Time-frequency analysis of chaotic systems T....

48
T. Uzer Georgia Institute of Technology Collaboration: C. Chandre (Univ. of Marseille) S. Wiggins (Bristol) KITP Atto 06 KITP Atto 06 September 8, 2006 September 8, 2006 Time Time - - frequency analysis of chaotic systems frequency analysis of chaotic systems

Transcript of Time-frequency analysis of chaotic systems T....

  • T. UzerGeorgia Institute of Technology

    Collaboration: C. Chandre (Univ. of Marseille)S. Wiggins (Bristol)

    KITP Atto 06 KITP Atto 06 –– September 8, 2006September 8, 2006

    TimeTime--frequency analysis of chaotic systemsfrequency analysis of chaotic systems

  • 220

    2

    2 iiii

    i

    bendCSCO

    qpE

    EEEE

    ωμ

    +=

    ++=normal mode analysisnormal mode analysis

    Reference:Reference: D. Carter,D. Carter, et al, J. Chem. Phys,et al, J. Chem. Phys, 77,77, 4208, (1982)4208, (1982)

    Intramolecular relaxation ratesIntramolecular relaxation rates

    ps 17.01 ≈=λ

    τ λpredicted relaxation rate:predicted relaxation rate:assumption of uniformity of phase space assumption of uniformity of phase space statistical theories ( RRKM theory ) :statistical theories ( RRKM theory ) :

    observed relaxation rate:observed relaxation rate: ps 10>τ

    CSE COEαE

  • planar carbonyl sulfide (OCS)planar carbonyl sulfide (OCS)

    1R 2R

    OC

    S

    α

    m Ii

    i ii

    H T P P P R VP RVR RAR RR3 3

    1 2 1 21

    1 2 31

    ( )( , , , , ( ,, (,) ))α= =

    = α + +∑ ∏

    quartic polynomialMorsekinetic energy Sorbie-Murrell potential

    1

    23

    2

    13

    21

    32

    2

    22

    1

    12213

    22

    221

    1sinsincos

    22cos

    22 R

    PP

    R

    PP

    RRRRPPPPPT

    αμ−

    αμ−⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ αμ−

    μ+

    μ+αμ+

    μ+

    μ= ααα

    ( )2)( 01)( iii RRiim eDRV −β−−=( ))~(tanh1)( iiiiI RRRV −γ−=∑ ∑ ∑ ∑++++=

    i ji kji lkjilkjiijklkjiijkjiijii RRRRcRRRcRRcRcRRRP

    , ,, ,,,321 1),,(

    α−+== cos2 212

    22

    13 RRRROSR

    References:Carter, Brumer, J. Chem. Phys. 77 (1982), 4208Foord, Smith, Whiffen, Mol. Phys. 29 (1975), 1685Bunker, J. Chem. Phys. 37 (1962), 393

    >> 3 modes: OC stretch, CS stretch, OCS bend

  • Who cares ?celestial mechanics, atomics physicschemical physics, particle acceleratorsplasma physics, …

    Analysis of trajectories of Hamiltonian systemsAnalysis of trajectories of Hamiltonian systems

    { }t T

    Ht

    Ht

    t t[0, ]

    dd

    ( ), ( )dd

    ∂⎧ = −⎪ ∂⎪ ⇒⎨ ∂⎪ =+⎪ ∂⎩

    pq

    qp

    p q

    H t( , ; )p q1( )q t

    t

    > chaotic (?)

    Questions:>> regular or chaotic ?>> extent of chaoticity: strong or weak chaos>> intermittency: resonance trappings, transitions…>> type of chaos: slow chaos, stable chaos,…

    { }i i i=1, ,Nt t( ), ( )p q …

    d(0)

    d t( )

    t

    d tt d1 ( )

    lim ln(0)→∞

    λ =0 regular

    0 chaotic

    λ =λ >

    >> Lyapunov exponent

  • PoincarPoincaréé section section (2 degrees of freedom)

    quasiperiodic

    periodic

    chaotic

    p

    x

    ( )H p x t p x x t21( , , ) cos cos( )2

    = − ε + −

    > only 2 degrees of freedom> qualitative information

    individual trajectories phase space structures

  • Frequency AnalysisFrequency Analysis

    >> Fourier analysis

    >> Frequency Analysis

    Idea: decomposition of a trajectory known on a finiteinterval [0,T] into the basis

    0 T

    x(t;

    x 0)

