The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

112

Click here to load reader

Transcript of The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Page 1: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

THE ORGANIC CHEMISTRY OF IRON, VOLUME 1

STRUCTURE AND BONDING I N ORGANIC IRON COMPOUNDS

By CARL KRÜGER

and

B.L. BARNETT and D. BRAUER

Max-Planck-Institut für Kohlenforschung Lembkestr. 5, Mülheim a.d.Ruhr, Germany

TABLE OF CONTENTS I. Introduction II. σ-Bonded Iron Carbon Compounds III. π-Bonded Organoiron Complexes

A. Complexes of Iron with Nonconjugated Olefin Systems

B. (n3-Allyl)iron Complexes C. (Conjugated Diene)iron Complexes

IV. Ferrocenes and Related Compounds V. Iron Compounds with Miscellaneous Ligands VI. Tables

References

Copyright © 1978 by Academic Press, Inc. All rights of reproduction in any form reserved.

ISBN0-12-417101-X(v.l)

Page 2: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

2 Carl Kruger et al.

I. INTRODUCTION

SCOPE OF THE SURVEY.

This article is concerned with the results of structural analyses, and to a lesser extent, with the bonding principles of organometallic iron compounds. The aim is to survey as completely as possible structural details presently available on these compounds, and to indicate problems which are still under discussion. Literature has been searched up to 1975, and all relevant structural results are summarized by tables referred to by each section of the article. However, due to delays in the editing, the discussion part of this review only covers those reports published up to 1972. Data quoted in these tables represent published values, including non-signif­icant digits. The outline of this review follows the editor­ial arrangement of this volume.

For each class of compounds discussed, one or more typi­cal examples were selected for computer drawings. The se­lected illustrations are not intended to reflect the accuracy of the individual structural determinations.

The author wishes to caution the uninitiated reader of structural publications from uncritical acceptance of accuracy of crystallographic data. Neither a low R-value (residual index, defined as

Σ Κ Ι - KW R = »L· I Σ F 1 o1

thus describing the fit of a molecular model (F ) to a given data set (F )) nor low standard deviations are alone an abso­lute measure for the accuracy of an X-ray structural determi­nation. A low R-value, which represents good precision and not necessarily good accuracy, could describe an excellent fit of a distorted structural model to a poor data set, hence giv­ing rise to erroneous interpretations. Systematic, but not obvious errors in intensity measurements, can give rise to underestimates of standard deviations. These values are ob­tained from the inverse error matrices of the usual least-squares refinement, and decrease with the increasing symmetry of the crystal system. Therefore one should avoid overly in­terpreting crystallographic data. If these data are the basis for theoretical computations, the advice of a specialist in the field should be sought.

However, the precision of structural work increased tre­mendously during the last decade with the introduction of dif-fractometers and better mathematical formalisms and computa­tional techniques. The estimated errors in bonding distances between the non-hydrogen atoms may now be in the range of

Page 3: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 3

0.005 to 0.01 A, and those of the bonding angles 0.5° to 2°. Hopefully some of the earlier, but fundamental, work will be repeated with the accuracy presently possible. Despite the limitations mentioned above, X-ray diffraction methods still yield the most accurate information about the geometry of com­plex molecules.

II. σ-BONDED IRON CARBON COMPOUNDS

BONDING

Compounds containing iron-carbon bonds are sensitive to homolytic cleavage, producing a free organic radical and the metal in a lower oxidation state. This instability is ex­plained by small energy differences between the filled d Or­bitals and the valence s and p orbitals of the metal used in bonding to the carbon. As a result, high energy d electrons can transfer to antibonding orbitals of the Fe-C bond. In compounds of higher oxidation state, electrons of the Fe-C bond may move into vacant metal d orbitals. Both formalisms result in a weakening of the metal-carbon bond.

From this scheme, Fe-C bonds may be stabilized in two ways. Often ligands with acceptor properties (such as carbon monoxide, η -cyclopentadienyl, phosphines, arsines, etc.) are attached to the metal, along with additional ligands to com­plete a stable electronic configuration. Secondly, the Fe-C bond may be strengthened by altering the effective electroneg­ativity of the carbon by using different hybridization states of the carbon (sp3 - sp2 - sp). Attaching strongly electro­negative substituents to the carbon (e.g. fluorine) gives sim­ilar results.

All effects mentioned are reflected in the observed Fe-C bond lengths. In addition, the geometry, the oxidation state of the iron, as well as the steric arrangement and the elec­tronic properties of the other ligands, may influence the ob­served bond lengths. Average values stated below should only be accepted within the limits of these considerations.

STRUCTURAL DETAILS OF FE-C 0-BONDS

Few X-ray structures containing Fe-C(sp3) bonds have been reported so far. The observed bond lengths range from 2.08 to 2.16 Ä ( see Table 1), with the average value being 2.11 Ä.

Introducing fluorine substituents at the bonded carbon (e.g. Fe-CF2-) shortens this value remarkably to 2.07 A (131). A similar value (2.06 Ä) has been reported for an acetic acid

Page 4: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

4 Carl Kruger et al.

dicarbonylcyclopentadieneiron complex, the acetic acid being the σ-bonded group via the a-carbon (23,330) (see Figure 1). In the latter compound, an interaction between Fe and the C atom of the carboxylic group (Fe-C : 2.85 Ä) is suggested. This is supported by the unusually low pK value of the acid and correspondingly lengthened C-0 bonds (1.32 A) in the car­boxylic group.

Fig. 1: The molecular structure of (r)5-C5H5)Fe(CO) 2CH2COOH

Interestingly, perfluorobutadiene is found to be σ-bonded to a tetracarbonyliron moiety (359). The average Fe-C dis­tance in this planar ring system (see Table 1, Nr. 3) is 2.00 A.

Among the earlier published structures containing Fe-C {sp ) and Fe-C(sp) bonds are those of hexamethylisocyanido-ferrous chloride (537) and ß-tetramethyl ferrocyanide (379). This class of compounds, which include iron-ö-olefin, iron-σ-arene, iron-carbene and ferracyclopentadiene moieties, is listed in Table 2. The observed Fe-C(sp2) distances in these compounds range from 1.89 A to 2.11 A, clustering around 1.98 A. A typical example of this class, the structure of trans-1,4-bis[dicarbonyl-(r|5-cyclopentadienyl)iron]buta-l,3-diene, determined independendly by two groups, is shown in Figure 2.

The olefinic bond in the butadiene system is not altered by the end-on bonding to the transition metal (C=C in 1,3-butadiene: 1.337(5) A).

Examples of structures containing Fe-(C=C) groups coordi­nated to a second iron atom within one molecule are also known

Page 5: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 5

(see Table 2). The reported Fe-C distances range from 1.96 to 2.09 A in these compounds. The participation of the iron atom

Fig. 2: The molecular structure of trans-l,4-bis[dicarbonyl-(T)5-cyclopentadienyl)iron]buta-l,3-diene (Refs. 141,238).

in an r|3-ferra-allylic system, implying a partial multiple bond order of the Fe-C bond (see Figure 3), has been suggested in a compound where this Fe-C distance has been reduced to 1.89 A.

Fig. 3: The molecular structure of \i-[l-r\:l,2-T}(trans-2-bromovinyl) ] -\x-bromo-bis (tricarbonyliron) - (Fe-Fe) (Ref. 430) .

Page 6: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

6 Carl Kruger et al.

Multiple bond character within iron-a-vinyl linkages has been claimed even when the vinyl group is not π-bonded to a second Fe atom (130,154).

Ferracyclopentadienes, in which an iron atom replaces one carbon atom of a cyclopentadienyl system (see below), are sta­bilized by being coordinated to a second iron atom. The C-Fe-C angles within the five-membered ring range from 81° to 82.3°. Substituents at the carbon atoms of the cis-diene fragment of the ring system do not significantly deviate from the best plane of the diene, suggesting a conjugated character of this system. The ring iron atom is displaced by 0.10 to 0.28 Ä from the basal plane defined by the terminal diene carbon atoms and two carbonyl carbon atoms. A typical ferra-cyclopentadiene structure is shown in Figure 4.

C? -C3 143 C5 -C5 138 CS -06 136 C7-07 117

Fig. 4: The molecular structure of (2,5-dihydroxy-3,4-dimethyltricarbonylferracyclopenta-2,4-diene)tricarbonyliron (Refs. 364,363).

X-ray structural analyses of two binuclear iron carbene complexes have been completed (293,449,488). The structure of μ-diphenylvinylidene-bis(tetracarbonyliron)-(Fe-Fe) (see Table 2, Nr.37) is shown with its molecular dimensions in Figure 5. The sp2-hybridized atom C(9) bridges two iron atoms symmetri­cally. The system Fe(1)-Fe(2)-C(9)-C(10) is planar and twist­ed slightly with respect to the moiety C(9)-C(lO)-C(11)-C(17). The structure of bis(y-phenyloxycarbene)-bis(tricarbonyliron)-(Fe-Fe) (see Table 2, Nr.25) is shown in Figure 6. The atomic arrangement possesses a crystallographic mirror plane passing

Page 7: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 7

through Fe(l)-Fe(2). The sp -hybridized carbon atom C(5) is coplanar with its neighbours, and the Fe(2)-C(5)-0(5) angle is 114.6°.

Interesting structural frameworks were found in (y-cyclo-

j T ^ ^

'•5

,Cff d09

Fe2 - C7 Fe2 - C5 C7 - 07 C5 - 05

1.82 184 1.11

: 1.10

Fig. 5: The structure of \i-diphenylvinylidene-bis(tetracarbo-nyliron)- (Fe-Fe) (Ref. 488).

C9* CX> OAK

CS'JOC/ON

Fig. 6: The molecular arrangement of bis (\i-phenyloxycarbene)■ bis(tricarbony1 iron)-(Fe-Fe) (Refs. 293,449).

