Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

20
Thirty Years Ago!

Transcript of Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Page 1: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Thirty Years Ago!

Page 2: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

At the Max Planck

CdTe

Resonant Brillouin Scattering

Page 3: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Membrane Acoustics: Nanostructures to biological tissues

• Supported layers – standing resonances– SiON/GaAs; ZnSe/GaAs

• Freestanding Nanomembranes– SiN– SiN/Polymer– Patterned nanowires

• Cornea and eye lens

Page 4: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Longitudinal Standing Modes

SiO3N4/ GaAs ZnSe/ GaAs

θ

Page 5: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Organ Pipe Modes

d=3λ/4, f=3V/4d,Second harmonic d=λ, f=V/d

Second harmonic

Page 6: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Scattering Intensity

Elasto-Optic Contributions Film + Substrate

Bortolani, Marvin, Nizzoli, Santoro J. Phys. C. 16, 1757 (1983)

E-O

Page 7: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Scattering Intensity

ZnSe

GaAs

k3f(1) k3

f(2)

k3f(2)

k3f(1)

Page 8: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

ZnSe/GaAs: BLS Intensity

Page 9: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Freestanding membranes• Ultra-light weight

– Robust, pliable, flexible electronics– Mechanical/ elastic properties

• Proximity of surfaces ~ phonon wavelengths– Lattice vibrations modified– Increased phonon relaxation rates– Nano-scale heat transport; Quantized thermal conductance– Consequence on electron transport

• Composite hard-soft (inorganic-polymer) membranes– Phonon isolation

• Lithography on soft layer– Nano-wires/ lines

Page 10: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Freestanding Si3N4 membrane

LSM, TSM, Dilational, Flexural Modes

Page 11: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Freestanding Si3N4-PMMA bilayer nano-membranes

Page 12: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

PMMA/SiN: dispersion

Page 13: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Nanowires

-20 -15 -10 -5 0 5 10 15 20

D=300nm

w=200nm

q||

=200

=400

=540

Frequency (GHz)

D=300nmw=200nm

q T

=540

=400

=200

w = 300nm,D = 100, 200, 300nmh =dP= 75, 65, 60 nmds = 100 nm

Page 14: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Nano-wire Dispersion

Odd parity

Even parity

Resonant Ultrasound Spectroscopy (Migliori)

Page 15: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

In-plane Dispersion

Page 16: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Mode Profiles

2TSM

Edge type1TSM

1TSMm= 0TSM

q1= qx = mπ/w,q2= qy = 0

Page 17: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Mode Profiles

Finite q

Page 18: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Human Lens Soft outer cortex, stiff inner nucleus

Transition between stiff nucleus to soft cortex results in mode doublet

No change in frequency and bulk modulus with age (B = ρ λ2 ν2/4n2).

Heys KR, et.al Molecular Vision (2004)

Page 19: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Bovine Lens and Cornea

Probe intact bovine eye globe, power ~5mW.

Frequency (bulk modulus) profile mapped through axial depth of eye globe.

Corneal modulus (BLS) excellent agreement with ultrasonics on same location

Cortex-nucleus transition in bovine lens not seen.

Corneal and lenticular thickness, distance between cornea and lens measured.

Probe fibril structure in cornea?

Bulk Modulus:

Human Lens: 3.7 GPa,

Bovine Lens: 4.1 GPa,

Bovine Cornea: 2.6 GPa

Mission, G. Ophthal. Physiol. Opt. 2007 27: 256-264.

Page 20: Thirty Years Ago!. At the Max Planck CdTe Resonant Brillouin Scattering.

Conclusions

• BLS of elasticity on nanoscale structures• Standing wave modes (LSM, TSM) distinct role

of ripple and e-o contributions• Flexural and Dilational modes• Mode confinement across width and height of

rectangular wires – role of sidewalls in trench structures

• Corneal and Lens studies – non-invasive probe with potential clinical relevance