Today Modeling, Design, and Optimization Effects Lec 12 ...

10
1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 12: October 5, 2016 Scaling Penn ESE 370 Fall 2016 - Khanna Today ! VLSI Scaling Trends/Disciplines ! Effects ! Alternatives (cheating) Penn ESE 370 Fall 2016 - Khanna 2 Scaling ! Premise: features scale “uniformly” " everything gets better in a predictable manner ! Parameters: # λ (lambda) -- Mead and Conway (Day14) # F -- Half pitch – ITRS (F=2λ) # S – scale factor – Rabaey # F =S×F Penn ESE 370 Fall 2016 - Khanna 3 ITRS Roadmap ! International Technology Roadmap for Semiconductors " Try to predict where industry going ! ITRS 2.0 started in 2015 with new focus " System Integration, Heterogeneous Integration, Heterogeneous Components, Outside System Connectiviy, More Moore, Beyond CMOS and Factory Integartion. ! http://www.itrs2.net/ Penn ESE 370 Fall 2016 - Khanna 4 Microprocessor Trans Count 1971-2015 5 Kenneth R. Laker, University of Pennsylvania, updated 20Jan15 Curve shows transistor count doubling every two years Pentium 4004 8006 8080 Mot 6800 8086 Mot 68000 80286 80386 80486 MOS 6502 Zilog Z80 80186 AMD K5 Pentium II Pentium III AMD K7 Pentium 4 AMD K8 AMD K10 AMD 6-Core Opteron 2400 4-Core i7 2-Core Itanium 2 6-Core i7 16-Core SPARC T3 10-Core Xenon IBM 4-Core z196 IBM 8-Core POWER7 4-Core Itanium Tukwilla 2015: Oracle SPARC M7, 20 nm CMOS, 32-Core, 10B 3-D FinFET transistors. 2015 Penn ESE 370 Fall 2016 - Khanna Trend – “Minimum Feature Size vs. Year 6 Process Node/”Minimum” Feature Year 1960 1980 2000 2020 2040 100 μm 10 μm 1 μm 0.1 μm 10 nm 1 nm 0.1 nm Integrated Circuit History 0.18 μm in 1999 ITRS Roadmap Transition Region Quantum Devices Atomic Dimensions “Minimum” Feature Measure = line/gate conductor width or half-pitch (adjacent 1 st metal layer lines or adjacent transistor gates) Penn ESE 370 Fall 2016 - Khanna NOT SO Distant Future

Transcript of Today Modeling, Design, and Optimization Effects Lec 12 ...

1

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 12: October 5, 2016 Scaling

Penn ESE 370 Fall 2016 - Khanna

Today

!  VLSI Scaling Trends/Disciplines !  Effects !  Alternatives (cheating)

Penn ESE 370 Fall 2016 - Khanna 2

Scaling

!  Premise: features scale “uniformly” "  everything gets better in a predictable manner

!  Parameters: #  λ (lambda) -- Mead and Conway (Day14) #  F -- Half pitch – ITRS (F=2λ) #  S – scale factor – Rabaey

#  F’=S×F

Penn ESE 370 Fall 2016 - Khanna 3

ITRS Roadmap

!  International Technology Roadmap for Semiconductors "  Try to predict where industry going

!  ITRS 2.0 started in 2015 with new focus "  System Integration, Heterogeneous Integration,

Heterogeneous Components, Outside System Connectiviy, More Moore, Beyond CMOS and Factory Integartion.  

!  http://www.itrs2.net/

Penn ESE 370 Fall 2016 - Khanna 4

Microprocessor Trans Count 1971-2015

5 Kenneth R. Laker, University of Pennsylvania, updated 20Jan15

Curve shows transistor count doubling every

two years Pentium

4004 8006

8080 Mot 6800

8086

Mot 68000 80286

80386

80486

MOS 6502 Zilog Z80

80186

AMD K5 Pentium II

Pentium III AMD K7

Pentium 4 AMD K8

AMD K10 AMD 6-Core Opteron 2400 4-Core i7

2-Core Itanium 2 6-Core i7 6-Core i7 16-Core SPARC T3

10-Core Xenon IBM 4-Core z196 IBM 8-Core POWER7

4-Core Itanium Tukwilla

  2015: Oracle SPARC M7, 20 nm CMOS, 32-Core, 10B 3-D FinFET transistors.