Page 8: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

8 Carl Kruger et dl.

undeca-1,2-diene)heptacarbonyldiiron (450) as well as in (μ-allene)hexacarbonyl-triphenylphosphine-diiron (237). Both products were obtained in the reaction of an allene with enneacarbonyldiiron. In the former, an eleven-membered ring is bonded to a heptacarbonyldiiron fragment through formation of a o-bond between one iron and the central carbon atom of an allylic group r|3-bonded to the second iron. The structure is shown in Figure 13. The Fe-C bond is not found in the plane of the allylic group, but is bent towards the π-bonded Fe(2) by about 30°. This effect is common to η3-bonded allylic sys­tems, therefore no conclusions can be drawn about the exact hybridization of the central (meso) carbon atom (see discus­sion of r|3-allyl compounds below) . In the latter compound mentioned above (237), in which the allyl group is not incor­porated into a cyclic framework, similar structural features are evident.

III. 7T-B0NDED 0RGAN0IR0N COMPLEXES Although π-bonded organometallic compounds are among the

longest known organometallic compounds, since the discovery of Zeise's salt [PtCl3(02ίΜ ] in 1827, their structural and bonding properties are still a matter of discussion and con­troversy. In recent years, diffraction methods have provided sufficient material on which theories can be developed regard­ing the metal to ligand interaction. Yet, clearly, diffrac­tion methods alone are not sufficient to answer the arising questions.

The bonding theory of alkenes (and alkynes) to transition metals is based on three principal observations:

Fig. 7.

Page 9: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 9

(1) The alkene is bonded with its π electron system ver­tical (a) or horizontal (b) to the coordination plane of the transition metal (see Figure 7). The observed geometries may be correlated with the population (oxidation state) of the d orbitals on the metal and their energy levels relative to those of the π* orbitals on the ole-fin (see below). Both arrangements represent ideal descrip­tions; small amounts of tilt (362,615) and, sometimes, even full rotation of the olefin seem to be observed (218,371,511, 543). The hybridization of the metal and the charge distribu­tion between metal and carbon have been studied by MO calcula­tions (615). The results of these calculations are in partial agreement with recent ESCA studies, which suggest a small par­tial negative charge at the olefin. For iron(O), as well as for other zerovalent transition metals, only form (b) and slight deviations thereof have been reported. In trigonal bipyramidal iron(O) complexes the equatorial attachment of the olefin (form (b)) affords better π-bonding than an apical at­tachment, because of the symmetry of the d orbitals in the equatorial plane.

(2) The free olefinic bond distance, which has the ac­cepted value of 1.337 Ä, increases by 0.03 to 0.07 Ä upon co­ordination. If 1,3-dienes are complexed, the bond alternation of the free ligand is modified. The extend of these changes depends on the oxidation state of the transition metal and, importantly, on the nature of other ligands. The lengthening can be explained by a rehybridization of the carbon atoms of the complexed alkenes or alkynes. This rehybridization is towards sp3 hybridization in complexed alkenes, and towards sp2 hybridization in complexed alkynes, along with a mutual cis-bending of the substituents at the complexed bond.

(3) The Dewar-Chatt-Duncanson (DCD) description of ole­fin complexation by a σ-π-bonding model, which is based on the electroneutrality principle and symmetry arguments, is still the basis for more detailed bonding theories. This descrip­tion was introduced by Dewar (248) for silver olefin com­plexes, and extended by Chatt and Duncanson (125) to platinum-olefin complexes. The main features are shown in Figure 8.

The filled π-orbital (ψι) of the olefin overlaps with an empty transition metal hybrid orbital to form a σ-bond, the empty 7T*-orbital (Ψ2) has the appropriate symmetry to overlap with a filled metal orbital to form a π-bond. McWeeny, Mason and Towe (478) have proposed that the charge distribution of the complexed ligand is identical with that of the free ligand in its first excited (triplet) state. The Dewar-Chatt-Duncan­son scheme of bonding is reminiscent of that developed for the bonding of carbonyl groups to transition metals. The olefinic double bond has only one antibonding orbital available for π-

Page 10: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

10 Carl Kruger et al.

bonding, in contrast to carbon monoxide, where the backbonding is through two orthogonal antibonding orbitals. This differ­ence explains the greater amount of backbonding in carbonyl compounds, and is supported by shorter metal-carbon(carbonyl)

OMin Metal

X

Fig. 8: Dewar-Chatt-Duncanson model for olefin complexation at transition metals.

distances. In the DCD bonding scheme, metal and olefin act simul­

taneously as Lewis acids and bases. These donor and acceptor properties depend on the additional ligands, the oxidation state of the metal, and on the substituents of the olefin. In the special cases of octahedral and square planar complexes, ligands in the trans-position can have pronounced electronic effects. IR and Raman spectroscopic studies on Zeise's salts (357) emphasized the importance of the σ and π contribution to the bonding. By analogy between Pt-olefin bonds and ethylene oxide, a nonplanarity of the complexed olefin, intermediate between that of the C-C part of ethylene oxide and ethylene was further suggested.

Often the question arises over which hybrid orbitals of the transition metal are best incorporated in the DCD model. While the original DCD model incorporated dsp2 platinum hybri­dization, results of recent molecular orbital calculations have suggested that the symmetry equivalent d2p2 orbital com­bination may be a better choice (615). This suggestion may be extended to other transition metals. For trigonal bipyramidal

Page 11: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 11

iron complexes the d2p3 orbital combination could be chosen instead of the usual dsp3 hybridization.

Ά. COMPLEXES OF IRON WITH NON-CONJUGATED OLEFIN SYSTEMS

As mentioned previously all present structural evidence for zerovalent iron olefin compounds indicates that the ethylene moiety lies in the trigonal plane of the ideal dsp3

hybridization scheme. (Ethylene)tetracarbonyliron, the sim­plest compound of this type, has been investigated (236).

k-Fig. 9: Structure of (r\2-ethylene) tetracarbonyliron (Ref. 236).

In an electron diffraction study, which assumed trigonal bipy-ramidal coordination, the C=C and Fe-C(olefin) bond lengths were found to be 1.46(6) and 2.12(3) A, respectively.

A similar structure, determined by a low-temperature X-ray study, is shown in Figure lO, which illustrates the mole­cular geometry of (r|2-acrylonitrile) tetracarbonyliron (458, 459). The changes in the geometry of the acrylonitrile ligand, caused by the complexation, are evident by comparing the bond distances and angles of the free and the complexed species given in Figure 10. The ethylene moiety [C(5), C(6)] does not deviate significantly from the trigonal plane [C(1), C(3),C(5),C(6)]. The planar heavy-atom skeleton of the acryl­onitrile group forms a dihedral angle of 76.4° with the trigo­nal plane. This 'bending back' is a common feature for sub-stituents on complexed ethylenes.

The structure of two tetracarbonyliron complexes of fu-maric acid have been shown by X-ray methods to have the same basic geometry (Table 3, Nr. 2). In the racemic structure, the ethylenic group is reported to be rotated by 11° about the coordination bond with respect to the trigonal plane (523). In the optically active crystals, which contain three inde­pendent molecules per asymmetric unit, rotations of 17°, 17°

Page 12: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

12 Carl Kruger et al.

and 0° were observed (524). This inconsistency was rational­ized by hydrogen bonding effects. Often small differences in bonding energy or crystal packing forces may cause sizeable distortions in molecules.

Fig. 10: Molecular structure of (r\2-acrylonitrile)tetracarbo-nyliron (Refs. 458,459).

The structure of (1,5-cyclooctadiene)-bis(tetracarbonyl-iron) (427) is shown in Figure 11. The 1.5-cyclooctadiene

Fig. 11: The molecular structure of \i-[l,2-T):5,6-T)(l,5-cyclo­octadiene] -bis (tetracarbonyliron) (Ref. 427). ring, which is in its chair conformation, is complexed to two

Page 13: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 13

Fe(CO)i+ units. While the crystallographic symmetry is Ϊ (C.) , the molecular symmetry deviates only slightly from 2/m (C f with the ethylene fragments lying in the respective trigonal planes.

The iron coordination in (bicyclo[3.2.1Joctadienyl)tri-carbonyliron tetrafluoroborate (see Table 3, Nr. 10) can be considered octahedral if the allyl moiety is assigned two co­ordination positions. The Fe-C(olefinic) distances (2.24 and 2.26 A) are unusually long. This may be due to the cationic nature of the complex and the presence of a carbonyl group trans to the olefin.

An unusual geometry is observed in (tetrafluorobenzobi-cyclo[2.2.2]octatriene)tricarbonyliron (see Table 3, Nr. 12). The geometry was described as sqare pyramidal with the mid­points of the two ethylene moieties and two carbonyl carbon atoms defining the basal plane (380). Apparently the ethylene groups are perpendicular to the basal plane. The Fe-C and C-C distances do not differ significantly from those often found in Fe(0) complexes with other geometries.

B. (X)3-ALLYL)IRON COMPLEXES

Structural and bonding characteristics of η3-allyl tran­sition metal complexes have been reviewed recently (130,148). Coordinated r]3-allyl fragments may be described as three- or four-electron donors, assuming either an allyl radical or an allyl anion, respectively. Formally, two coordination sites are assigned to the allyl anion. A common bonding scheme (see Figure 12) for these complexes assumes: (1) a σ-bond between the filled bonding orbital of the allyl group and an empty hybrid orbital of the metal atom; (2) a bond between the filled nonbonding orbital of the allyl group and an empty hybrid orbital on the metal atom; (3) a 'back' bond formed by the empty antibonding orbital of the allyl group and a filled hybrid orbital of the metal atom. Theoretical calculations have cast doubt on the importance of the back-bonding contri­butions (428).

A fully symmetric attachment of the η3-allyl ligand to the transition metal is certainly an idealized concept. Intermediates between the symmetric form (A) and the σ-π-bonded form (B) are well known.