    ω

    )(ωSP

    2FFTTπ

    Δω =

    { }i te ωω∈

    ( )2

    0)()(

    1∫ χ=ωφ ω−

    T ti dttetzT

    4

    1T

    Δω∝T

    tt

    π−=χ

    2cos1)( : windowHanning

    1(t) : windowwithout =χ 21

    TΔω∝

    ( ) ( )ωφ=ωφω ωmax thatsuch : )(for frequency Main 11tz

  • Frequency Map AnalysisFrequency Map Analysis (J. Laskar)

    >> Fourier analysis

    >> Frequency Analysis Idea: decomposition of a trajectory known on a finiteinterval [0,T] into the basis { }i te ω

    ω∈

    T i tSP x x t x e t tT0 00

    1( , ) ( ; ) ( )d− ωω = χ∫

    Sx P x1 0 0( ) maximizes ( ; )ω i

    periodic

    quasiperiodic

    chaotic

    >> dynamical information, time varying frequencyx0

    0 T

    x(t;

    x 0)

    ω

    T1

    δω∼

    T 41

    δω∼

  • The windowed Fourier transform of f(t) is given by

    ( ) ( ) ( )∫∞

    ∞−

    −−= dteutgtfuSf tiξξ,The Gabor transform is obtained by choosing the Gaussian window

    ( ) ( ) 4/122/ /22 πσσtetg −=The spectrogram is given by

    ( ) ( ) 2,, ξξ uSfufPS =where

    ( ) ( ) ( ) dtetgutfeuSf titi ∫∞+

    ∞−

    −− += ξξξ,

  • TimeTime--frequency resolutionfrequency resolutionThe time spread around a point (u,ξ) in the time-frequency plane is defined as

    ( ) ( ) ( )( ) 2/12,2, dttgutu utime ∫ ∞+∞− −= ξξσwhere

    ( ) ( ) tiu eutgtg ξξ −−=,Is independent of u and ξ. For a Gaussian windowit is equal to

    ( ) ( ) 4/122/ /22 πσσtetg −=.2/σ

    The frequency spread around a point (u,ξ) is defined as

    ( ) ( ) ( )2/1

    2

    ,

    2 ˆ21, ⎟

    ⎠⎞

    ⎜⎝⎛ −= ∫

    ∞+

    ∞−ωωξω

    πξσ ξ dgu ufreq

    Does not depend on u and ξ since ( ) ( ) ( ) .ˆˆ , ωξξ ξωω −−= iuu eggFor a Gaussian window, it is equal to . We notice that the product of the timespread with the frequency spread at a given point (u,ξ) in the time-frequency plane is constant and larger than ½ (Heisenberg uncertainty). It is minimum for a Gaussianwindow.

    .2/1 σ

  • Local Frequency AnalysisLocal Frequency Analysis

    Reference: Martens, Ezra, J. Chem. Phys. (1987)

    Observation: chaotic motion over long time scale appears regular over shorter time scales

    >> intermittency

    1:3

    ( ) '1; ( ') ( ') 't T i t

    tt z t e t dt

    T

    + − ωφ ω = χ∫ 1( )t→ω

    T

    2

    1-74 dB Blackman-Harris window :

    TΔω∝

    1:5

  • Continuous Wavelet TransformContinuous Wavelet Transform

    dts

    uttf

    ssuWf ∫

    ∞+

    ∞−⎟⎠⎞

    ⎜⎝⎛ −Ψ= *)(

    1),(

    Re( )ψ

    t

    i t tt e e2 2/2( ) η − σψ =

    1 with ⎟⎠⎞

    ⎜⎝⎛ −Ψ s

    sut

    2),(

    1),( :Scalogram suWf

    ssuPW =

    ScaleScale / / frequency representationfrequency representation ::22 )(),( ,)(for η−ωσ−ω == sW

    ti esufPetf sη

    Fast algorithmFast algorithm :: )(ˆ)(ˆ),(ˆ * ξΨξ=ξ sfssfW ⇒ 1 FFT + 1 IFFT

    T1

    : resolution frequency ∝ωΔ

    low frequency high frequency

    MorletMorlet--Grossman waveletGrossman wavelet

  • Continuous wavelet transformContinuous wavelet transform

    Time-scale representation of trajectory

    ( ) ( )∫∞

    ∞−⎟⎠⎞

    ⎜⎝⎛ −= dt

    suttfsuWf s

    *1, ψ

    Morlet-Grossman wavelet

    ( ) ( ) 4/122/ /22 πσψ ση tti eet −=Center frequency of wavelet

    ( )( ) ( )[ ]sutst

    d

    su

    su

    /

    ˆ2/1

    ,

    2

    ,21

    −=

    =−

    ∞−∫ψψ

    ωωψωη πsηξ =

    Normalized scalogram

    ( )2

    ,1, suWfss

    ufPW =⎟⎠⎞

    ⎜⎝⎛ =ηξ

  • freq

    uen

    cy

    time

    TimeTime--frequency Analysisfrequency Analysis

    Over the Rainbow (Arlen/Harburg – Keith Jarrett)