2015 Penn ESE 370 Fall 2016 - Khanna

Trend – “Minimum Feature Size vs. Year

6

Process Node/”Minimum” Feature

Year 1960 1980 2000 2020 2040

100 µm

10 µm

1 µm

0.1 µm

10 nm

1 nm

0.1 nm

Integrated Circuit History

0.18 µm in 1999 ITRS Roadmap

Transition Region

Quantum Devices

Atomic Dimensions

“Minimum” Feature Measure = line/gate conductor width or half-pitch (adjacent 1st metal layer lines or adjacent transistor gates)

Penn ESE 370 Fall 2016 - Khanna

NOT SO Distant Future

2

Intel Cost Scaling

7

http://www.anandtech.com/show/8367/intels-14nm-technology-in-detail

Penn ESE 370 Fall 2016 - Khanna

Moore’s Law Impact on Intel uComputers

8 2010 YEAR

Serial data links operating at 10 Gbits/sec.

Increased reuse of logic IP, i.e. designs and cores.

2BT µP (Intel Itanium Tukwila) 4-Core chip (65 nm) introduced Q1 2010.

3BT mP (Intel Itanium Poulson) 8-Core chip (32 nm) to be introduced 2012.

Introduces 22 nm Tri-gate Transistor Tech.

Complexity - # transistors Double every Two Years 0.022um

2011

0.032um 2009

Min Feature

Size

Penn ESE 370 Fall 2016 - Khanna

More-than-Moore

9

“More-than-Moore”, International Road Map (IRC) White Paper, 2011.

International Technology Road Map for Semiconductors

Scal

ing

Penn ESE 370 Fall 2016 - Khanna

More Moore $ Scaling

!  Geometrical Scaling  "  continued shrinking of horizontal and vertical physical

feature sizes

!  Equivalent Scaling  "  3-dimensional device structure improvements and new

materials that affect the electrical performance of the chip even if no geometrical scaling

!  Design Equivalent Scaling "  design technologies that enable high performance, low

power, high reliability, low cost, and high design productivity even if neither geometrical nor equivalent scaling can be used

10 Penn ESE 370 Fall 2016 - Khanna

22nm 3D FinFET Transistor

11

Tri-Gate transistors with multiple fins connected together

increases total drive strength for higher performance

http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Details_Presentation.pdf

High-k gate

dielectric

Penn ESE 370 Fall 2016 - Khanna

More Moore $ Scaling

!  Examples: "  Design-for-variability "  Low power design (sleep modes, clock gating, multi-

Vdd, etc.) "  Multi-core SOC architectures

12 Penn ESE 370 Fall 2016 - Khanna

3

Semiconductor System Integration – More Than Moore's Law

13

1010

109

108

107

106

105

104

103

102

10

Transistors/cm2

1010

109

108

107

106

105

104

103

102

10

Com

ponents/cm2

1970 1980 1990 2000 2010 2020

Multichip Module

System- in-package

(SIP) System-

on-package (SOP)

R. Tummala, “Moore's Law Meets Its Match”, IEEE Spectrum, June, 2006

SOP law for system integration. As components shrink and boards all but disappear, component density will double every year or so.

Penn ESE 370 Fall 2016 - Khanna

Improvement Trends for VLSI SoCs Enabled by Geometrical and Equivalent Scaling

!  TRENDS: !  Higher Integration level 

"  exponentially increased number of components/transistors per chip/package.

!  Performance Scaling "  combination of Geometrical

(shrinking of dimensions) and Equivalent (innovation) Scaling.

!  System implementation "  SoC + increased use of  SiP -

> SOP

!  CONSEQUENCES: !  Higher Speed

"  CPU clock rate at multiple GHz + parallel processing.

!  Increased Compactness & less weight  "  increasing

system integration.

!  Lower Power  "  Decreasing energy

requirement per function.

!  Lower Cost "  Decreasing cost per

function.

14 Penn ESE 370 Fall 2016 - Khanna

Preclass 1

!  Scaling from 32nm $ 22nm? "  Scaling minimum gate length "  And pitch distance

Penn ESE 370 Fall 2016 - Khanna 15

Half Pitch (= Pitch/2) Definition

(Typical MPU/ASIC)

(Typical DRAM)

 Poly  Pitch

 Metal  Pitch

Source: 2001 ITRS - Exec. Summary, ORTC Figure, Andrew Kahng Penn ESE 370 Fall 2016 - Khanna 16

MOS Transistor Scaling - (1974 to present)