Fe Fe

A B

Page 14: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

14 Carl Kruger et al.

The degree of asymmetry depends on the nature of the other ligands about the metal. This ligand dependence enables these compounds to be important in organometallic catalysis.

Fig. 12.

All (r|3-allyl) Fe structures presently available are given in Table 4. General structural features of complexes with η3-allyl groups will now be discussed. When an r|3-allyl group and two other ligands (L) define a square-planar coordination sphere for a transition metal (M), the dihedral angle formed by the plane of the r|3-allyl carbon atom skeleton and the plane of ML2 is approximately 110° (413). Analogous situa­tions may be seen in octahedral (n.3-allyl) iron complexes. Published C-C-C angles within the r)3-allyl groups range from 110° to 135°. While some workers have attributed this large variation to thermal motion effects (193), no definitive investigations have been reported. Carbocyclic groups which contain n3-allyl fragments have also been investigated (see Table 4 and Figures 13,14).

The stereochemically non-rigid molecules (1,3,5,7-tetra-methylcyclooctatetraene)pentacarbonyldiiron (189) (see Figure 15) and (cyclooctatetraene)pentacarbonyldiiron (295) have been

Page 15: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 15

Fe2 -C17 130 C17 -017 1.13 C1 -C2 1.52 C1 -C11 1.41 C6 -C7 1.51 Fel -C12 1.61 Fel -C14 1.84 C12 -012 1.14 C14 -014 1.11

Fig. 13: The structure of μ-(cycloundeca-1,2-diene)heptacarbo-nyldiiron (Ref. 450).

Fig. 14: The structure of (acenaphthylene)pentacarbonyldiiron (Refs. 145,137).

Page 16: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

16 Carl Kruger et al.

included in this class. Another example is an azulene com­plex, which contains an r]3-allyl fragment in the seven-mem-bered ring and an η5-cyclopentadienyl group bonded to a second iron atom (see Table 4 and Figure 16) (129,132).

Fig. 15: The molecular structure of (1,3,5,7-tetramethylcyclo-octatetraene)pentacarbonyldiiron (Ref. 189).

Fig. 16: The structure of (azulene)pentacarbonyldiiron (Refs. 129,132).

Page 17: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 17

C. (CONJUGATED DIENE)IRON COMPLEXES

eis-1,3-diene fragments of open chain and cyclic ligands form π complexes with transition metals. Two bonding arrange­ments have been proposed for eis-1,3-diene complexes. Form A emphasizes a π-donation from the ligand to the metal. Form B emphasizes σ- and π-bonding contributions from the terminal and central carbon atoms, respectively, and supposedly indi­cates a stronger interaction than does Form A.

Fe x Fe x

Fig. 17: Bonding in (4-electron donor)-metal systems.

Page 18: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

18 Carl Kruger et al.

A molecular orbital description of bonding has also been given, where two molecular orbitals could be formed by filled ligand π orbitals and empty metal hybrid orbitals (see Figure 17) . The two 7Γ* orbitals of the ligand and filled d orbitals of the metal could form two molecular orbitals for back-dona­tion. The molecular orbital description can be compared to a linear combination of forms Ά and B, and thus allows for a

Fig. 18: The structure of (vf-butadiene)tricarbonyliron (Refs. 485,486).

Fig. 19: The molecular structure of (sorbic acid)tricarbonyl­iron, average distances of two independent molecules are given (Ref. 280).

Page 19: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 19

smooth transition between them (35,130,413). The stability of η -1,3-diene complexes is greatly enhanced when additional ligands about the transition metal allow for more back-donation to the diene, therefore favouring form B. For example, poor acceptor ligands, such as n5-CsH5 groups, favour form B, and good acceptor ligands, such as carbonyl groups, favour form A.

The structure of (η^-butadiene)tricarbonyliron has been investigated by gas phase electron diffraction (236) and single-crystal X-ray (485,486) diffraction techniques. The coordination geometry (see Figure 18) is square-pyramidal with the two carbonyl carbon atoms and the mid-points of the diene 'double' bonds defining the basal plane. The plane of the diene moiety is approximately perpendicular to the basal plane.

The crystal structure of (sorbic acid)tricarbonyliron (see Figure 19), which contains two independent molecules per asymmetric unit, permits a comparison of the geometry of two T)k-diene complexes of comparable precision (280) . The sub-stituents at the 1,3-diene fragment do not lie in the 1,3-diene plane. The terminal C-C bonds are twisted by 8.5° about the central C-C bond. This twist was thought to increase the overlap between the ligand π orbitals and the iron orbitals. Seemingly this twist can be related to the frequently observed bending-back distortion of r|2-olefin complexes (see above) .

Evidence for bond alteration in the hydrocarbon-1,3-dienes is not consistent (see Table 5). In bis (η1*-butadiene) -monocarbonyliron, the C-C bonds are all 1.40 Ä within experi­mental error. In bis(η^-Ι,3-cyclohexadiene)monocarbonyliron (429) (see Figure 20), the two sets of bond lengths show an inequality that is on the borderline of significance; yet the average value for all C-C bond lengths is 1.402 Λ.

In an interesting series of structures on π-bonded aro­matic vinyl compounds, a significant loss of π-electron delo-calization in the aromatic moieties is reported (242). Two examples are schown in Figure 21. Conformational changes upon complexation are frequently observed. For example, vitamin-A-aldehyde is coordinated to an Fe(C0)3 species through a cis-1,3-diene fragment, even though the polyene chain of the free ligand possesses an all-trans conformation. Hetero-1,3-diene-systems, such as azomethines or conjugated ketones, are also bonded as eis-1,3-diene entities. This has been shown in the structure of [η1*-(1-aza-l, 3-butadiene) ]tricarbonyliron (165) and others.

Cyclooctatetraene (COT) complexes of transition metals are of interest because COT ligands can act as four, six and eight electron donors and achieve a variety of conformations (see Figures 22 and 23). In bis(cyclooctatetraene)iron, one

Page 20: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

20 Carl Kruger et al

ligand is a six-electron donor and the other is a four-elec­tron donor. This has been observed in solution (see

Fig. 20: The molecular structure of bis (X] -1,3-cyclohexa-diene)monocarbonyliron (Ref. 429).

(C0)3Fe

A B Fig. 21: Bond distances in vinylarene-Fe(CO)3 complexes. In B average distances of two independent molecules are given.

volume 2) and in the solid (8). The four-electron donor bonds to the iron via an η**-1,3-diene fragment; the dihedral confor­mation for this ligand is similar to that found in (cycloocta-tetraene)tricarbonyliron (see Figure 23). Several crystal structures of COT-dimers complexed to Fe(CO)3 groups have also been reported to contain cis-1,3-diene entities (see

Page 21: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 21

Table 5, refs. 544,552). In the reaction of bullvalene with Fe2(CO)9, one such complex was isolated, which contains a

Fig. 22: (Cyclooctatetraene)-bis(tricarbonyliron) (Ref. 250).

Fig. 23: (Cyclooctatetraene)tricarbonyliron (Ref. 251).

bicyclic ring system with a 1,3-diene moiety bonded to one Fe(CO)3 group. The second Fe(CO)3 group is attached to the 1,4-diene part of the ligand. In the latter, the Fe-C dis­tances are somewhat longer than those in conjugated diene systems, indicating a weaker interaction (see Table 5, ref. 559) .

Ferracyclopentadiene systems are complexed to a second

Page 22: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

22 Carl Kruger et al.

Fe(C0)3 group. One example of this type of compound is shown in Figure 4.

Various seven-membered ring systems, several of which contain heteroatoms, coordinate to tricarbonyliron groups via eis-(r\h-l ,3-diene) fragments (see Table 5).

CYCLOBUTADIENE- AND TRIMETHYLENEMETHANE COMPLEXES

An electron diffraction study (236) has established the structure of (cyclobutadiene) tricarbonyliron. The Ci+ ring, assumed to be square, has a C-C bond length of 1.456(15) Ä and the Fe-C distance was found to be 2.063(10) /. X-ray investi­gations of cyclobutadiene transition metal complexes also do not support large deviations from a square cyclobutadiene ring. In (tetraphenylcyclobutadiene)tricarbonyliron, obtained by the reaction of tolane with pentacarbonyliron, the cyclo­butadiene ring is found to be planar with the C-C distances averaging 1.459 Ä (see Figure 24). This value agrees with the

Figr. 24: The structure of (tetraphenylcyclobutadiene)tricar­bonyliron (Ref. 256) .

corresponding C-C distances found in other transition metal cyclobutadiene complexes. The attached phenyl groups are bent away from the iron by an average angle of 10.8°. Slight, but probably not significant, alterations in bond lengths for the Ci+ skeleton of a benzocyclobutadiene derivative complexed to tricarbonyliron have been reported (242).

The unisolated, free trimethylenemethane and its deriva-

Page 23: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 23

tives form stable compounds with the Fe(CO)3 entity. The li-gand acts as a four-electron donor to the iron using its low­est bonding orbital and two degenerate nonbonding orbitals for overlap with the iron orbitals of appropriate symmetry; in addition a fourth (antibonding) orbital is available for back-bonding (139). This bonding situation is very similar to that of eis-1,3-dienes described above.

03

Fig. 25: The structure of (phenyltrimethylenemethane)tricar-bonyliron (Refs. 134,139).

The ligand is nonplanar, the middle C atom, although hav­ing the shortest Fe-C distance, is displaced by 0.315 Ä from the plane of the other three carbon atoms in a direction away from the iron. The pyramidal ligand and the Fe(CO)3 moiety adopt a staggered conformation.

IV. FERROCENES AND RELATED COMPOUNDS An excellent review on transition metal π-complexes with

aromatic systems has been published recently (614). For this reason, only a brief discussion of the subject and a litera­ture survey (Table 6) is included.