  • For a chaotic trajectory, a ridge is a curve or a segment of curve in the time-frequencyWhich is at each time u a local maximum of the normalized scalogram, i.e.,

    Each ridge has a weight that is the value of the normalized scalogram on this ridge(it varies continuously in time). We will refer to this value as the amplitude of the ridge.We call the main ridge or main frequency ridge (or a set of ridges) where thenormalized scalogram is a maximum:

    ( )( )

    ( )( )

    0,,0,2

    2

    <∂∂=

    ∂∂

    == u

    W

    u

    W

    locloc

    ufPufPξξξξ

    ξξ

    ξξ

    ( )ulocξ

    ( )umξ

    ( )( ) ( )ξξξ

    ,max, ufPuufP WmW =

  • Instantaneous frequenciesInstantaneous frequencies

    ReferenceReference: : C. Chandre and S. Wiggins and T. UzerC. Chandre and S. Wiggins and T. Uzer , , Physica DPhysica D (2003)(2003)

    ∑ ϕ+ω=k

    tik

    kkeAtf )()(

    ( ) ( )[ ] ( )∑>

    ωω−ωησ−ϕ+ω−ωω−ωωω

    +ω=ω1

    2/11

    111

    21

    21

    22

    cos)(~k

    kkkk

    kketAt

    ω

    ωt

    t

    22 )(),( ,)(for η−ωσ−ω == sWti esufPetf

    2),(1),( :Scalogram suWfs

    suPW =

    0),( ,0),()(

    2

    2

    )(

    =∂∂

    =∂∂

    == ulocloc

    uPuP Wu

    Wωωωω

    ωω

    ωω)( tωω = uttimeat =

    periodic trajectoryperiodic trajectory

    quasiperiodic trajectoryquasiperiodic trajectory

    sηω =

  • TimeTime--frequency analysis based on waveletsfrequency analysis based on wavelets

    t

    ωf t t t t t2( ) cos( ) cos( sin )= α + + β +

    ω

    t

    >> periodic

    >> quasiperiodic

    ω

    t

    ω

    t

    ),( ωtPW

    tt 2)(1 +α=ω

    tt cos)(2 +β=ω

    Reference: Chandre, Wiggins, Uzer, Physica D (2003)

    ridge extraction

    ∑ ϕ+ω=k

    tik

    kkeAtf )()(

    ( ) ( )[ ] ( )∑>

    ωω−ωησ−ϕ+ω−ωω−ωωω

    +ω=ω1

    2/11

    111

    21

    21

    22

    cos)(~k

    kkkk

    kketAt

    tietf ω=)(

  • TimeTime--frequency resolutionfrequency resolution

    ( ) ( ) ( )( ) 2/12,2, dttutsu sutime ∫ ∞+∞− −= ψσ

    ( ) ( )2/1

    2

    ,

    2

    ˆ, 21 ⎟

    ⎞⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛ −= ∫

    ∞+

    ∞−ωωψηωσ π ds

    su sufreq

    Mother wavelet : ( ) ( )tget tiηψ =

    Gabor wavelet : ξσησ 2/=timeFrequency spread around s/ηξ =

    Gabor wavelet : 2/σηξσ =freqHeisenberg uncertainty is minimum for the Gabor wavelet

  • The wavelet algorithmThe wavelet algorithm

    ( ) ( ) ( )ωψωω sfssfW *ˆˆ,ˆ =

  • Wavelet decomposition for periodic trajectoryWavelet decomposition for periodic trajectory

    Poincare surface of sectionPoincare surface of section timetime--frequency plane (scalogram)frequency plane (scalogram)

    timetimex

    y

    for a periodic trajectory the maximum of scalogram is a constant curve

    timetimex

    y ξ

    ξ

    for a chaotic trajectory the maximum of scalogram is time-dependent

  • Extraction of resonances from wavelet decomposition of a single Extraction of resonances from wavelet decomposition of a single trajectorytrajectory

    xx

    xx xxxx

    yy yy yy

    yy

    timetime

    ξ

    [ ] 310 10 ,8 ×=t[ ] 310 4 ,2 ×=t[ ] 310 2 ,1 ×=t

  • Rydberg atoms in crossed fieldsRydberg atoms in crossed fieldsE t( )

