Theory and Interpretation of Core-level...

48
Theory and Interpretation of Core-level Spectroscopies* J. J. Rehr Department of Physics University of Washington, Seattle, WA Supported by DOE BES and NSF Summer School: Electronic Structure Theory for Materials and Molecules IPAM Summer School, UCLA Los Angeles, CA 29 July, 2014

Transcript of Theory and Interpretation of Core-level...

Page 1: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Theory and Interpretation of Core-level

Spectroscopies*

J. J. Rehr

Department of Physics University of Washington, Seattle, WA

Supported by DOE BES and NSF

Summer School: Electronic Structure Theory for Materials and Molecules IPAM Summer School, UCLA Los Angeles, CA 29 July, 2014

Page 2: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Theory and Interpretation of Core-level Spectroscopies

• GOALS: ab initio theory of XAS, XPS, etc. Accuracy ~ experiment • TALK: Excited state electronic structure I. Introduction History & motivation II. Real-space Green’s Fn FEFF9 code III. GW/BSE OCEAN code IV. Extensions Correlated systems

Page 3: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

I. Introduction: X-ray Absorption Spectra

Photon energy (eV)

fcc Al

UV X-ray

Theory vs expt

EXAFS

XAS

Q: How to calculate & interpret ?

Page 4: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

BUT need to calibrate experiment with “Standard”

→ X-ray Microscope!

EXAFS

Fourier Transform

Rnn

shift

Cu

Shifted Radial Distribution

Heuristic Interpretation of EXAFS*

*Stern Sayers Lytle, UW 1971

EXAFS → Local structure

Page 5: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

”I always thought it was easier to measure x-ray absorption than to calculate it.” Hans Bethe ~ 1980

Answer 1

Page 6: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

”The chance is high that the truth lies in the fashionable direction. But on the off chance that it isn’t, who will find it?” R. P. Feynman

Page 7: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Ground-state DFT theory (LAPW) vs Excited State vs Expt

Ground state = no damping LARGE ERRORS!

Gotcha: Standard DFT theory fails!

Page 8: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Why the difficulty ?

Fermi Golden Rule for XAS μ(ω)

Too many quasi-particle final states ψf

Final state rule V′coul = Vcoul + Vcore−hole

Non- hermitian self-energy Σ(E) (replaces DFT Vxc)

Page 9: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Theoretical Breakthroughs 4 developments beyond DFT ● Scattering theory of excited states

HIGH energy ~ 103 eV LARGE angular momentum l = 20 ● Inelastic mean free paths λ ● Screened core-hole ● Debye-waller damping factors

+

Σ

Page 10: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Answer 2 (JJR)* ”Now (1990) it is easier to calculate EXAFS than to measure it” (**if structure is known)

** 10 years later - JACS 113, 5136 (1991)

Page 11: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

J. J. Rehr & R.C. Albers Rev. Mod. Phys. 72, 621 (2000)

http://leonardo.phys.washington.edu/feff/

How? Quantitative XAS theory FEFF

Page 12: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

II. Real-space Green’s Function Theory

Golden rule via Green’s Functions G = 1/( E – h – Σ )

Golden rule via Wave Functions

Ψ Paradigm shift

No sums over final states !

Page 13: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

What’s a real space Green’s function?

Wave function in QM H Ψ = E Ψ Ψ(r) = Amplitude to find particle at r Green’s function (H – E) G = - δ(r-r’) G(r,r’,E) = aka Propagator = Amplitude to go from r to r’ Exact in various limits !

Page 14: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

G0 free propagators t-matrix = ei δl sin δl δRR’ δll’

Ingredients:

Multiple-scattering calculations of G

MS Path

Full MS

Page 15: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Implementation: RSGF Code FEFF

BN Core-hole, SCF potentials

Essential!

89 atom cluster

Page 16: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

No peak shift!

Path Expansion 15 paths

Rnn= 2.769 fcc Pt

*Theoretical phases accurate distances to < 0.01 Å

χ(R)

R (Å)

Example: Pt EXAFS – MS path expansion

Phase Corrected EXAFS Fourier Transform *

Page 17: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

1.0

0.8

0.6

0.4

0.2

0.0

Norm

alize

d Ab

sorp

tion

13360133201328013240

Photon Energy, eV

PtL2_xmu '98feb004_xm

PtL2edge

FEFF calculation Experiment

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Norm

alize

d Ab

sorp

tion

1164011620116001158011560

Photon Energy, eV

PtL3_xmu '98feb002_xmu'

FEFF calculation Experiment'

PtL3edge

Example: Pt XANES full multiple-scattering Pt L3-edge Pt L2-edge (S. Bare, UOP)

• Good agreement: Relativistic FEFF explains all spectral features, including absence of white line at L2-edge.