Page 24: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

24 Carl Kruger et al.

At the beginning of ferrocene chemistry, the stereochem­istry of these compounds was of fundamental interest because a new type of bonding was recognized. Subsequent structural studies have revealed conformational ambiguities in ferrocene­like complexes, as well as subtle differences from idealized bonding models. Ferrocene derivatives have been found in the eclipsed and staggered conformations and in orientations in­termediate between these two conformations. Occasionally in structures with two cyclopentadienyl rings complexed to the same transition metal, a significant tilt between the two cy­clopentadienyl planes has been observed. While tilts as large as 23.3° have been observed, calculations indicate only tilts as large as 45° may give rise to configurations with insuffi­cient overlap for bonding (40). Furthermore, non-equivalent C-C bond lengths in η5-cyclopentadienyl ligands, illustrated in Figure 26, have been frequently found. Although these dis­tortions have been recognized to be only on the borderline of significance, trends may soon be realized.

Fig. 26.

The mean iron-(ligand plane) distance in unperturbed cy­clopentadienyl systems is 1.65 A, the average Fe-C distance is 2.04 A. The C-C distances average 1.419 A and range from 1.356 A to 1.458 A.

An interesting structure containing a planar five-elec­tron donating pentadienyl system within a six-membered ring is shown in Figure 27. The distances found in this compound (391) are very similar to those found in cyclopentadienyl com­plexes.

V. IRON COMPOUNDS WITH MISCELLANEOUS LIGANDS. In Tables 7,8, and 9, structural information on compounds

containing nitrogen, oxygen, and sulfur ligands is summarized. The Fe-0 and Fe-N distances are given together with the corre­sponding literature references. One specific example of an octahedral Fe-0 complex, the structure of ferric acetylaceton-ate, is shown in detail in Figure 28 (386). As in similar compounds, the acetylacetonate moieties were found to be es-

Page 25: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 25

sentially planar. In Table 10, compounds of boron, silicon, phosphorus,

Fig, 27: The molecular structure of dicarbongl-3-[v?-(2-cuclo-hexadienyl)]-ö-propenoyliron (Ref. 391).

Fig. 28: The molecular structure of tris(2,4-pentanedionato)-iron (Ref. 386).

arsenic, antimony etc. containing ligands are summarized. Table 11 gives a survey of iron-metal compounds. For a de-

Page 26: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

26 Carl Kruger et al.

tailed discussion of structure investigations on compounds containing Fe-Fe bonds and Fe-metal bonds see the chapter by L.F. Dahl et al.. Table 12 gives structural information about compounds of biological interest.

We are deeply indebted to Frau Manuele Biermann of our institute for compiling and editing the numerical part and tables of this report.

Page 27: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds

Table 1: Compounds Containing Fe-C(sp3) σ-Bonds.

No. Formula

27

D i s t a n c e [Ä] Fe-C

Ref.

10

11

132

[Mei^NhEFeeiCOheC]

l , 6 - ( n - C 5 H 5 ) 2 - l , 6 , 2 , 3 -Fe2C2B6H8

1 , 6 - b i s ( η 5 - c y c l o p e n t a d i e n y l ) -1 , 6 - d i f e r r a - 2 , 3 - d i c a r b a - c l o s o -decaborane(8)

/ C F ^ C F (C0)*Fe ||

\ C F - C F

(n5-C5H5)Fe(CO)^-CH2-C02H

(HCF2-CF2) 2Fe(C0H

I CH3I

Fe ^ Ν Κ Ι ^ Ν ^

I CO H N \ / N H

\ NFe(CO)3

Ve(CO)3

Et3P--Fe(CO)2 A \ ^COIjj

Fe(CO),

^ CH3

' C O > 2 F e - C C C H ; _ l ( C N ) 2

Fe(CO)3

( (co^p

1 . 8 2 - 1 . 9 7 (carbido)

1 .962(5) 1 .993(5) 1 .873(5)

2 . 0 0 ( 2 )

2 . 0 6 ( 2 )

2 .068 (14 )

2 .077 (5 )

2 . 0 8 ( 1 2 )

2 . 0 8 0 ( 1 4 )

2 .085

2 . 0 9 ( 2 ) 2 . 0 9 ( 3 )

2 .097 (10 )

2 . 0 9 9 ( 4 )

]63,155

108

359

23,330

131

325

191

604

211

606 327

2 .0961(21 ) 162

418

197

1

2

3

4

5

6

8

7

12

10

9

Page 28: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

28 Carl Kruger et al.

Table 1 (continued)

No. Formula D i s t a n c e [Ä] Ref. Fe-C

Iff T ^ - F e ( C O ) 3 14 HXJ-1 Fe(CO)3

15 V-Fe(CO)3

16 (n 5 -C 5 H5)Fe(CO)2(n 1 -C 5 H5)

FelCO)3

17

18

19

20

21

Fe(CO)3 (C0)2Fe Fe(CO)4

CH2

Fe(CO)4

Ph-f VPh N=N

(CO)3F/ Fe(CO)3

CH-CH

CAOAD

h 5 - C 5 H 5 ) F e ( C O ) 2 - C H 2 - U ^ [SbFßf

22 ' ^ ^ b l ^ But

23

24

But

Fe(CO)3 (CO)3Fe

Γ% ^e(CO)3

2 . 1 0 ( 1 )

2 .110 (2 )

2 . 1 1 ( 2 )

2 . 1 2 ( 2 )

2 . 1 6 ( 5 )

2 . 1 6 0 ( 6 )

200

207

55

625

2.123(15)

2.141 2.137

2.14(1) 2.15(1)

482

493,300

517

150

554

598

519

Page 29: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 29

Table 2: Compounds Containing Fe-C(sp ) and Fe-C(sp) σ-Bonds.

No. Formula Distance [A] Ref. Fe-C

(CHj)2CH-CH2-N«C g C0

(n5-C5H5)2Fe2(CO)3[CN(CH3)3]

Si(GH3)2

oc δ co

1.846(15)

1.94(1) 1.92(1) 1.86(1) 1.88(1)

non-symmetrical bridge

1.92(1) 1.89(1) 1.87(1) 1.88(1)

116

607

Hexamethylisonitrile-iron(II) tetrachloroferrate(III)

A #-/<^c#

io

e t c 0 NC-C-CN ° O^AKC2Hslj

Ί /C° co f

0*-Al(C2Hs|j

\ X (CO)3Fe^—7Fe(C0)3

Br

(CO)3Fe^—^Fe(CO)3

CfiHc

CN NC. | .CNCH3

CH3NC | CNCH3

CNCH3

1 .874(3 ) 1 .878(3) 1 .871(4)

a v . 1 .94(3) av . 1 .87(4)

1 .88(2)

0. c'o

.CO

V O K - C

Ph

1 .888(14)

1 .98(6 ) 2 . 0 5 ( 6 ) 1 .88(6 )

1 .891(6)

1 .906(10)

1 .89(2 )

184

420

416

430

618

518

171

92

10

11

1

2

34

56

8

7

9

Page 30: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

30 Carl Kruger et al.

Table 2 (continued)

No. Formula D i s t a n c e [Ä] Fe-C

Ref.

11

12

13

14

02S-C6H4-CH3

(CO)3F/

H3C0' Fe(C0)3

NCH3

<Αφ ί§> P*K

M CO CO

II NCH3

(CH^SiO OSi(CH3)3

is Λ, (CO,4Fe<\>°"C2H5

Fe(C0)3

0 Fef (C0)3 Si(CH3)3

16 /eC^NCe^

X . ^ C . (CH^CHN^-^C^^NHCeHfl

1.91(1)

1 .947(7) 1 .917(7) 1 .937(7) 1 .948(7)

1 .920(6)

(CH3)3SioA^elco,3 1 . 9 2 ( 2 )

2 . 0 0 0 ( 7 ) 1 .920(8)

1.926 1.973

553

201

297

60

382

624

(co>3 / ^

17 <0> F A ^ C H

18

1 9 (C0)3Fe-

20

^ CH3 CH3

^ F e ^ — ^ F e ( C O ) 3 CO V ^

n 0

^ - F e ( C 0 ) 3

Fe(CO)3 H3CS

9eH5

V Fe

sCH,

/

1.93(2)

1.93

1 .93(2)

1 .933(3)

88

599

603

323

CH.

Page 31: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 31

Table 2 (continued)

No. Formula D i s t a n c e [Ä] Ref. Fe-C

21

22

23

24

OCH3

C H 3 O H

H 3 C ^ e ( C O , 3 HT¥e(CO)3

(C6H5)2P

(C0)3Fe7

/ / (CO)3Fe-

(C0)3

Fe(CO)3

/ ■As(CH3|2

-Fe(CO)3

25 ( s e e F i g . 6)

26 (CO)3Fe

/ c -<\ (CO)3Fe Fe(C0)3

>-° Ph

•^AcxFe(CO)2 I 0

28

CH2

(COi3Fe';1-^FelCO)3

H 3 Q P H 3

H3C>H^e ( C O ,3 Ni C H 3

H3Cv \ ^CH, 29

1 .935(13) 1 .987(14)

1.94

1.94

1 .943(7)

1 .9596(30)

1 .960(3)

27 ( n 5 -C 5 H 5 )Fe (CO)(PPh 3 ) (σ -CO-Ph) 1.96

1 .960(27) 2 . 0 2 4 ( 3 1 )

1 .965(11)

126

395

276

364,363

1.945(6) 293,449

164

494

124,563

531

288

H3C CH3

Page 32: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

32 Carl Kruger et al

Table 2 (continued)

No. Formula Distance [Ä] Fe-C

Ref.