    B

    z

    B BH t E x ωt y ωt L

    22 21 1

    ( , , ) ( cos sin )2 2 8

    p x p xx

    = − +α+ + +

    ] [

    0

    1

    0,1

    α =α =

    α∈

    linear polarization

    circular polarization (2 d.o.f.)

    elliptic polarization

    time

    freq

    uen

    cy

    x

    y

    freq

    uen

    cy

    time

    >> CPCPxxBB

    >> EPEPxxBB

  • TimeTime--frequency decomposition for strongly chaotic trajectoryfrequency decomposition for strongly chaotic trajectory

    transition from resonant zonetransition from resonant zone 1:2:1:: 321 =ωωω to strongly chaotic zoneto strongly chaotic zone

  • TimeTime--frequency decomposition for weakly chaotic trajectoryfrequency decomposition for weakly chaotic trajectory

    1:4:2:: 321 =ωωωlonglong--time trapping for t~20 pstime trapping for t~20 ps

  • planar carbonyl sulfide (OCS)planar carbonyl sulfide (OCS)

    1R 2R

    OC

    S

    α

    m Ii

    i ii

    H T P P P R VP RVR RAR RR3 3

    1 2 1 21

    1 2 31

    ( )( , , , , ( ,, (,) ))α= =

    = α + +∑ ∏

    quartic polynomialMorsekinetic energy Sorbie-Murrell potential

    1

    23

    2

    13

    21

    32

    2

    22

    1

    12213

    22

    221

    1sinsincos

    22cos

    22 R

    PP

    R

    PP

    RRRRPPPPPT

    αμ−

    αμ−⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ αμ−

    μ+

    μ+αμ+

    μ+

    μ= ααα

    ( )2)( 01)( iii RRiim eDRV −β−−=( ))~(tanh1)( iiiiI RRRV −γ−=∑ ∑ ∑ ∑++++=

    i ji kji lkjilkjiijklkjiijkjiijii RRRRcRRRcRRcRcRRRP

    , ,, ,,,321 1),,(

    α−+== cos2 212

    22

    13 RRRROSR

    References:Carter, Brumer, J. Chem. Phys. 77 (1982), 4208Foord, Smith, Whiffen, Mol. Phys. 29 (1975), 1685Bunker, J. Chem. Phys. 37 (1962), 393

    >> 3 modes: OC stretch, CS stretch, OCS bend

  • a.u.100.0-1cm 90021 at ==+→ ESOCOCS

    COR

    CSR

    1 unimolecular dissociation of OCS2 intramolecular energy redistribution

    OCS potentialOCS potential

    equilibrium

  • Energy redistributionEnergy redistribution

    Question: time scale for energy transfer

    example: 2D coupled Morse oscillators, Henon-Heiles, cyclobutanone

    1 ?τ =

    λOHC 64

    λ

    time (ps)

    Reference: Davis, Wagner, ACS Symposium (1984)

  • collinear OCS (2 d.o.f.)collinear OCS (2 d.o.f.)

    Reference: Davis, Chem. Phys. Lett. (1984)

    ps 10

    ps 1.0

    ER ≈τ

    ≈τλ

  • bottlenecks for collinear OCSbottlenecks for collinear OCS

  • Frequency analysis applied to planar OCSFrequency analysis applied to planar OCS

    >> normal mode frequencies

    0 1CO

    0 1CS

    0 1b

    2087 cm

    873 cm

    520 cm

    ω =

    ω =

    ω =

    1T

    c=

    ω

    0CO

    0CS

    0b

    0.016 ps

    0.038 ps

    0.064 ps

    T

    T

    T

    =

    =

    =

    CO

    CS

    b

    87

    36

    21

    n

    n

    n

    =

    =

    =

    1.4 ps

    >> resonance CS/bend 3:2 or 2:1>> resonance CO/bend 4:1 or 7:2

    0CO0b

    0CS0b

    4.01

    1.68

    ω≈

    ω

    ω≈

    ω

    COCSb

    CO

    CS

    b

    1 (ps )−ω

  • >> locking of CS/bend into 3:2 resonance

    >> long time of resonance junctions

    3: 2

    3:1

    CS/

    bC

    O/b

    time

    CS/

    bC

    O/b

    CO

    /CS

  • O

    CS

    R1R1R2R2

    ),,,()(),,,,,( 3213

    1321321 RRRVRVPPPRRRTH INTi

    ii ++= ∑

    =

    )cos(2 ,~2

    tanh1),,( )(

    2122

    213

    3

    1321

    α

    γ

    RRRRRRRR

    RRRRPARV

    iii

    i

    iiINT

    −+=−=Δ

    ⎥⎦

    ⎤⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛ Δ−ΔΔΔ= ∏

    =

    polynomial quartica is )Δ,Δ,(Δ , 321 RRRP

    Hamiltonian of the planar carbonyl sulfide (OCS)Hamiltonian of the planar carbonyl sulfide (OCS)

