The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf ·...

92
The theory of Diffusive Shock Acceleration Stefano Gabici APC, Paris

Transcript of The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf ·...

Page 1: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

The theory ofDiffusive Shock Acceleration

Stefano GabiciAPC, Paris

Page 2: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock wavesSupersonic motion + medium -> Shock Wave

Page 3: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock wavesSupersonic motion + medium -> Shock Wave

(SuperNova ejecta) (InterStellar Medium)

velocity of SN ejecta up to

sound speed in the ISM cs =

γkT

m≈ 10

T

104K

1/2

km/s

vej ≈ 30000 km/s

Mach number strong shocksM =v

cs>> 1

Page 4: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock wavesThermodynamic quantities are discontinuous across a shock wave

dens

ity

->

<---

->high amplitude

c2s = γ

p

∝ γ−1

Page 5: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

this goes faster

this goes slower

Shock wavesThermodynamic quantities are discontinuous across a shock wave

dens

ity

->

<---

->high amplitude

c2s = γ

p

∝ γ−1

Page 6: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock wavesThermodynamic quantities are discontinuous across a shock wave

dens

ity

->

<---

->high amplitude

c2s = γ

p

∝ γ−1

Page 7: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock wavesThermodynamic quantities are discontinuous across a shock wave

dens

ity

->

<---

->high amplitude

c2s = γ

p

∝ γ−1

Page 8: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

shock!

Shock wavesThermodynamic quantities are discontinuous across a shock wave

dens

ity

->

<---

->high amplitude

c2s = γ

p

∝ γ−1

Page 9: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

ShockUp-stream Down-stream

u1 u2

1 , T1 2 , T2

-->

Shock rest frame

Page 10: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Page 11: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratio

Page 12: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2

Page 13: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2

1u21

1 +

p1

1u21

Page 14: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2

1u21

1 +

p1

1u21

= 1u

21

1 +

c2s,1

γu21

Page 15: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2

1u21

1 +

p1

1u21

= 1u

21

1 +

c2s,1

γu21

= 1u21

1 +

1γM2

Page 16: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2

1u21

1 +

p1

1u21

= 1u

21

1 +

c2s,1

γu21

= 1u21

1 +

1γM2

M >> 1

Page 17: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2

Page 18: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2 u1

u2= 1 +

p2

2u222u2

2 2u22

Page 19: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2 u1

u2= 1 +

p2

2u222u2

2 2u22

u1

u2= 1 +

1γM2

2

Page 20: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass conservation

1 u1 = 2 u2

u1

u2=

2

1= r

compression ratioMomentum conservation

1u21 + p1 = 2u

22 + p2 u1

u2= 1 +

p2

2u222u2

2 2u22

u1

u2= 1 +

1γM2

2

r = 1 +3

5M22

γ =53

Page 21: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass + Momentum conservation

r = 1 +3

5M22

Energy conservation

121u

31 +

γ

γ − 1p1u1 =

122u

32 +

γ

γ − 1p2u2

enthalpy

Page 22: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass + Momentum conservation

r = 1 +3

5M22

Energy conservation

121u

31 +

γ

γ − 1p1u1 =

122u

32 +

γ

γ − 1p2u2 M >> 1

enthalpy

Page 23: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass + Momentum conservation

r = 1 +3

5M22

Energy conservation

121u

31 +

γ

γ − 1p1u1 =

122u

32 +

γ

γ − 1p2u2 M >> 1

enthalpy

122u3

2122u3

2

Page 24: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

u1 u2

1 , T1 2 , T2

Mass + Momentum conservation

r = 1 +3

5M22

Energy conservation

121u

31 +

γ

γ − 1p1u1 =

122u

32 +

γ

γ − 1p2u2 M >> 1

enthalpy

122u3

2122u3

2

r2 = 1 +3M2

2

Page 25: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

r = 1 +3

5M22

r2 = 1 +3M2

2

r = 4

M22 =

15

Page 26: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

r = 1 +3

5M22

r2 = 1 +3M2

2

r = 4

M22 =

15

What about down-stream temperature?