30 °A=VfC0

X H5C6-C £ -C 6 H 5

31

32

33

34

FsCe^ X C 6 F 5

feICO),

{Fe 3 (CO) 7 [Ph 2 PC(C0 2 Me)C(CF 3 )C 2 -(CF 3 ) ] (PPh2)}*2C 6 H 6

fr"s

;e(CO)3

Fe(CO)3

1.97(1) 1 .97(1) 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0

1 .99(1) Γ ) ) (CO)3Fe^:e(CO)3 1 . 9 7 ( 1 )

1 .990(15) 1 .978(16)

2 . 0 6 1 ( 9 ) 1 .978(9)

1 .978(1) 1 .970(1)

226

586

287

512

246

35 1.979(5) 390,391

36 ( r r -C 5 H 5 )Fe(CO) (PPh3) ( a - a - C ^ S ) 1 .98(3)

1 .98(1) 37 (CO)4Fe. .Ph

(CO)4Fe ^ P h

38 [Fe i f (n 5 -C 5 H 5 ) i t (CO)i f ] [PF6 ] a v . 1.984

39

40 < ^ " F e ^ C F ,

^

2 . 0 3 1.987(5)

1 .99(1)

17

488

594

90,92,159, 421

226

Page 33: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 33

Table 2 (continued)

No. Formula Distance [A] Fe-C

Ref.

Fe(CO).

41

42

C02Me Ph (g>)3 J^C02Me

1 .991(10)

1.994

604

433

43

44

45

46

47

(n 5 -C 5 H 5 )Fe (CO) 2 -[-C=C(CH3)-S(0)-Q9H2]

H 5 C 6 \ C

H 5 W ^ » : £ i i \ , < ^ - N i ^ Fe(CO)3

4 H S C 6 H 5

(COUFe^T^J

I CH3

(C0)3 ( C O ) 2 F e ^ ^ F e v t-C4H9

48

CH, I 3

NH / N C N C H 3

CH3-N Fe(CNCH3)2

^ C CNCH3

NH I CH3

49 ( s e e F i g . 13)

F F

F^M-F 50

iPFfir2

Fe(CO)4

Fe(CO)3

(CO)4Fe' *Fe(CO)4

1 .996(8)

2 . 0 0 0 ( 9 )

2.007(5)

2.01 2 .09

2 . 0 1 7 ( 6 ) 2 . 1 2 5 ( 7 )

2.02(4) 2.03(4)

2 . 0 2 ( 1 )

2 . 0 2 1 ( 3 ) 2 . 0 2 2 ( 3 )

154,147

43

381

418

554

483

450

59

Page 34: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

34 Carl Kruger et al

Table 2 (continued)

No. Formula D i s t a n c e [Ä] Fe-C

Ref.

51

FeJCO)3rH2

0C>^ I ^ C ^ C H 2

Fe

^ 3 PPh ,

52 F e 3 ( C O ) 8 ( C 6 H 5 C 2 C 6 H 5 ) 2

o ^c- C H 3 ,

53 , C 0 ^ 1 n"" c ^CH 3 o 3

(Η^ΟΙ,Ρχ / < * Η 5

54

55

56

H2./C6H4-CH3

(C0)3

(COIjFe^^-pFelCOJa

(C6H5)2

(C6H5)2 CF3 P — C — £

/ KI >*K0)3 (CO)3Fe C ^ p t C /

P *Fe(CO)2 (C6H5)2

R7 (<§> ΡΗ-TCH-CO-CHj /Fe—Fe(CO)3

0C g

2.03(2)

2 . 0 3 1 ( 1 ) 2 . 0 6 3 ( 1 )

2 .035 2 .012

2 . 0 8 ( 1 ) 2 . 0 4 ( 1 )

2.06

2 .079

2 . 0 9 ( 1 )

237

257

526

621

32

509

12,15

58 ( i r -C 5 H 5 )Fe(CO) (PPh3) (a-C 6 H 5 )

0=

59 ICO)3Fe Fe|CO)3

60

61

(CO)3Fe

CH,

CH,

OCH3 I

Re(CO)3

>(C0)4

?(C0),

2 .11

2 . 2 4 1 ( 2 ) 2 . 1 8 9 ( 3 )

2 . 7 0 ( 1 )

20

26

566

247

Page 35: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 35

Table 2 (continued)

No. Formula Distance [Ä] Fe-C

Ref.

62

63

64

65

Fe Fe

o II

H 3 C-C £ ~ C H ,

rcH3 (CO)3Fe^—-Fe(CO)3

(CO),Fe fe(CO)3

, C 0 ) 3 F e ^ F e

I SilCH3)3

(CO) 3

1 .925(4) 1 .939(4)

1 .937(21) 1 .932(21)

1.948 2 .001

2.070 2.052

160

533

389

42

Page 36: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

36 Carl Kruger et al.

Table 3: Complexes Containing η -coordinated Olefinic and Acetylenic Compounds.

Distance [A] Fe-C C-C

(COI2Ft«-

HOOC iCOJ4Ft.

HOOC ^

H 4 F e * — I I

(C6H5C2C6H5)Fe3(CO)9

. / '-C4H9

' \ t -C4Hg

2 .048 2 .113 2 .049 2 .116

O C A ^ W J

2 .09 (3 ) 3 independent mole- 2 .06 (3 ) c u l e s i n asym. u n i t 2 . 03 (3 )

2 . 0 4 ( 3 )

2 .10 (1 ) 2 .10 (1 )

1 .95(2) 1 .95(2) 2 .04 (2 ) 2 . 1 0 ( 2 ) 2 . 0 5 ( 2 )

1 .97(1) 2 .23 (1 )

C O ) 3 F e — F*JCOI3

2 . 1 8 ( 1 . 3 ) 2 . 2 2 ( 1 . 2 )

1.30(4) 1.40(4) 1.40(4)

1.42(4)

1.45(2)

1.41(2)

187,524

523,186

54

1 . 4 0 ( 1 . 8 )

ΓΝ

icot

IBFJ-

φ>

(CO)2F» F»CO),

ICOT,F*^Ft1cOI,

2 .140(6 ) 2 .154(5 )

2 .10{1) 2 .09 (1 )

2 .214(7 )

2 . 2 4 ( 3 ) 2 . 2 6 ( 3 )

2 .256(27) 2 .104(27) 2 .257(28) 2 .071(31)

2 .150(25)

1 .386(11)

1 .39(3)

1 .325(41) 1 .411(38)

1 .380(29) 1 .400(29)

458,459

XP 2 .098(10) 2 .103(9 ) 2 .050(10) 2 .045(10) 2 .163(10) 2 .149(9 )

1 .433(16) 1 .436(15) 1 .428(15) 1 .397(16) 1 .394(16)

14 [As(CH3)2]0=C-CF2-CF2[As(CH3)2Fe3(CO)9]

15 (CH3)2As-C=C[As(CH3)2]-CF2-CF2[Fe(CO)3]2

2 . 0 5 ( 3 ) 2 . 1 6 ( 3 )

2 . 0 9 ( 3 ) 1 .99(3)

1 .47(4)

1 .51(4)

54

54

54

54

54

54

54 54

54

54

54

54

54

54

54

54

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

1.41(2)

1.41(2)

1.41(2)

1.41(2)

Page 37: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 37

Table 3 (continued)

Distance [A] Fe-C OC

18

23

24

& > ^FHCOV

H'cTXTCHl ICOI,F»<——-WO))

(COI,Ft FdCOIj

COI ,F«—Fe ica ,

0&.

(COIJP·-

CeHS

JCOJ,

F«(CO),

| — > F « — S n — < # %

C6"5 CO CgHj

30 {(C*H5)2P-C-C[(CH3)2As]-CF2-CF2}2Fe2(CO)-

31

2 .134(10) 2 .186(10) 2 .140 (11 ) 2 .145(10)

2 .087(14) 2 .172 (12 ) 2 .189(13) 2 .066 (12 )

2 . 2 6 1 ( 6 ) 2 . 1 6 7 ( 6 )

2 .156 (4 ) 2 .146 (3 )

2 . 1 9 9 ( 4 ) 2 .214 (4 )

2 . 0 9 2 ( 7 ) 2 . 0 2 4 ( 5 )

2 . 2 2 0 2 .218

1. 1,

1,

1.

1,

. 418(13)

.377(14)

.40

.421(5)

. 401(9 )

2.10(2) 2.16(2)

2.185(19) 2.057(21) 2.186(19) 2.083(20)

2.02 2.05

2.011/2.060 2.061/2.082 2.062/2.016 2.073/2.069

1.950(7) 2.254(7)

2.015(6) 2.023(6)

2.125(8) 2.304(7)

1.40(3)

1.400(30)

1.435(28)

1.3

1.277 1.267

1.405(9)

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

Page 38: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

38 Carl Kruger et al.

Table 3 (continued)

No. Formula Distance Fe-C

2.046(8) 2.076(8) 2.064(8) 2.068(8)

2.039(9) 2.077(9)

[A] c-c

1.260(11)

1.273(11)

1.433(11)

•COtjff > · « » ,

[Fe3(C0)7{Ph2PC(C02Me)C(CF3)C2(CF3)}-(PPh2)]-2C6H6

35 2.105(14) 2.058(14)

2.237 2.063

2.114(3) 2.105(4) 2.205(4) 2.201(4)

2.078(14) 2.112(12)

2.02(2) 2.03(2)

2.181(6) 2.246(6) 2.153(5) 2.047(5)

2.04(1)

2.06(1)

1.94(1) 2.04(1)

1.377(19)

1.367

1.402(5)

1.369(6)

1.430(26)

1.39(3) 1.39(2)

1.395(8)

1.35(2) 1.35(2) 1.33(2)

1.39(2)

122

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

458,459

18

458,459

458,459

458,459

458,459

458,459

18

458,459

458,459

458,459

458,459

458,459

Page 39: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 39

Table 4: η - A l l y l - I r o n Complexes

Distance [Λ] Fe-C C-C

Angle

<- KCOS 2 . 2 6 ( 2 ) 2 . 0 9 ( 2 ) 2 . 3 4 ( 2 )

1 .35(3) 1 .43(3)

