestern University

Edge CT: Insect Anatomy

O. Betz (Zoologisches Institut Tuebingen), U. Wegst (MPI Stuttgart), D. Weide et al, sub. JEB

Zinc distributionin mandibles of grass hoppersBi-energy at Zn K-edge

(9.625 9.700 keV)

Zn

500 µmZn concentrationg/cm3

Dual energy Tomography

Page 27: Tomography and holotomography - Northwestern University

Insect Anatomy: edge CTZinc distributionin mandibles of grass hoppersDual energy at Zn K-edge

Page 28: Tomography and holotomography - Northwestern University

Cortical brain imaging

F. Plouraboue, L. Risser (GEMP, Toulouse), P. Cloetens, C. Fonta, A. Steyer

Cortical brain imaging:Characterisation vascular network Contrast agent

=Barium Sulfate“vascular structure of the cortex’s grey matter

over its entire thickness, on the micrometre scale”

200 µm E = 20 keV

Page 29: Tomography and holotomography - Northwestern University

Cortical brain imagingContrast agent

=Barium Sulfate

Color map of local thickness

morphometric information vascular networkphysiological and pathological angiogenesisvascularisation around a tumor

2k camera, 1200 viewsTypical Volume:1500 x 1500 x1500 voxels

F Plouraboué, P Cloetens, C Fonta, A Steyer, F Lauwers and JP Marc-Vergnes, J. Microscopy, 215 (2004)

Page 30: Tomography and holotomography - Northwestern University

Cortical brain imaging: analysisVoronoi type graph Fractal analysis

Normal vascular network

Tumorous vascular network

Increase in the scale at which thetransition fractal to homogeneous occurs

Associates a region to eachperforating vessel

Box-counting Sand-box

L Risser, F Plouraboué, A Steyer, P Cloetens, G Le Duc, C Fonta,J. of Cerebral Blood Flow & Metabolism 27, 293-303 (2007)

Page 31: Tomography and holotomography - Northwestern University

Phase Contrast vs Absorption

Absorption

Sample Sample

Phase

Simple transmission

• Dream 2: Improve the Sensitivity Absorption contrast too low high spatial resolution

light materialssimilar attenuation

• Dream 1: Zero DoseIncrease the energyAbsorption contrast ↓ replaced by phase contrast

Page 32: Tomography and holotomography - Northwestern University

Absorption and Phase

0.1

1

10

100

1000

0.1 1 10 100

110100

δ/β

Energy (keV)

Wavelength (Å)

Soft X-rays(water window) Hard X-rays

Carbon

water vs fat

β = (λ /4π).µ ⇔ amplitude

δ ∝ electron density ⇔ phase

B(x,y) =2πλ

β(x,y,z)dz∫

ϕ (x, y) = − 2πλ

δ(x, y, z)dz∫

• Weak interaction with matter• Refractive index n (X-rays):

δ >> β10-6 10-9

n = 1 - δ + i β

with T = e-B.eiϕ

Exit wave gives directlyprojections of the the object

Page 33: Tomography and holotomography - Northwestern University

inner layerpolystyrenethickness 30 µm

outer layerparylenethickness 15 µm

850 µm

Absorption

D = 0.03 mλ = 0.7 Å

200 µm

Propagation

D = 19 cm

Polymer sphere with two layers

D = 83 cm

Propagation

Absorption vs Phase

Page 34: Tomography and holotomography - Northwestern University

Phase Sensitive Techniques

Phase Retardation

sΔ−=Δ .2

δλπ

ϕΔs

Deflection⇔

Phase gradientsΔα ~ µrad

x∂

∂−=Δ

ϕπλ

α2

At zero distance:Intensity ( )∫−== zIuI dexp.inc

2

00 µ

⇒ all phase information is lost

Page 35: Tomography and holotomography - Northwestern University

Phase Contrast Imaging methodsAnalyzer-based PCI

Grating-based PCI

Propagation-based PCI

Medical Imaging

wavefront sensorCh David, F Pfeiffer, SLST Weitkamp, ANKA

Edge enhancementHolotomography

Page 36: Tomography and holotomography - Northwestern University

Fresnel diffraction

• In principle: complete object contributes to a point of the image In practice: only finite region: first Fresnel zone

radius

• First Fresnel zone determines the sensed lengthscale Distance to be most sensitive to object with size a:

For example at λ = 0.5Å (25 keV)

D

u0(x,y) uD(x,y)

Dr λ=F

a = 1 µm ⇒ D = 10 mma = 40 µm ⇒ D = 16 m

λ2

2aD =

Page 37: Tomography and holotomography - Northwestern University

Spatial Coherence

Hard X-ray / neutron sources are ~ incoherent

Wave is partially coherent when the source is small and far

Transverse coherence length

Illuminated Vill can be much larger than coherent Vcoh

source object detector

s αblurring= z2.α= z2/z1.s

z1 z2

s

zl

2

.

