The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs...

20
Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum Example Problems Damping & Resonance

Transcript of The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs...

Page 1: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

Springs and Pendula

The SpringThe Torsion PendulumThe Simple PendulumThe Physical PendulumExample ProblemsDamping & Resonance

Page 2: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

SHM Reminder

For real SH oscillators, We want to be able to

calculate ω (and f and T) from the physical

characteristics of the oscillator

1. There is an equil pt 2. which means

Page 3: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

Simple Harmonic Oscillators must have an equilibrium point, and the restoring force must be proportional to the displacement.

The motion will obey:

Page 4: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

A quick word on our method:

You may remember:

Which lead to the realization that:

For each oscillator, we will start with Newton's 2nd Law and try to bring it into the form of so that we can deduce what ω is in terms of the physical characteristics of the oscillator.

Page 5: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

SHM: The Spring

Find ω so that we can derive an equation for the period, T.

Page 6: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

Torsion PendulumThe rotational version of a spring

Page 7: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

Rotating Simple Harmonic Oscillatorshave an equilibrium point, and the restoring

TORQUE must be proportional to the ANGULAR displacement.

For each oscillator, we will start with Newton's 2nd Law FOR ROTATION and try to bring it into the form of so that we can deduce what ω is in terms of the physical characteristics of the oscillator.

Page 8: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

SHM: The Torsion PendulumFind ω so that we can derive an equation for the period, T.

Page 9: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

A Quick Aside:Make sure your calculator is in radians mode.

Try sin(1)

Try sin(0.5)

Try sin(0.25)

Try sin(0.1)

See a pattern?

For small θ in radians, sinθ θ

Page 10: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

SHM: The Simple PendulumFind ω so that we can derive an equation for the period, T.

Page 11: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

SHM: The Physical PendulumFind ω so that we can derive an equation for the period, T.

Page 12: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

* *

approximately simple harmonic for small displacement angles (30 degrees or so)*

Page 13: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

EX1 Simple Pendulum

0.5 rad

0.8

m

0.2 kg

The simple pendulum is pulled back 0.5 rad clockwise and released.

(a) Find T, the period

(b) Write θ(t)

Page 14: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

EX2: Spring

2 kg

x(t) = (0.3 m) cos(6πt)

(a) Find T, the period(b) Find k, the spring constant

Page 15: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

EX3 Physical Pendulum

x pivot

CM

0.6 rad

CM

0.2 m

x pivot

Ring Ring pulled back to an angle

Find the frequency of the ring after it is released.

Page 16: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

EX4 Torsion PendulumWhen pulled back to an angle of 1 radian, the period of the torsion pendulum is 0.6 s. The bottom is a disk with mass 1 kg and radius 10 cm. Find the torsion constant.

Page 17: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

Coupled Springs

Page 18: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

Damping

Page 19: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20

Natural Frequency = frequency of a system based on its natural properties (like mass, springy-ness, etc.)

Forced Vibration = one vibrating object causes another to vibrate

Resonance = Forced vibration at an object's natural frequency.

Page 20: The Spring The Torsion Pendulum The Simple Pendulum … · Springs & Pendula Notes Cycle 20 Springs and Pendula The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum

Springs & Pendula Notes Cycle 20