«%R»— F · « « ,

«Sf wcob

Pt(CO», O^-C^-CH,

Ft lCO,

( see P i g . 15)

_> k rav·«·—o M O C ^ I ^ C H ,

oc/fN»

2.200(8) 2.050(8) 2.142(8)

2 . 2 4 1 ( 8 ) 2 . 0 5 1 ( 7 ) 2 . 2 4 2 ( 8 )

2 . 1 1 6 ( 1 3 ) 2 .077(10) 2 . 1 3 8 ( 8 )

2 . 1 1 ( 2 ) 2 . 1 2 ( 2 ) 2 . 1 2 ( 2 ) 2 . 0 7 ( 2 ) 2 . 1 1 ( 2 ) 2 . 1 3 ( 2 )

2 . 1 9 4 ( 1 8 ) 2 .091 (16 ) 2 .202 (17 )

2 .18 1.93 2 .19

1 .391(12) 122 .8° 1 .432(12)

1 .41(2) 1 .46(2)

1 .45(2) 1 .47(2)

128° (2) 130° (2) 126° (2) 131° (2) 129° (2) 128" (2)

132,129

1.431(11) 123.8· (7) 1.431(11) 145,137

1.447(16) 116° (1) 1.469(16)

1 .420(24) 124 .3° (1 .6 ) 1 .440(23) 146,147

1 .41(2) 1 .45(2)

116° (1 .3 )

cftzr 2 . 2 0 ( 1 ) 1 .96(1) 2 . 1 7 ( 1 )

1 .41(1) 1 .42(1)

114 .6° (8)

FtiCOl,

<-h-wcoi,

I

2 . 1 6 3 ( 7 ) 2 . 0 9 4 ( 8 ) 2 . 1 5 9 ( 8 ) 2 . 1 1 7 ( 7 ) 2 . 0 8 0 ( 6 ) 2 .173 (7 )

97 (1 ) 11(1) 20(1)

.20(2) ,22(2) .20(2)

2 . 1 3 ( 4 ) 2 . 1 1 ( 2 ) 2 . 0 9 ( 2 )

1 .407(11) 116 .6° (7) 1 .424(11)

1 .409(10) 127 .6° (6) 1 .420(10)

1 .41(1 ) 1 .43(1)

1 .40(3) 1 .42(3)

1 .40(4) 1 .49(4)

116° (1)

118° (2)

115° (2)

13

F*ICO)j

2 . 1 1 ( 1 ) 2 . 0 8 ( 2 ) 2 . 1 7 ( 1 )

2 . 0 8 9 ( 6 ) 2 . 0 6 1 ( 6 )

1 .44(3) 1 .37(2)

1 .393(9)

18

458,459

458,459

458,459

458,459

458,459

18

458,459

458,459

458,459

458,459

458,459

18

458,459

458,459

458,459

458,459

458,459

18

458,459

458,459

458,459

458,459

458,459

18

458,459

458,459

458,459

458,459

458,459

C

Page 40: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

40 Carl Kruger et al.

Table 4 (continued)

Distance Fe-C

2.136 (1) 2.113(1) 2.123(1)

2.21(3) 2.17(3) 2.09(3)

2.146(11) 2.054(9) 2.174(9)

2.19(3) 2.13(3) 2.20(3)

2.088(2) 2.078(2) 2.081(3)

2.11 2.16 2.22

2.145(6) 2.040(6) 2.125(6)

2.120(4) 2.042(4) 2.140(4)

2.12(1) 2.14(2) 2.06(1)

2.141(4) 2.043(3) 2.178(3) 2.168(3) 2.041(4) 2.116(4)

2.210(12) 2.087(13) 2.213(14)

2.141(10) 2.063(9) 2.144(8)

2.09 2.07 2.09

[A] c-c

1.398(2) 1.410(2)

1.39(3) 1.44(3)

1.427(15) 1.392(14)

1.48(4) 1.45(4)

1.404(3) 1.413(4)

1.43 1.43

1.37(2) 1.35(2)

1.397(5) 1.412(5)

1.394(5) 1.402(5)

1.384(15) 1.404(16)

1.380(15) 1.415(15)

Angle

(COtjF*

hP 0 j -CH,

)

119° (4)

295

462

1 1 5 . 4 ° (2)

<* ι -0 F«CO),

C C

295

462

295

462

295

462

295

462

295

462

295

462

295

462

295

462

295

462

295

462

295

462

295

462

Page 41: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 41

Table 4 (continued)

Dis tance [A] Fe-C C-C

Angle

27

28

29

FMCOIs

3|f

ICOtj

(CO),

Ft(COI,

<<

FtCOl,

FtlCOIj

2 . 1 6 ( 2 ) 2 . 4 8 ( 2 ) 2 . 1 2 ( 2 ) 2 . 4 0 ( 2 )

2 .131 (19 ) 1 .38(3) 2 .037 (16 ) 1 .35(2) 2 .104 (14 )

2 . 1 4 5 ( 9 ) 2 .038(10) 2 .173(10)

2 .057 2 .089 2 . 1 3 0

1 .989(6) 2 .049 (7 ) 2 .103 (7 )

2 .137 (3 ) 2 .069(2 ) 2 .195 (3 )

1.330 1 .390

1.371 (lO) 1 .400(10)

1 .399(4) 1 .382(4)

295

462

295

462

295

462

295

462

295

462

295

462

295

462

Page 42: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

42 Carl Kruger et al.

Table 5: Complexes Containing η -coordinated Ligands.

Fe — G e - C I

CH»C6H5»2

FtCOl,

^γ^νΑ^^Χχ^

™ < » 3 \ 6 H 5

Ft(CO)3

2 m o l e c u l e s p e r asym. u n i t

10 (CeH8)2Fe

*^—FdCO),

CCiO- F»(CO)3

G-F««C0»3

D i s t a n c e [A] Fe-C C-C

2 .13 2 .02

1.36 1.49

1.420 1.449 1.416

2.097 2 .093 2 .053 2 .059

2 . 0 8 2 .21

2 . 1 4 ( 4 ) 2 . 0 6 ( 3 ) 2 . 0 6 ( 3 ) 2 . 1 4 ( 4 )

2 . 1 8 ( 2 ) 2 . 0 9 ( 2 ) 2 . 0 9 ( 2 ) 2 . 1 3 ( 2 )

2 . 0 7 ( 1 ) 2 . 0 9 ( 1 ) 2 . 1 0 ( 1 ) 2 . 1 3 ( 1 )

2 .14 2 . 0 9 2 . 0 5 2 . 1 8

2 .146 (7 ) 2 .061 (7 ) 2 .039(7 ) 2 .104 (7 )

2 .158 (7 ) 2 .063 (6 ) 2 .038 (7 ) 2 .117 (7 )

2 . 1 1 ( 2 ) 1.97(2) 2 . 0 3 ( 2 ) 2 . 2 7 ( 2 )

2 . 1 5 ( 3 ) 2 . 1 6 ( 3 ) 2 . 1 5 ( 3 ) 2 . 03 (3 )

2 .122 (15 ) 2 .027(16) 2 .038 (16 ) 2 .128(13)

2 . 1 8 ( 1 ) 2 . 0 5 ( 1 ) 2 . 0 5 ( 1 ) 2 . 1 8 ( 1 )

1 .45(5) 1.46(5) 1 .45(5)

1 .39(3) 1 .45(3) 1.49(3)

1.44(2) 1 .44(1) 1 .45(2)

1.46 1.45 1.45

1.395(10) 1.399(10) 1.425(10)

1.403(9) 1.402(lO) 1.436(9)

1 .28(4) 1.36(4) 1 .48(4)

1 .56(4) 1.35(5) 1.55(4)

1.40(2) 1 .38(2) 1 .41(3)

1 .42(2) 1.42(1) 1 .42(2)

486,485

295

462

295

462

295

462

295

462

295

462

295

462

295

462

295

462

295

462

295

462

Page 43: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 43

Table 5 (continued)

Distance Fe-C

2.12(1) 2.07(1) 2.10(1) 2.14(1)

2.17 2.05

2.12 2.03 2.07

2.091 2.149 2.078

2.134(6) 2.068(6) 2.086(6)

2.043(20) 1.986(22) 2.006(19) 2.121(22)

1.993(8) 2.060(8) 2.060(8) 1.993(8)

2.091(8) 2.145(10) 2.041(9) 2.059(10)

2.114(9) 2.067(10) 2.042(10) 2.149(10)

2.08(1) --2.12(1)

2.182(7) 2.063(9) 2.055(9) 2.168(9)

2.111(8) 2.150(8) 2.142(8) 2.121(8)

2.03 2.193 2.203 2.043

2.203 2.193 2.043 2.030

[A] c-c

1.41(5) 1.42(5) 1.46(5)

1.41(2) 1.43(2) 1.43(2)

1.36 1.44

1.43 1.44

1.433(9) 1.413(7)

1.365(24) 1.395(42) 1.416(33)

1.397(11) 1.376(12) 1.397(11)

1.398(14) 1.409(13) 1.440(12)

1.442(13) 1.396(13) 1.435(14)

1.38(1) 1.41(1) 1.43(1)

1.392(13) 1.457(10) 1.464(13)

1.424(10) 1.430(10) 1.413(10)

1.418 1.406 1.404

1.406(10) 1.418UO) 1.404(10)

(CO)3F* -GnO

sc,-^~|Vc

F«(CO>)

σ F.«:O>3

COOCH3

F*<CO)3

0-0

ICOI3F·—£JH

™·ν-α-«, V

J , RtlCOl,

p»ica3

133,128

396,522

364,363

14

15

27

16

29

17

31

32

33

34

35

36

37

295

462

295

462

295

462

295

462

295

462

295

462

Page 44: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

44 Carl Kruger et al.

Table 5 (continued)

No.

25

26

Formula

rC sSXt*"' (Jiico,.