15

=M22 =

u22

c2s,2

Page 27: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

r = 1 +3

5M22

r2 = 1 +3M2

2

r = 4

M22 =

15

What about down-stream temperature?

15

=M22 =

u22

c2s,2

=u2

1

16 c2s,2

Page 28: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves

r = 1 +3

5M22

r2 = 1 +3M2

2

r = 4

M22 =

15

What about down-stream temperature?

15

=M22 =

u22

c2s,2

kbT2 =316

mu21

=u2

1

16 c2s,2

=mu2

1

16 γ kbT2

Page 29: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock wavesA (strong) shock:

compresses moderately the gas

makes the supersonic gas subsonic

converts bulk energy into internal energy

2

1= r = 4

M1 >> 1→M2 =1√5

< 1

kbT2 =316

mu21

Weak shock:

M >> 1

M 1

smaller compression and moderate gas heating r < 4 T2 T1

Page 30: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Shock waves + Magnetic fields

ShockUp-stream Down-stream

u1u2

-->

B

B

B

B

B

B

Shock rest frame

Page 31: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

ShockUp-stream Down-stream-->

B

B

B

B

B

B

Up-stream rest frame

u1

--> relativistic particle of mas m (<< Mcloud) and energy E

u1 − u2

a

b

Ea = Eb

Page 32: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

ShockUp-stream Down-stream-->

B

B

B

B

B

B

Down-stream rest frame

--> relativistic particle of mas m (<< Mcloud) and energy E

u1 − u2

a

b

Ea = Eb

u2

Page 33: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationSymmetry

u1 − u2 u1 − u2

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an head-on collision with a plasma moving with velocity u1-u2

Up-stream Down-stream

Page 34: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationSymmetry

u1 − u2 u1 − u2

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an head-on collision with a plasma moving with velocity u1-u2

Asymmetry

(Infinite and plane shock:) Upstream particles always return the shock, while downstream particles may be advected and never come back to the shock

Up-stream Down-stream

Page 35: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

u1 − u2

The particle has initial (upstream)energy E and initial momentum p

UP DOWN

The particle “sees” the downstream flow with a velocity:

and a Lorentz factor:

v = u1 − u2

γv

In the downstream rest frame the particle has an energy (Lorentz transformation):

E = γv(E + p cos(θ) v)

Page 36: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

E = γv(E + p cos(θ) v)

the shock is non-relativistic ----------------->

we assume that the particle is relativistic -->

γv = 1

E = pc

E = E +E

cv cos(θ)

∆E

E=

v

ccos(θ)

energy gain per half-cycle(up->down-stream)

Page 37: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

ASSUMPTION: particles up (down) - stream of the shock are rapidly isotropized by magnetic field irregularities

θ0 < θ <π

2

# of particles between and prop. to ---->

rate at which particles cross the shock prop. to --->

θ + dθθ sin(θ)dθ

c cos(θ)

c

p(θ) ∝ sin(θ) cos(θ)dθprobability for a particle to cross the shock:

Page 38: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

p(θ) ∝ sin(θ) cos(θ)dθ

The total probability must be equal to 1

A

π2

0dθ cos(θ) sin(θ) ≡ 1

Page 39: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

p(θ) ∝ sin(θ) cos(θ)dθ

The total probability must be equal to 1

A

π2

0dθ cos(θ) sin(θ) ≡ 1

sin(θ) = t

dt = cos(θ)dθ

Page 40: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

p(θ) ∝ sin(θ) cos(θ)dθ

The total probability must be equal to 1

A

π2

0dθ cos(θ) sin(θ) ≡ 1

sin(θ) = t

dt = cos(θ)dθ

A

1

0dt t

Page 41: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

p(θ) ∝ sin(θ) cos(θ)dθ

The total probability must be equal to 1

A

π2

0dθ cos(θ) sin(θ) ≡ 1

sin(θ) = t

dt = cos(θ)dθ

A

1

0dt t = A

t2

2

1

0

=A

2

Page 42: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

p(θ) ∝ sin(θ) cos(θ)dθ

The total probability must be equal to 1

A

π2

0dθ cos(θ) sin(θ) ≡ 1

sin(θ) = t

dt = cos(θ)dθ

A

1

0dt t = A

t2

2

1

0

=A

2

p(θ) = 2 sin(θ) cos(θ)dθnormalized probability:

Page 43: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

∆E

E=

v

ccos(θ)

(1) energy gain per half-cycle:(up->down-stream)

p(θ) = 2 sin(θ) cos(θ)dθ(2) probability to cross the shock:

Page 44: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

∆E

E=

v

ccos(θ)

(1) energy gain per half-cycle:(up->down-stream)

p(θ) = 2 sin(θ) cos(θ)dθ(2) probability to cross the shock:

<∆E

E>The average gain per half-cycle is (1) averaged over the

probability distribution (2).

<∆E

E> = 2

vc

π2

0dθ cos2(θ) sin(θ)

Page 45: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

<∆E

E> = 2

vc

π2

0dθ cos2(θ) sin(θ)

Page 46: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

<∆E

E> = 2

vc

π2

0dθ cos2(θ) sin(θ)

cos(θ) = t

dt = − sin(θ)dθ

Page 47: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

<∆E

E> = 2

vc

π2

0dθ cos2(θ) sin(θ)

cos(θ) = t

dt = − sin(θ)dθ

= −2vc

−1

0dt t2 = −2

vc

t3

3

−1

0

=2

3

vc

Page 48: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

<∆E

E> = 2

vc

π2

0dθ cos2(θ) sin(θ)

cos(θ) = t

dt = − sin(θ)dθ

= −2vc

−1

0dt t2 = −2

vc

t3

3

−1

0

=2

3

vc

full cycle: (up -> down) and (down -> up) : SYMMETRY

<∆E

E>up→down=<

∆E

E>down→up

Page 49: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

<∆E

E> =

4

3

vc

=

4

3

u1 − u2

c

Energy gain per cycle (up -> down -> up):

First-order (in v/c) Fermi mechanism

Page 50: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

<∆E

E> =

4

3

vc

Page 51: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

<∆E

E> =

4

3

vc

Ei+1 − Ei

Ei=

particle energy at i-th cycle

Page 52: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

<∆E

E> =

4

3

vc

Ei+1 =

1 +

4

3

v

c

Ei

Ei+1 − Ei

Ei=

particle energy at i-th cycle

Page 53: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

<∆E

E> =

4

3

vc

Ei+1 =

1 +

4

3

v

c

Ei

Ei+1 − Ei

Ei=

particle energy at i-th cycle

Ei+1 = β Ei

Energy increases by a (small) factor beta after

each cycle

Page 54: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

<∆E

E> =

4

3

vc

Ei+1 =

1 +

4

3

v

c

Ei

Ei+1 − Ei

Ei=

particle energy at i-th cycle

UP DOWN

Particles can escape downstream!

Ei+1 = β Ei

Energy increases by a (small) factor beta after

each cycle

Page 55: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

there are particles with energy aboveN = N0Pk E = E0β

k

Page 56: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

there are particles with energy aboveN = N0Pk E = E0β

k

log

N

N0

= k logP log

E

E0

= k log β

Page 57: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

there are particles with energy aboveN = N0Pk E = E0β

k

log

N

N0

= k logP log

E

E0

= k log β

log(N/N0)

log(E/E0)=

logP

log β

Page 58: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationWhat happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

there are particles with energy aboveN = N0Pk E = E0β

k

log

N

N0

= k logP log

E

E0

= k log β

log(N/N0)

log(E/E0)=

logP

log β N(> E) = N0

E

E0

log Plog β

Page 59: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

N(> E) = N0

E

E0

log Plog β

n(E) ∝ E−1 + log Plog β

Integral spectrum Differential spectrum

We need to determine the value of P -> probability that the particle remains within the accelerator after each cycle