21

coh

λαλ

==

Laboratory: lcoh < 1 µm

ESRF, ID19: s = 25 µm, z1 = 145 mα < 0.2 µrad lcoh ~ 250 µm

Page 38: Tomography and holotomography - Northwestern University

edge detection versus holography (Fresnel diffraction)

each edge imaged independentlyno access to phase, only to border

deformed image of whole object access to phase, if recorded at ≠ D’s

λ = 0.7 Å 50 µm

D = 15 cm D = 310 cm

aD <<λ aD ≈λ

towardsFraunhoferdiffraction

Page 39: Tomography and holotomography - Northwestern University

Edge Detection

Essentially edge enhancementWeak defocusing (and weak contrast!)

Radiography (2D)

Tomography (3D)

Detection of cracksholesreinforcing fibres, particles

Δ−≈ ),(2

1 . ),( ),( 0 yxD

yxIyxI xyD ϕπλ

absorption image phase term2D Laplacian phase

o(x,y,z) ≈ µ(x, y, z) − D Δ xyzδ(x, y, z)

absorption term phase termLaplacian refractive index

aD <<λ

Page 40: Tomography and holotomography - Northwestern University

Edge Detection

U. Wegst

Page 41: Tomography and holotomography - Northwestern University

Imaging of a 100 million years old ant preservedin opaque amber from Charentes (France)

From the real object to the virtual oneFrom the real object to the virtual one

Malvina LakMalvina Lak, Paul , Paul TafforeauTafforeau

Page 42: Tomography and holotomography - Northwestern University

Insect Anatomy

Virtual slices through heads of tiny staphylinid beetles

100 µm

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W.-K. Lee, P. Cloetens, J. of Microscopy, in press.

Page 43: Tomography and holotomography - Northwestern University

Phase Retrieval How to retrieve the phase and

amplitude in the object plane?Image(s) ⇒ Object ???

Inverse Problem

Australian School: K. Nugent, T. Gureyev, D. PaganinTIE (transport of intensity)

∂I∂z

= −λ

2π∇(I∇ϕ)

D1 D2 Dn

Series of images recorded atdifferent distances

Each distance is most sensitive to aspecific range of spatial frequencies

Flemish School: D. Van Dyck, JP Guigay, P. CloetensFocus variation / transfer functions

Mixed approachExtends validity of both approaches and reconciles them

JP Guigay, M Langer, P Cloetens, R Boistel, Opt. Lett. 32 (2007)

Page 44: Tomography and holotomography - Northwestern University

Contrast Transfer Functions

-2

-1

0

1

2

0 0.5 1 1.5 2 2.5

amplitudephase

Fourier Transform of intensity and of phase are linearly related

phase contrast factor

ID(f) = δD(f) + RD(f) . 2 sin(πλDf 2) . ϕ(f)coherence& detector

frequency

contrastfactor

valid in case of a slowly varying phase

Page 45: Tomography and holotomography - Northwestern University

Variable period

2 µm

period ≈ 720 nm

period ≈ 610 nm

Contrast depends strongly on period or spatial frequency

period ≈ 530 nm

Object invisible !

Decreasing linewidthIncreasing spatial frequency

Obtained with KB-mirrors

Page 46: Tomography and holotomography - Northwestern University

Phase retrieval

˜ I D ( f ) = 2sin(πλDf 2) ⋅ ˜ ϕ ( f )

)sin( 2Dfπλ

“transfer function”

˜ ϕ ( f ) =sin(πλDm f 2)

m∑ ⋅ ˜ I m ( f )

2sin2(πλDm f 2)m∑

Linear least squares

Non-iterative (fast!)

∑=

N

mm fD

N 1

22 )(sin21

πλ

⇒ Optimizationof the choice of distances

4 distances

Page 47: Tomography and holotomography - Northwestern University

Phase Retrieval: Polystyrene Foam

• non-absorbing foam• 4 images recorded• E = 18 keV D

D = 0.21 m D = 0.51 m D = 0.90 mD = 0.03 m

50 µm

variable λD

Page 48: Tomography and holotomography - Northwestern University

Holo-tomography

3D distribution of δ or the electron-densityimproved resolutionstraightforward interpretation

processing

2) tomography: repeated for ≈ 1000 angular positions

PS foam

1) phase retrieval with images at different distances

Phase mapD

P.Cloetens et al., Appl. Phys. Lett. 75, 2912 (1999)

Page 49: Tomography and holotomography - Northwestern University

Phase Tomography of Arabidopsis seeds

3D structure of Arabidopsis seeds in their native state- wet sample, no preparation- no staining, no fixation, no cutting, no cryo-cooling

Holotomographic approachContrast proportional to the electron density4 distances, 800 anglesE = 21 keV