S=0.7 per technology node

[0.5x per 2 nodes] Pitch Gate

Source: 2001 ITRS - Exec. Summary, ORTC Figure, Andrew Kahng Penn ESE 370 Fall 2016 - Khanna 17

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle Time (T yrs):

*CARR(T) =

[(0.5)^(1/2T yrs)] - 1

CARR(3 yrs) = -10.9%

CARR(2 yrs) = -15.9%

* CARR(T) = Compound Annual Reduction Rate

(@ cycle time period, T)

Log

Hal

f-P

itch

Linear Time

1994 NTRS - .7x/3yrs

Actual - .7x/2yrs

Scaling Calculator + Node Cycle Time:

Source: 2001 ITRS - Exec. Summary, ORTC Figure, Andrew Kahng Penn ESE 370 Fall 2016 - Khanna 18

4

Scaling

!  Channel Length (L) !  Channel Width (W) !  Oxide Thickness (Tox) !  Doping (Na) !  Voltage (V)

Penn ESE 370 Fall 2016 - Khanna 19

Full Scaling (Ideal Scaling)

!  Channel Length (L) S !  Channel Width (W) S !  Oxide Thickness (Tox) S !  Doping (Na) 1/S !  Voltage (V) S

Penn ESE 370 Fall 2016 - Khanna 20

Effects on Physical Properties and Specs?

!  Area !  Capacitance !  Resistance !  Threshold (Vth) !  Current (Id) !  Gate Delay (τgd) !  Wire Delay (τwire) !  Power

Penn ESE 370 Fall 2016 - Khanna 21

Area

!  λ % λS ! Area impact? !  Α = L × W!  Α % ΑS2

!  32nm % 22nm !  50% area !  2 × transistor capacity

for same area

L

W S=0.7

Penn ESE 370 Fall 2016 - Khanna 22

Capacitance

!  Capacitance per unit area scaling?

"  Cox= εSiO2/Tox

"  Tox% S×Tox

"  Cox % Cox/S

Penn ESE 370 Fall 2016 - Khanna 23

S=0.7

Capacitance

!  Gate Capacitance scaling?

#  Cgate= A×Cox

#  Α % Α×S2

#  Cox % Cox/S#  Cgate % S×Cgate

Penn ESE 370 Fall 2016 - Khanna 24

5

Resistance

! Resistance scaling? ! R=ρL/(W*t) ! W$ S×W! L, t remain similar (not scaled) ! R $ R/S

Penn ESE 370 Fall 2016 - Khanna 25

Threshold Voltage

! VTH% S×VTH

Penn ESE 370 Fall 2016 - Khanna 26

Current

!  Which Voltages matters here? (Vgs,Vds,Vth…) !  Transistor charging looks like

voltage-controlled current source !  Saturation Current scaling?

Id=(µCOX/2)(W/L)(Vgs-VTH)2

Vgs=V$ S×V

VTH$ S×VTH

W$ S×WL$ S×LCox $ Cox/S

Id$ S×Id

Penn ESE 370 Fall 2016 - Khanna 27

Current

!  Velocity Saturation Current scaling?

Vgs=V$ S×V

VTH$ S×VTH

L$ S×LVDSAT $ S×VDSAT W$ S×WCox $ Cox/S

Id$ S×Id€

IDS ≈νsatCOXW VGS −VTH −VDSAT

2%

& '

(

) *

VDSAT ≈Lνsatµn

Penn ESE 370 Fall 2016 - Khanna 28

Gate Delay

#  Gate Delay scaling? #  τgd=Q/I=(CV)/I #  V$ S×V

#  Id $ S×Id

#  C $ S×C

#  τgd $ S×τgd

Note: Ids modeled as current source; V is changing with scale

factor

Penn ESE 370 Fall 2016 - Khanna 29

Wire Delay

#  Wire delay scaling? #  τwire=R×C

#  R $ R/S #  C $ S×C #  τwire $ τwire

!  …assuming (logical) wire lengths remain constant...

Penn ESE 370 Fall 2016 - Khanna 30

6

Power Dissipation (Dynamic)

!  Capacitive (Dis)charging scaling?

! P=(1/2)CV2f

! V$ S×V

! C $ S×C

! P$ S3×P

Penn ESE 370 Fall 2016 - Khanna 31

Power Dissipation (Dynamic)

!  Capacitive (Dis)charging scaling?

! P=(1/2)CV2f

! V$ S×V

! C $ S×C

! P$ S3×P

!  Increase Frequency?