1 \jFt<COh ^ ^ J ^ F t ( C O I 3

CH^ / H 3

27 ''"CT2

28

29

30

31

32

33

34

35

36

37

CH3 CH3 I C H J J J S O O S I I C H J ) ,

/ \ «ΟΗ,»,5.θΛ^·,(:θ'3 ^ s , 0 P«<CO),

JOfO Ό FfCOIj 0

^9" r i ® P*««. o-£

^2r**e(C0)j

BF t ©

/—v PH»

PilCO», N H — f ^

* — > , C H 3 Hjc-zyVf/H

RtlCO, ^ H - 0

c3—© Cn^-WCO)3

9 | ^ F « ( C 0 l 3

,C0,^*-O^Fi,C0)2

D i s t a n c e Fe-C

2 .127(12) 2 .209(12) 2 .188(10) 2 .132(10)

2 .08 2 .01 2 .09 2 .26

a v . 2 . 13 (2 ) a v . 2 . 1 9 ( 2 )

2 .104 2 .101 2 .043 2.052

av . 2 . 18 (2 ) a v . 2 . 0 6 ( 2 )

2 .04 2 . 1 0 2 .05 2 .04 2 .03 2 .03 2 .09 2 .03

2 .156(2 ) 2 .063 (2 ) 2 .055(2 ) 2 .117(2 )

2 .156 (2 ) 2 .068 (2 ) 2 . 0 5 4 ( 2 ) 2 .138 (2 )

2 .029(8 ) 2 .090 (9 ) 2 .038 (8 ) 2 .110(9 )

2 .132 (2 ) 2 .053 (2 ) 2 .053 (2 ) 2 . 1 3 9 ( 2 )

1.946(2) 2 .175 (3 ) 2 .192 (3 ) 2 .120(3 )

2 .097(3 ) 2 .048(3 ) 2 .049 (3 ) 2 .098(3 )

2 .098 (3 ) 2 .049(3 ) 2 .048(3 ) 2 .097 (3 )

[A] c-c

1.440(15) 1.442(15) 1.346(16)

1.42 1.41 1.42

1.47 1.43 1.44 1.47 1.45 1.41 1.41 1.48

1.407(4) 1.407(3) 1.417(3)

1.413(2) 1.401(3) 1 .426(3)

1.407(13) 1.423(14) 1.403(13)

1 .417(3) 1.411(4) 1.412(3)

1.428(4) 1.387(5) 1.429(4)

Ref.

246

41

53

60

389

226

244

387

387

384

195

158

164

494

Page 45: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 45

Table 5 (continued)

D i s t a n c e [A] Fe-C C-C

~-wcoi , ICHjljS.

ρ··«»3 2 .031(5 )

2 .153 1.407 2 .072 1.436 2 .176 1.419 166

2.082

2 . 1 8 5 ( 9 ) 1 .429(10) 2 .076 (8 ) 1 .419(10) 2 . 0 7 9 ( 8 ) 1 .429(10) 2 .165 (9 )

2 .15 1.42 2 .13 1.42 2 .13 1.42 43S

2 .15

2 . 1 5 2 ( 4 ) 2 .067 (4 ) 166,168

ICOJjFr

2 . 1 0 ( 1 ) 1 .41(1) 2 . 0 4 ( 1 ) 1 .37(2) 2 . 0 4 ( 1 ) 1 .40(2) 2 . 1 2 ( 1 )

"-©*-Ί

C H 2 - C H 3

PtICO),

2 . 1 5 1 ( 4 ) 1 .431(5) 2 . 0 5 3 ( 4 ) 1 .406(6) 2 . 0 5 1 ( 4 ) 1 .431(5) 2 . 0 9 6 ( 4 )

2 . 1 1 6 ( 6 ) 1 .401(8) ICO)3Fe— - 1 1 1 2 . 0 3 9 ( 6 ) 1 .386(7)

2 . 0 5 2 ( 7 ) 1 .404(7) ' 2 . 1 1 4 ( 5 )

HCCD

av. av . cf2~w3 2 . 1 1 0 ( 4 ) 1 .428(8)

2 . 0 7 0 ( 4 ) 1 .425(7) 2 . 0 4 8 ( 4 ) 1 .425(9) σ*

«jCO*-2 . 1 2 8 ( 5 )

(COijF· CH3 Ό ( F e - N ) 2 . 0 5 Htr\

* &

^X2, 2 .119 1.413 2 .033 1.394

< C 0 » 3 F e - ^ ^ 2 . 0 5 0 1 . 4 0 8 2.122

F«(COI,

2 .117(10) 2 .018(16)

ft(COl, 2 .028 (15 ) 2 .138(14)

25

26

27

28

29

30

31

32

33

34

35

36

37

37

37

295

462

295

462

295

462

295

462

295

462

295

462

Page 46: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

46 Carl Kruger et al.

Table 5 (continued)

Distance [Λ] Fe-C C-C

51

52

H3CI n JQHIH F C £ 0 ) 3

ICO>,IV

Or F*ICOI2P(C^s>3

*w «rtlj 0

58

59

60

m r—;

R» « CHj

R 2 · CQJ-CHJ

""3

"^I^L* and r e l a t e d compounds

- F t C O ) ,

(CO>jF· - Φ •Fwa»,

iCO),Ft - i ^ -Ft (CO) ,

2 .16 (1 ) 2 . 09 (1 )

2 .127 (3 ) 2 .038 (4 ) 2 .037(4 ) 2 .124 (3 ) 2 .115 (4 ) 2 .033 (4 ) 2 .037(4 ) 2 .119(3 )

1.43(2) 1.46(1)

1.384(6) 1.432(6) 1.391(6)

1.396(7) 1.408(6) 1.404(6)

241 617

429,4:

2 .05 2 .05 2 .14 2 .14 2 .14 2 .14 2 .04 2 .04

2 .187 2 .177 2 .157 2 .145 2 .048 2 .069 2 .063 2.041

2 .091 (5 ) 2 .025 (5 )

2 .100(14) 2 .038(16) 2 .041(15) 2 .097(14) 2 .122(13) 2 .131(13) 2 .172(13) 2 .175(13)

2 .06 2 .15

1 .40 1.43 1 .40

1.41 1 .40 1.41

1.418 1 .410 1.398

1.385 1.391 1.413

1 .354(8) 1 .361(6)

1.38 1.42 1.43

1 .41(2) 1 .36(2) 1 .42(2)

1 .40(2) 1 .39(2)

1 .39(3) 1 .49(3) 1 .44(3)

295

462

295

462

295

462

295

462

295

462

295

462

295

462

Page 47: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 47

Table 5 (continued)

Dis tance [Λ] Fe-C C-C

64

2 . 1 0 3 ( 3 ) 2 . 0 3 2 ( 3 ) 2 .043 (3 ) 2 . 1 1 4 ( 2 ) 2 . 1 2 5 ( 2 ) 2 . 0 3 9 ( 2 ) 2 . 0 3 7 ( 2 ) 2 . 1 1 5 ( 2 )

av . 2 .062

FttCOIj

Ft(COI}

68

Ptteoi,

Fe3(CO)e(PhC2Ph)2 (ferracyclopentadiene-ring)

SF#IC0»3

W"*·

2 . 1 3 8 ( 6 ) 2 . 0 4 5 ( 6 ) 2 . 0 5 5 ( 7 ) 2 .134 (6 )

2 .112 (3 ) 2 . 0 7 6 ( 3 ) 2 .051 (3 ) 2 .128 (3 )

2 . 0 0 2 .04 2 . 1 0 2 .19 2 .21 2 . 1 5 2 .04 2 .13

2 .109(15 ) 2 .098 (16 ) 2 .065 (16 ) 2 .074(16)

2 .191(15) 2 .093(15) 2 .169 (15 ) 2 .165 (16 )

2 . 1 0 2 . 1 0 2 . 0 9 1.81

1.444(9) 1 .371(9) 1 .434(9)

1.435(4) 1 .415(4) 1 .418(4)

1.42 1.44 1.50

1.44 1.46 1.46

1.370(19) 1.421(19) 1.393(18)

1.435(21) 1.456(22) 1.459(21)

67,64

142,138

Page 48: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

48 Carl Kruger et al.

Table 6: η -Cyclopentadienyl and η -Heterocyclopentadienyl Iron Complexes.

1

2

3

4

5

6

7

8

9

io 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

C5H7B3Fe03

C6H6Cl6FeOSiz

C7H5Br3Fe02Sn

C7H5Cl3Fe02Sn

C7H16B9Fe

CeH5F6Fe03P

C9Hi)F6Fe02P

C9H5F6Fe03P

C9H8FeC\

C10HeCl2FeOHS2

Cl0HeS3Fe

CioHioFe

CioHi0FeI3

C10H10Fe2N2O2

C10H1HCl2FeGe

C!iH5CoFe06

CnHsCoFeHyOe

Ct loFeOnS

C12HsFeMn07

Ci2H6Fe206

CI2HioFe02

Ci^HioFeOi,

C12H10F2FeO

Ci2HnFe205P

Ci2Hi3FeNO

Ci2HmFeI3

Ci3HioCl2Fe02Sn

7V (n5-C5H5)FeH(SiCl3)2(CO)

(n5-C5H5)Fe(CO)2SnBr3

(n5-C5H5)Fe(CO)2SnCl3

(n 5 -C 5 H5)Fe(B9 C2Hn )

[ ( n 5 - C 5 H 5 ) F e ( C O ) 3 ] + [ P F 6 ] ~

F·—P(CF3)2

ico)2

(n5-C5H5)Fe(CO)2-CHz-C02H

(nb-C5HwS02Cl)2Fe

(n9-C5H5)2Fe

461

98,481

98,332

626

334

46,47

46,47

23,330

576

234

Neutron diffraction 619 268,269,292

[(n5-C5H5)2Fe]l3

[(n5-C5H5)Fe(U-NO)]2

(n.5-C5H5) (nl,-CuH6)Fe-GeCl2 (CH3)