    masses reduced theare where,sinsin

    cos2

    12

    1cos12

    12

    1

    13

    2

    23

    1

    2132

    222

    11

    221

    3

    22

    2

    21

    1

    iRPP

    RPP

    RRRRPPPPPT

    μμ

    αμ

    α

    μα

    μμα

    μμμ

    αα

    α

    −−

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−++++=

    Hamiltonian:Hamiltonian:

    bend stretch CS stretch CO

    α

    3 modes:3 modes:α

    SorbieSorbie--Murrell interaction term:Murrell interaction term:

    SorbieSorbie--Murrell termMurrell termMorse potentialMorse potentialkinetic termkinetic term

    casecollinear for the distances mequilibriu theare ~ ,~ where

    ,1),,(,,,,,,

    321

    iiii

    lkjilkjiijkl

    kjikjiijk

    jijiij

    iii

    RRRs

    sssscssscsscscsssP

    −=

    ++++= ∑∑∑∑

  • OCS potential surface OCS potential surface

    a.u.100.0-1cm 90021 at ==+→ ESOCOCS

    equilibriumCSR

    COR

    ( )a.u. 1.0

    )1(1),,(

    )cos(2

    31

    2)(231

    3

    1

    2)(321

    2122

    213

    0222

    0

    =+≥

    −++=−=∞→=

    −+=

    −−

    =

    −−∑DDE

    eDDDeDRRRVE

    RRRRR

    d

    RR

    i

    RRid

    iii ββ

    α

    dE

    saddlesaddle

    saddlesaddle

  • ReferenceReference: : C. C. Martens, C. C. Martens, et al, Chem. Phys. Lett.,et al, Chem. Phys. Lett.,142, 142, 519, (1987) 519, (1987)

    Phase space bottlenecks to longPhase space bottlenecks to long--time energy relaxationtime energy relaxation

    M. J. Davis, M. J. Davis, J. Chem. Phys.,J. Chem. Phys., 83,83, 1016, (1985)1016, (1985)

    32.5 ,2/)35(

    ≤≤+=

    γγ

    Barriers for diffusion of trajectoriesBarriers for diffusion of trajectories

    intramolecular energy relaxation intramolecular energy relaxation are related to phase space structuresare related to phase space structures

    33--DOF systemDOF system

    3D constant energy surface3D constant energy surface2D invariant tori 2D invariant tori 3D invariant tori3D invariant tori

    5D constant energy surface5D constant energy surface

    22--DOF systemDOF system

    barrier to chaotic transport in 3barrier to chaotic transport in 3--DOF system is 4D subspace:DOF system is 4D subspace: 0)( =ωF

  • Periodic orbits and invariant toriPeriodic orbits and invariant tori

  • TimeTime--frequency analysis for hydrogen in EP fieldsfrequency analysis for hydrogen in EP fields

    Periodic trajectoryPeriodic trajectory

  • Spectral data versus FLI resultsSpectral data versus FLI results

    weakly chaotic trajectoryweakly chaotic trajectory

  • Spectral data versus FLI resultsSpectral data versus FLI results

    strongly chaotic trajectorystrongly chaotic trajectory

  • TimeTime--frequency planes for 3D hydrogen in crossed fieldsfrequency planes for 3D hydrogen in crossed fields

    weakly chaotic trajectoryweakly chaotic trajectory

  • TimeTime--frequency planes for strongly chaotic trajectoryfrequency planes for strongly chaotic trajectory

  • dts

    uttf

    ssuWf ∫

    ∞+

    ∞−⎟⎠⎞

    ⎜⎝⎛ −Ψ= *)(

    1),(

    s

    η=ω

    2),(1),( :Scalogram suWfs

    suPW =

    TimeTime--frequency decompositionfrequency decomposition

    ReferenceReference: : P. Goupillaud and A. Grossmann and J. MorletP. Goupillaud and A. Grossmann and J. Morlet , , GeoexplorationGeoexploration ((19841984 ))

    1 , >⎟⎠⎞

    ⎜⎝⎛ −Ψ s

    suttt

    ))(Re( tψ

    freq

    uen

    cy

    timeGrossmann Grossmann -- Morlet wavelet transform Morlet wavelet transform

    i t tt e e2 2/2( ) η − σψ =

    1 ,