• Self-consistency essential

Page 18: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Green’s Functions and Parallel Computation

“Natural parallelization”

Each CPU does one energy 1/NCPU

Energy E is a parameter !

Page 19: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Cu pDOS vs XAS and XES

Denstity of States interpretation of XANES : Excited State Electronic Structure

XAS

XES pDOS

Fermi energy EF Final state energy E

Page 20: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Application EXAFS analysis of Re-catalysts Simon R. Bare, et al., J. Phys. Chem. 115, 5740 (2011)

Page 21: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Application: Pt catalysts Pt10/γ-Al2O3

Finite Temp, Real-time DFT/MD

+ XAS of supported

Pt nano-catalysts*

Mean nn distance

2500 3 fs time-steps Pt L3 XAS

*F. Vila et al. Phys Rev B78, 121404(R) (2008)

Page 22: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

(b) Temp

200 40

1st N

eighb

our D

istan

ce (Å

)

2.65

2.70

2.75

2.80

2.85 Pt Foil0.9-nm Pt on A 0.9-nm Pt on A 2.4-nm Pt on C

(a)

Energy (eV)11550 11560 11570 11580 11590

Nor

mal

ized

Abs

orpt

ion

0.0

0.2

0.4

0.6

0.8

1.0

1.2

165 K200 K293 K423 K573 K

Red shift

Enhanced σ2

NTE

FEFF explains all surprising anomalies

*Kang, Menard, Frenkel, Nuzzo., JACS Commun. 128, 12068 (2006)

Experimental Observations (X-ray Absorption Expt)*

XAS

Page 23: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

JJR et al., Comptes Rendus Physique 10, 548 (2009)

(10 more years)

Improved many-body Corrections

FEFF9

Theoretical Spectroscopy L. Reining (Ed) (2009)

Page 24: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Key many-body effects in XAS

● Self-energy Σ(E) Energy shifts, losses

● Core-hole effects Excitons, Screening

● Multi-electron excitations Satellites

● Debye-Waller factors Phonons, disorder

Σ

Page 25: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Many-pole GW Self-energy*

MPSE: Σ(E) Energy dependent Extension of Hedin-Lundqvist plasmon-pole

Sum of plasmon pole models matched to loss function

*J.J. Kas et. al, Phys Rev B 76, 195116 (2007)

LiF loss fn

Efficient

Page 26: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

RPA Core-hole potential

RPA a lá Stott-Zaremba

Fully screened FEFF8

Unscreened

Tungsten metal (Y. Takimoto)

RPA

Similar to Bethe-Salpeter Eq for W Improves on final state rule, Z+1, half-core hole

Page 27: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Results: Accurate K-edge XANES

Cu

Many-pole self energy

Plasmon-pole self energy

Page 28: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

( ) ωωβωρµ

σ di 2

coth0

22 ∫∞

=

( ) ( ){ }recursion Lanczos step6

22

−=

−= ii QDQ ωδωρ

Ab initio XAS Debye Waller Factors e-2σ2 k2

*Phys. Rev. B 76, 014301 (2007)

Ψ

Many Pole model

for phonons

*

VDOS

Page 29: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Example: XAFS Debye-Waller Factor of Ge

Expt: Dalba et al. (1999)

F. Vila et al.

CD-Debye model

LDA – ab initio

Page 30: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Many-body amplitude factors S02

Q: What is S02

S02~0.9

Page 31: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Inelastic losses in XAS beyond QP

• Many-body XAS = Convolution of QP XAS with energy dependent spectral function A(ω, ω’)

• Explains crossover: adiabatic to sudden approximation

≈ μqp(ω) S02

Page 32: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Theory: Quasi-Boson Model* IDEA: Neutral Excitations - plasmons, electron-hole pairs, phonons, are bosons

* L. Hedin, J. Phys.: Condens. Matter 11, R489 (1999)

Many-body Model: |N> = |e-,h, bosons >

Vn → -Im ε-1(ωn,qn) “fluctuation potentials”

Page 33: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Effective GW++ Green’s Function*