P Cloetens, R Mache, M Schlenker, S Lerbs-Mache, PNAS (2006) 103, 14626

Page 50: Tomography and holotomography - Northwestern University

Phase Tomography of Arabidopsis

In situ 3D imaging of a seed of an Arabidopsis plant

wet sample, no preparation

R. Mache (UJF, Grenoble)

Radiograph D = 10 mm Spectrum – Fourier transform

50 µmContrast factor

-2

-1

0

1

2

0 0.5 1 1.5 2 2.5

amplitudephase

Page 51: Tomography and holotomography - Northwestern University

Phase Tomography of Arabidopsis

In situ 3D imaging of a seed of an Arabidopsis plant

wet sample, no preparation

Radiograph D = 30 mm Spectrum

Contrast factor

Page 52: Tomography and holotomography - Northwestern University

Phase Tomography of Arabidopsis

In situ 3D imaging of a seed of an Arabidopsis plant

wet sample, no preparation

Radiograph D = 60 mm Spectrum

Contrast factor

Page 53: Tomography and holotomography - Northwestern University

Phase Tomography of Arabidopsis

In situ 3D imaging of a seed of an Arabidopsis plant

wet sample, no preparation

Radiograph D = 100 mm Spectrum

Contrast factor

Page 54: Tomography and holotomography - Northwestern University

Phase Tomography of ArabidopsisHolotomographic approachFour distancesE = 21 keV

Seed of Arabidopsis

30 µm

Tomographic Slices

Cotyledon

P Cloetens, R Mache, M Schlenker, S Lerbs-Mache, PNAS (2006) 103, 14626

Page 55: Tomography and holotomography - Northwestern University

Phase Tomography of ArabidopsisSeed of Arabidopsis

protoderm

organites(protein stocks)

tegumenintercellular spaces

10 µm

Tomographic Slice

5 µm

Page 56: Tomography and holotomography - Northwestern University

Phase Tomography of Arabidopsis

three-dimensional network of intercellular air space

gas exchange during germinationand/orrapid water uptake during imbibition

Role?

Seed of Arabidopsis

P Cloetens, R Mache, M Schlenker, S Lerbs-Mache, PNAS (2006) 103, 14626

Page 57: Tomography and holotomography - Northwestern University

Frogs: strong absorption / phaseAbsorption (1 scan) Phase (3 scans)

Technical issue: simultaneous visualisation of bony parts and soft tissuesScientific case: hearing mechanism of species without middle ear

6 mm Atelopus seminiferus

R Boistel

Page 58: Tomography and holotomography - Northwestern University

Vizualization of brain and cartilage R. Boistel

Page 59: Tomography and holotomography - Northwestern University

Holotomography and micro-vascularisation

No contrast agent! E = 20.5 keV4 distances

Tumor

2.5 mm

Page 60: Tomography and holotomography - Northwestern University

Conclusions• SR based tomography offers different imaging modes

absorption µCT, phase contrast µCT, edge CT, …

• Provides unique information for studying the morphology andcomposition of complex systems…

Quantitative mapping in 2D and 3D

In-situ experiments, fast imaging

• Strong user demand (new SR communities)Micro-tomography: materials science, biology, paleontology, …

Page 61: Tomography and holotomography - Northwestern University

AcknowledgementsID19 staff

E Boller, W Ludwig, R Mokso, JP Guigay, M Schlenker, J BaruchelInsect anatomy

U Wegst (MPI Stuttgart), O Betz (U. Tuebingen)Arabidopsis seeds

S Lerbs-Mache, R Mache (UJF, Grenoble), M. Schlenker (INPG)Liquid foams

J Lambert, I Cantat, R Delannay, J Glazier, F GranerFrogs

R Boistel (NCAM, Paris sud)Metal alloys

E. Maire, J.Y. Buffière (GEMPPM, INSA Lyon)Enamel imaging / paleontology

P. Tafforeau, M. Lak

Page 62: Tomography and holotomography - Northwestern University

Some references (coherent imaging)

• E. Hecht, Optics, 3th ed. (Addison-Wesley, 1998).• M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon Press, Oxford, New York,

1980).• J.W. Goodman, Introduction to Fourier optics, 2nd ed. (Mcgraw-Hill, 1988).• D. Paganin, Coherent X-ray Optics (Oxford University Press, USA, 2006).

• P. Cloetens, R. Barrett, J. Baruchel, J.P. Guigay and M. Schlenker, J. Phys. D: Appl. Phys.29, 133 (1996).

• K.A. Nugent, T.E. Gureyev, D.F. Cookson, D. Paganin, Z. Barnea, Phys. Rev. Lett. 77,2961 (1996).

• P. Cloetens, M. Pateyron-Salomé, J.-Y. Buffière, G.Peix, J. Baruchel, F. Peyrin and M.Schlenker, J.Appl. Phys. 81, 9 (1997).

• P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J.P. Guigay, and M.Schlenker, Appl. Phys. Lett. 75, 2912 (1999).

• S. Zabler, P. Cloetens, J.P. Guigay, J. Baruchel, M. Schlenker, Rev. Sci. Instrum. 76,073705 (2005).