Page 60: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationIt is easier to calculate the probability (1-P) that the particle leaves

the accelerator after each cycle

UP DOWN

Page 61: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationIt is easier to calculate the probability (1-P) that the particle leaves

the accelerator after each cycle

UP DOWN

RinRin -> # of particles per unit time (rate) that begin a cycle

Page 62: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationIt is easier to calculate the probability (1-P) that the particle leaves

the accelerator after each cycle

UP DOWN

Rin RoutRin -> # of particles per unit time (rate) that begin a cycle

Rout -> # of particles per unit time (rate) that leave the system

Page 63: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationIt is easier to calculate the probability (1-P) that the particle leaves

the accelerator after each cycle

UP DOWN

Rin RoutRin -> # of particles per unit time (rate) that begin a cycle

Rout -> # of particles per unit time (rate) that leave the system

Rout

Rin= 1− P

Page 64: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationLet’s calculate Rin...

n -> density of accelerated particles close to the shock

UP DOWN

n is isotropic: dn =n

4πdΩ

θ

velocity across the shock: c cos(θ)

Page 65: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationLet’s calculate Rin...

n -> density of accelerated particles close to the shock

UP DOWN

n is isotropic: dn =n

4πdΩ

θ

velocity across the shock: c cos(θ)

Rin =

up→downdn c cos(θ)

Page 66: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationLet’s calculate Rin...

n -> density of accelerated particles close to the shock

UP DOWN

n is isotropic: dn =n

4πdΩ

θ

velocity across the shock: c cos(θ)

Rin =

up→downdn c cos(θ) =

n c

π2

0cos(θ) sin(θ)dθ

0dψ =

1

4n c

Page 67: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationLet’s calculate Rin...

n -> density of accelerated particles close to the shock

UP DOWN

n is isotropic: dn =n

4πdΩ

θ

velocity across the shock: c cos(θ)

Rin =

up→downdn c cos(θ) =

n c

π2

0cos(θ) sin(θ)dθ

0dψ =

1

4n c

...and Rout -> particles lost (advected) downstream Rout = n u2

Page 68: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationThe probability of non returning to the shock (1-P) is:

1− P =Rout

Rin=

n u214 n c

=u1

c<< 1

most of the particles perform many cycles

Page 69: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationThe probability of non returning to the shock (1-P) is:

1− P =Rout

Rin=

n u214 n c

=u1

c<< 1

most of the particles perform many cycles

Summarizing...

return probability -> P = 1− u1

c

energy gain per cycle-> β = 1 +4

3

u1 − u2

c= 1 +

u1

c

Page 70: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

n(E) ∝ E−1 + log Plog β

Page 71: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

n(E) ∝ E−1 + log Plog β

logP = log1− u1

c

∼ − u1

c

Page 72: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

n(E) ∝ E−1 + log Plog β

logP = log1− u1

c

∼ − u1

c

log β = log1 +

u1

c

∼ u1

c

Page 73: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

n(E) ∝ E−1 + log Plog β

logP = log1− u1

c

∼ − u1

c

log β = log1 +

u1

c

∼ u1

c

n(E) ∝ E−2

UNIVERSAL SPECTRUM

Page 74: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationAssumptions made:

strong shock

isotropy both up and down-stream

test-particle (CR pressure negligible)

-> UNIVERSAL SPECTRUM n(E) ∝ E−2

shock velocity/Mach number

gas density/pressure

magnetic field intensity and/or structure

diffusion coefficient ...

It doesn’t depend on:

Page 75: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationAssumptions made:

strong shock

isotropy both up and down-stream

test-particle (CR pressure negligible)

-> UNIVERSAL SPECTRUM n(E) ∝ E−2

shock velocity/Mach number

gas density/pressure

magnetic field intensity and/or structure

diffusion coefficient ...