!  τgd $ S×τgd

! So: f $ f/S

! P $ S2×P

Penn ESE 370 Fall 2016 - Khanna 32

Effects?

!  Area S2 !  Capacitance S !  Resistance 1/S !  Threshold (Vth) S !  Current (Id) S !  Gate Delay (τgd) S !  Wire Delay (τwire) 1 !  Power S3$S2

Penn ESE 370 Fall 2016 - Khanna 33

Power Density

!  P% S2P (increase frequency)!  P% S3P (dynamic, same freq.)!  A % S2A

!  Power Density: P/A two cases? "  P/A % P/A increase freq. "  P/A % S×P/A same freq.

Penn ESE 370 Fall 2016 - Khanna 34

Cheating…

!  Don’t like some of the implications !  High resistance wires !  Higher capacitance !  Atomic-scale dimensions

!  …. Quantum tunneling

!  Need for more wiring !  Not scale speed fast enough

Penn ESE 370 Fall 2016 - Khanna 35

Improving Resistance

! R=ρL/(W×t) ! W$ S×W! L, t similar ! R $ R/S

What might we do? Don’t scale t quite as fast $ now taller than wide.

Decrease ρ (copper) – introduced 1997 http://www.ibm.com/ibm100/us/en/icons/copperchip/

Penn ESE 370 Fall 2016 - Khanna 36

7

Capacitance and Leakage

!  Capacitance per unit area "  Cox= εSiO2

/Tox

"  Tox% S×Tox

"  Cox % Cox/S

What’s wrong with tox = 1.2nm?

source: Borkar/Micro 2004

Penn ESE 370 Fall 2016 - Khanna 37

Capacitance and Leakage

!  Capacitance per unit area "  Cox= εSiO2

/Tox

"  Tox% S×Tox

"  Cox % Cox/S

What might we do? Reduce dielectric constant, ε, and increase

thickness to mimic tox scaling. Penn ESE 370 Fall 2016 - Khanna 38

ITRS 2009 Table PIDS3B Low Operating Power Technology Requirements

Grey cells delineate one of two time periods: either before initial production ramp has started for ultra-thin body fully depleted (UTB FD) SOI or multi-gate

(MG) MOSFETs, or beyond when planar bulk or UTB FD MOSFETs have reached the limits of practical scaling (see the text and the table notes for further

discussion).

Year of Production 2009 2010 2011 2012 2013 2014 2016 2016 2017 2018 2019 2020 2021 2022 2023 2024 MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted) 54 45 38 32 27 24 21 18.9 16.9 15 13.4 11.9 10.6 9.5 8.4 7.5 Lg: Physical Lgate for High Performance logic (nm) 29 27 24 22 20 18 17 15.3 14 12.8 11.7 10.7 9.7 8.9 8.1 7.4 Lg: Physical Lgate for Low OperatingPower (LOP) logic (nm) [1] 32 29 27 24 22 18 17 15.3 14 12.8 11.7 10.7 9.7 8.9 8.1 7.4 EOT: Equivalent Oxide Thickness (nm) [2] Extended planar bulk 1 0.9 0.9 0.85 0.8 UTB FD 0.9 0.85 0.8 0.75 0.7 MG 0.8 0.8 0.75 0.73 0.7 0.7 0.65 0.65 0.6 0.6 Gate poly depletion (nm) [3] Bulk 0.27 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Channel doping (E18 /cm3) [4] Extended Planar Bulk 3 3.7 4.5 5 5.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Junction depth or body Thickness (nm) [5] Extended Planar Bulk (junction) 14 13 11.5 10 9 UTB FD (body) 7 6.2 6 5.1 4.7 MG (body) 8 7.6 7 6.4 5.8 5.4 4.8 4.4 4.2 4 EOTelec: Electrical Equivalent Oxide Thickness (nm) [6] Extended Planar Bulk 1.64 1.53 1.23 1.18 1.14 UTB FD 1.3 1.25 1.2 1.15 1.1 MG 1.2 1.2 1.15 1.13 1.1 1.1 1.05 1.05 1 1

Penn ESE 370 Fall 2016 - Khanna 39

High-K dielectric Survey

Wong/IBM J. of R&D, V46N2/3P133—168, 2002 Penn ESE 370 Fall 2016 - Khanna 40

Intel NYT Announcement

!  Intel Says Chips Will Run Faster, Using Less Power "  NYT 1/27/07, John Markov "  Claim: “most significant change in the

materials used to manufacture silicon chips since Intel pioneered the modern integrated-circuit transistor more than four decades ago”

"  “Intel’s advance was in part in finding a new insulator composed of an alloy of hafnium…will replace the use of silicon dioxide.”