Extrinsic + Intrinsic - 2 x Interference

geff(ω)=

Spectral function: A(ω) = -(1/π) Im geff(ω)

*L. Campbell, L. Hedin, J. J. Rehr, and W. Bardyszewski, Phys. Rev. B 65, 064107 (2002)

+ - -

Leading term: Damped Green’s function in presence of core-hole (~ final state rule! )

Page 34: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Implementation in FEFF

Multi-electron excitations

→ satellites in

spectral funcion

cf. W. Bardyszewski and L. Hedin, Physica Scripta 32, 439 (1985)

S02 = 0.9

Page 35: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

III. GW/Bethe-Salpeter Equation*

Ingredients: Particle-Hole Hamiltonian H = he - hh + Veh he/h = εnk + Σnk Σ GW self-energy Veh = Vx + W Particle-hole interaction

Page 36: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Plane-wave, pseudo- potential code cf. EXC, YAMBO, BerkeleyGW, etc.

UW / NIST Collaboration

A. AI2NBSE code Optical-UV Spectra (ABINIT + NIST BSE + MPSE + interface):

Page 37: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

B. OCEAN* Core-GW/BSE Code

*Obtaining Core Excitations from ABINIT and NBSE PW-PP + PAW + MPSE + NBSE

LiF: F K edge

Phys. Rev. B83, 115106 (2011)

OCEAN vs FEFF

Page 38: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Effect of Self-energy in BSE and ΔSCF-DFT*

µ(E)

(arb

u.)

E (eV)

MPSE

MgAl2O4 < ΔSCF-DFT LiF (BSE < OCEAN)

MPSE

*J. J. Kas, J. Vinson, N. Trcera, D. Cabaret, E. L. Shirley, and J. J. Rehr, Journal of Physics: Conference Series 190, 012009 (2009)

EXPT

Page 39: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Application: Water & Ice ( AI2NBSE + OCEAN )

Optical Spectra O K-edge XAS

< 17 molecule MD snapshots

Page 40: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

OCEAN L-edge Spectra – Multiplet effects*

Ti L2,3 edge SrTiO3

HBSE = Hh + He + Heh

Heh = V®(r) + g(i; j)

cf. De Groot et al – Atomic multiplet model + crystal-field parameters

Hh = ¡²® + L ¢ S(p)

He = p2

2m + L ¢ S(d) + HxtalKS

Hat = Hav + L ¢ S(p)

+L ¢ S(d) + Hxtalfield + g(i; j)

J. Elec.Spect. Rel. Phen. 144, 1187(2005)

a lá E. Shirley: BSE + KS crystal potential ab initio – no parameters

Page 41: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

IV. Extensions for correlated systems a) Hubbard-model corrections

V U (r; E) = V SCF (r) + §GW (E) + §Ulm¾(E)

cf. H. Jiang, Rinke et al. Phys. Rev. B 82, 045108 (2010).

Hubbard U as self-energy correction estimated with cRPA

O K-edge MnO

Page 42: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Extensions b) Charge-Transfer Excitations*

*a lá Lee, Gunnarsson, & Hedin. (1999)

3-Level system + Quasi-boson model Core |c> Localized |a> Ligand |b>

Page 43: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Double pole intrinsic spectral function

~ 6 eV

Ratio r(ω)

Page 44: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Example: CT satellites in transition metal oxides Physical Review B 89, 085123 (2014)

Cf. J.D.Lee, O.Gunnarsson ,and L.Hedin, Phys.Rev. B60,8034 (1999)

Page 45: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Extensions: RIXS and COMPTON Spectra

Page 46: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Proceedings of XAFS 15 in press 2012

User-friendly code GUI interfaces – JFEFF

www.feffproject.org

Page 47: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Summary & Conclusions

Goals largely achieved - Core spectra understood in terms of excited state theory ● Ab initio RSGF and GW/BSE codes ● Ab initio many body corrections: core-hole, self energy, DW factors, and strong correlations ● Combined codes (FEFF+OCEAN+AI2NBSE) for full spectrum response UV-Vis-XAS

Page 48: Theory and Interpretation of Core-level Spectroscopies*helper.ipam.ucla.edu/publications/gss2014/gss2014_11944.pdf · matrix = e i δ l sin δ l δ RR’ δ ... *L. Campbell, L. Hedin,

Acknowledgments: Rehr group & collaborators and L Reining, M Guzzo, E Shirley, K Gilmore, et al.

Thanks to DOE BES and CMCSN and the ETSF for $ & €