It doesn’t depend on:

SNR shocks

turbulent B field

efficient CR acceleration

Page 76: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

E

E2N(E)

universal spectrum

∝ E−2

Emax

maximum energy

Page 77: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

E

E2N(E)

universal spectrum

∝ E−2

Emax

maximum energy

UP DOWN

ld

Page 78: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

E

E2N(E)

universal spectrum

∝ E−2

Emax

maximum energy

UP DOWN

ldld ≈

D td

Page 79: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration

E

E2N(E)

universal spectrum

∝ E−2

Emax

maximum energy

UP DOWN

ld

while the particle diffuses the shock moves

ld = u1 td

ld ≈

D td

Page 80: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Accelerationld ≈

D td

ld = u1 tdu1 td =

D td td ≈ D

u21

ld ≈ D

u1

Page 81: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Accelerationld ≈

D td

ld = u1 tdu1 td =

D td td ≈ D

u21

ld ≈ D

u1

downstream: the same argument can be used to get the same result

remains a good order-of-magnitude estimate for the time of a cycletd

Page 82: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Accelerationld ≈

D td

ld = u1 tdu1 td =

D td td ≈ D

u21

ld ≈ D

u1

downstream: the same argument can be used to get the same result

remains a good order-of-magnitude estimate for the time of a cycletd

D increases with E

E increases at each cycle the last cycle is the longest

Page 83: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Accelerationld ≈

D td

ld = u1 tdu1 td =

D td td ≈ D

u21

ld ≈ D

u1

downstream: the same argument can be used to get the same result

remains a good order-of-magnitude estimate for the time of a cycletd

D increases with E

E increases at each cycle the last cycle is the longest

acceleration time

Page 84: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationMaximum energy for the accelerated particles:

acceleration time td ≈ D

u21

Page 85: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationMaximum energy for the accelerated particles:

acceleration time td ≈ D

u21

D = D0 Eα

= tage

Emax =

u21 tageD0

Page 86: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock AccelerationMaximum energy for the accelerated particles:

acceleration time td ≈ D

u21

D = D0 Eα

= tage

Emax =

u21 tageD0

The maximum energy: increases with time

depends on: age, shock speed, magnetic field

intensity and structure (through D), ...

it is NOT universal!

Page 87: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration: weak shocksHomework: what happens if the shock is NOT strong?

n(E) ∝ E−α α =r + 2

r − 1Solution:( )

Examples: r = 4 --> alfa = 2

r < 4 --> alfa >2

r = 3 --> alfa = 3

Acceleration is less efficient at weak shocks

Page 88: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

x

u u0

low energy CRs high energy CRs

shock acceleration isintrinsically efficient cosmic ray

pressure is slowing down the upstream flow formation of a precursor

CR pr

essu

re

Non-linear Diffusive Shock AccelerationNon-linear DSA: what happens if the acceleration efficiency is high (~1)?

Page 89: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

x

u u0

low energy CRs high energy CRs

High energy CRsR > 4

slope < 4

Low energy CRsR < 4

slope > 4

Non-linear Diffusive Shock AccelerationNon-linear DSA: what happens if the acceleration efficiency is high (~1)?

Page 90: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration at SuperNova Remnants and the origin of

Galactic Cosmic Rays

(1) Spallation measurements of Cosmic Rays suggest that CR sources have to inject in the Galaxy a

spectrum close to E-2. (2) Strong shocks at SNRs can indeed accelerate

E-2 spectra.-> Thus SNRs are good candidates as sources of

Galactic CRs.

Page 91: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration at SuperNova Remnants and the origin of

Galactic Cosmic Rays

(1) Spallation measurements of Cosmic Rays suggest that CR sources have to inject in the Galaxy a

spectrum close to E-2. (2) Strong shocks at SNRs can indeed accelerate

E-2 spectra.-> Thus SNRs are good candidates as sources of

Galactic CRs.

Page 92: The theory of Diffusive Shock Acceleration - Dto. de Fisicajarne/clases/Stefano_Gabici_three.pdf · Diffusive Shock Acceleration Symmetry u 1 − u 2 u 1 − u 2 Every time the particle

Diffusive Shock Acceleration at SuperNova Remnants and the origin of

Galactic Cosmic Rays

(1) Spallation measurements of Cosmic Rays suggest that CR sources have to inject in the Galaxy a

spectrum close to E-2. (2) Strong shocks at SNRs can indeed accelerate

E-2 spectra.-> Thus SNRs are good candidates as sources of

Galactic CRs.E-2 is the spectrum at the shock, not the one released in the ISM!