Penn ESE 370 Fall 2016 - Khanna 41

Wire Layers = More Wiring

Penn ESE 370 Fall 2016 - Khanna 42

8

Improving Gate Delay

#  τgd=Q/I=(CV)/I #  V$ S×V #  Id=(µCOX/2)(W/L)(Vgs-VTH)2

#  Id $ S×Id

#  C $ S×C

#  τgd $ S×τgd

# Lower C # Don’t scale V

Don’t scale V: V$V I$I/S

τgd $ S2×τgd

How might we accelerate?

Penn ESE 370 Fall 2016 - Khanna 43

But… Power Dissipation (Dynamic)

!  Capacitive (Dis)charging

#  P=(1/2)CV2f #  V$ V#  C $ S×C #  P$ S×P

Penn ESE 370 Fall 2016 - Khanna 44

But… Power Dissipation (Dynamic)

!  Capacitive (Dis)charging

#  P=(1/2)CV2f #  V$ V#  C $ S×C #  P$ S×P

!  Increase Frequency? #  f $ f/S2 ? #  P $ P/S

If don’t scale V, power dissipation doesn’t’ scale down!

Penn ESE 370 Fall 2016 - Khanna 45

…And Power Density

!  P$ P/S (increase frequency)!  But… Α $ S2×Α!  What happens to power density?

!  P/A $ (1/S3)P

!  Power Density Increases

…this is where some companies have gotten into trouble…

Penn ESE 370 Fall 2016 - Khanna 46

Historical Voltage Scaling

!  Frequency impact? !  Power Density impact?

http://software.intel.com/en-us/articles/gigascale-integration-challenges-and-opportunities/

Penn ESE 370 Fall 2016 - Khanna 47

Scale V separately from S

!  τgd=Q/I=(CV)/I ! V$U!  Id=(µCOX/2)(W/L)(Vgs-VTH)2

!  Id $ U2/S×Id

! C $ S×C

!  τgd $ (SU/(U2/S))×τgd

!  τgd $ (S2/U)×τgd

Ideal scale: S=1/100 V=1/100 τ=1/100 fideal=100

Cheating: S=1/100 V=1/10 τ=1/1000 fcheat=1000

fcheat/fideal=10

Penn ESE 370 Fall 2016 - Khanna 48

S=1/100 U=1/10

9

Power Density Impact

!  P=1/2CV2 f !  P~= S U2 (U/S2) = U3/S !  P/A = (U3/S) / S2 = U3/S3

!  U=1/10 S=1/100 !  P/A $ 1000 (P/A)

!  P/A $ (1/S3)P (ideal scaling) !  P/A $ 1,000,000 (P/A) (ideal scaling)

Penn ESE 370 Fall 2016 - Khanna 49

uProc Clock Frequency

The Future of Computing Performance: Game Over or Next Level? National Academy Press, 2011

http://www.nap.edu/catalog.php?record_id=12980

MHz

Penn ESE 370 Fall 2016 - Khanna 50

uP Power Density

Watts

The Future of Computing Performance: Game Over or Next Level? National Academy Press, 2011

http://www.nap.edu/catalog.php?record_id=12980 Penn ESE 370 Fall 2016 - Khanna 51

Conventional Scaling

!  Ends in your lifetime !  Perhaps already:

"  "Basically, this is the end of scaling.” "  May 2005, Bernard Meyerson, V.P. and chief technologist for

IBM's systems and technology group

Penn ESE 370 Fall 2016 - Khanna 52

ITRS 2.0 Report 2015

!  “After 2021, the report forecasts, it will no longer be economically desirable for companies to continue traditional transistor miniaturization in microprocessors.”

Penn ESE 370 Fall 2016 - Khanna 53

Big Ideas

!  Moderately predictable VLSI Scaling "  unprecedented capacities/capability growth for

engineered systems "  change

"  be prepared to exploit "  account for in comparing across time "  …but not for much longer

Penn ESE 370 Fall 2016 - Khanna 54

10

Admin

!  HW5 "  More transistor practice "  Hard – prepares you for design project 1 "  Due Wednesday

!  Midterm "  Will finish grading and post grades this afternoon "  Can come to my office to pick up otherwise will hand

back on Monday

Penn ESE 370 Fall 2016 - Khanna 55