(n5-C5H5) (CO)Fe(VJ-CO)2Co(CO)3

[ (n 5 -C 5 H 5 ) (CO)2Fe]HgCo(COK

(n5-C5H5)Fe(CO)2-(CwH:)S02)

(n5-C5H5) (C0)2Fe-Mn(C0)i,

. I" (CO^F· —FtJCO^

(r^-CsHsJFeiCOJüdV-CiHs)

»«V-^-Ft-0-cP|H (CH,I2

> /

iFciCO), &

c l 3 H i o F e 2 0 s S

C n H n F e N

(n5-C5H5)Fe(n5-C5H,t-CH2-NH-CHO)

i (n 5 -C 5 H^-CH 3 ) 2 Fe] l 3

(n5-C5H5)(CO)2Fe-SnCl2(C6H5)

A,

62

107

18,16

114

93

154,147

344

482

55

515

226

599

339

49

333

:V\ (η -C5H5)Fe(r)5-C5H„-CH=CH-CN)

Page 49: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 49

Table 6 (continued)

30 Ci3H12OFe

31 C1uHioBFuFe2IO^

32 Οι·,Η10Ο12Ρβ2σβΟ^

33 CiuHi0Cl9Fe2O.,Sb3

34 Cii,Hn)Cl2Fe20i»Sn

35 CmH 1 0Cl eFeO 2

36 CHHioFeN 2

37 CmH^FeNz

38 CmHioFe2N2OeSn

39 CmH10Fe2Oi,

40 C1<,H1oFe206

41 Cii,HioFe20cS

42 CinHmFeO

43 CmH l u Fe0 2

44 Cii fHi6BF l ,Fe202S2

45 Ci^H1 7Fe02

46 CmH i eFeN0

47 C!i,H2oFe2Si,

48 C 1 5HeFe 205

i9 C 1 5 H 1 0 F e O 2

50 C15H13F6Fe02Sb

51 CisHieFeO

52 C15H20As2FeI2NiO

:H2

{ [ ( n 5 - C 5 H 5 ) F e ( C 0 ) 2 ] 2 l } B F u

[ ( n 5 - C 5 H 5 ) F e ( C 0 ) 2 ] 2 G e C l 2

{ [ (r^-C^HsJFeiCO) 2 ] 2 SbCl 2 }Sb 2 Cl 7

[ ( n 5 - C 5 H 5 ) F e ( C 0 ) 2 ] 2 S n C l 2

HjC. iCjHg

VT

[ ( n 5 - C 5 H 5 ) F e ( C 0 ) 2 ] 2 S n ( 0 N 0 ) 2

^ x P

o i 0

[n5-csH5Fe(co)2]2(y-so2)

^ 0 CHj

(η -C5Hu-C0-CH3)2Fe

{ [ (n 5 -C 5 H5)FeCO] 2 (y -SCH 3 ) 2 } + [BF ,J~

H 3V'»3| ICOb ί

(n^CsH^Fetn^CsH^-NtOj-CiCHsJa]

[ ( n 5 - C 5 H 5 ) F e ] 2 ( y - S C ? H 5 ) 2 (U-S2)

k^HsIFtiCOla-CHj-^g) IS6F,|"

Ni CO

"if*

J98

i 9 9

2 0 4 , 1 0 5

278

507

9 2 , 3 0 4

68

188,

623

434

,12,69

484,99

12,15

159

296

516

180

302

301

588

132

297

150

442

Page 50: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

50 Carl Kruger et al.

Table 6 (continued)

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

CieHioFeNu

C16H12Fe

Ci6HlzFeN307

C16H13Cl9Fe06

C16Hi 3CoFeOi»

CieHmFe

Ci6HmFe2SiOi4

C16H16Fe2N202

C16Hi6Fe2 0uPb

Ci6Hi6Fe20i,Sn

C16H20Fe

Ci7HeFe205

Ci7Hi0Fe2N2O3

C17H10Fe2O6

C17H!2FeN^02

68 CiaHiuFeO«,

69 CieHieFeO

70 CieHi9Fe2N03

71 Ci8Hi9Fe2N03

72 C i a H 2 o F e

73 CieH22Fe2Ge205

74 C 1 9 H 1 6 F e 0 2

75 C 2oHioFi2Fe20

[(n 5-C 5H 5 ) 2 Fe][(CN) 2C=C(CN) 2]

[ ( n 5 - C 5 H 5 ) 2 F e ] + [ C 6 H 2 ( N 0 2 ) 3 0 ]

[(n5-C5H:>)2Fe] + [3CCl3-C0^H]

(Π -Cs^FeW-CsH^-CsHs)

[(n5-c5H5)Fe(co)2]2[y-Pb(cH3)2]

[(n5-C 5H 5)Fe(CO)2]2[ -Sn(CH 3 ) 2 ]

F^CO),

F«(CO)j 0

υ NC-C-CN (CO)jF·

| ^ H 2 — CICN), (CO)iFt C I

CH, C -CICN),

W L ^ ^ ^ ^

CH,—C.H,

ICH^CH-CH2-N-C C X C Q

(n5-C5H5)2Fe2(CO)3[CNC(CH3)31

■CH,

[(n5-C5H5)Fe(CO)2]2iu-3e(CH3)^OGe(CH3)2]

(n5-C5H.,-CO-CH3)Fe(n5-C5H,,-CO-C6H5)

0 - ^ \ / F * C 0

525

556

2i5

407

607

201

73

69,70

438,521

145

420

164

162

238,136,141

337

116

2

113

1

110

226

Page 51: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 51

Table 6 (continued)

76 C2oHif,FeO

77 C20H16Fe2

78 C2oHi6Fe

79 C20Hi6CL2Fe2

80 C2oHieFe2

81 C20H2oFe»,Si,

82 C20H2oFei,S6

83 C2oH22Fe2N2On

84 C20H3eFeSi^

85 C2iHi8Fe20

86 C^iH20Fe2O5

87 C2iH2„FeO«,S

88 C22Hi5ClFe2Mo07Sn

89 Cz2H1BFe

90 C22H22F6FeP

91 C22H2uFeO

92 C22H27FeN02

93 C23Hll4Fe205

94 C23HieCoFe05P

[ (n5-cbH^ci)Fe (n5-c5HO ] 2

[ ( n 5 - C 5 H 5 ) F e ( n 5 - C 5 H u ) ] 2

[ ( n 5 - c 5 H 5 ) F e K ( u 3 - s K

[ ( n 5 - C 5 H 5 ) F e K ( y 3 - S 2 ) 2 ( u 3 - S ) 2

I C H J ) , N N(CH3)2 rr? [(n5-C5H--Si(CH3)2-Si(CH3)3]2Fe

140,135

403,404,406

407,400,472,405

561,611

601

358

596 [(n5-C5H5)Fe(n5-C5Hu)]2C0

l c o , 3 p '>cs\^H 3

^^H Ft(CO)2

[n5-C5(CH3)5]Fe(CO)2S02-CH2-CH=CH-C6H5 [ ( n 5 - C 5 H 5 ) F e ( C 0 ) 2 ] 2 ( P 3 - S n C L ) [ (n 5 -C b H 5 )Mo(CO) 3 ] 508

o

(CO)2F* F · (CO·,

. ^ - c o

£ Vtt«HA 0 CH,

Page 52: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

52 Carl Kruger et al.

Table 6 (continued)

95 C2„H1 6Fe2

96 C2i»HieFe02

97 C2UH2 0F62S2O2

98 C2itH2oFet,Oi»

99 C2l4H2oF6Fe1,Oi»P

100 C2i»H2oFe20i,Sn

101 C2^H22Fe20i4

102 C2l4H2 2Fe2Ol4

103 C2-H26Fe2

104 C2wH2wFe2

105 C25H2oFe02Sn

106 C2 6H2oFe2Ol4Sn

107 C26H2oFe20eS2Sn

108 C2eH2eFe

(n:,-C5Hu-CO-C6H5)2Fe

[ ( n 5 - C 5 H 5 ) F e ( C O ) ] 2 ( y - S - C 6 H 5 ) 2

[(n5-C5H5)FeK(y3-COU

{[(n5-C5H5)FeK(y3-COK}+PF6"

[ ( n 5 - C 5 H 5 ) F e ( C O ) 2 ] 2 [ y - S n ( n 1 - C 5 H 5 ) J

° ι [(n^CHaO-CO-CsH^Fetn^CsH,») ] 2

[ ( n ^ CzHs -CsHOFe in^C sH ^ i l z CHj

(n5-C5H5)Fe(CO)2Sn(C6H5)3

[ ( n 5 - C 5 H 5 ) F e ( C O ) 2 ] 2 [ u - S n ( C 6 H 5 ) 2 ]

[ ( n 5 - C 5 H 5 ) F e ( C O ) 2 ] 2 [ y - S n ( S 0 2 - C 6 H 5 ) 2 ]

319

581

291

502

594

74,71,69

198

409

401

96

69

109 C26H36CUFe2N2Zn«H20

HO C26H39FeN30

t l l C26H^oAl2Fe201,

112 C26Hu2Fe

113 C2 7H2oFe306Sn

114 C28H20ClioFei,08Sb2

115 C2eH23FeOPS

{(n5-C5H5)Fe[n5-C5Hl»-CH2-NH(CH3)2]}22nCir 313

ICH,),CHN^ -**€*- ~>NHC,Hfl

ICHjbC-^-CICHjlj

0«-AI|C2H5)j Ί CO

CO i 0<-ΑΙΐε2Η5)3

ICHjljC-C^J-CICHjlj

[ (n 5 -C 5 H 5 )Fe(CO) 2 ]3(y3-Sn-C 6 H5)

[ ( n 5 - C 5 H 5 ) ( C O ) 2 F e - C l ] 4 ( y 3 - S b C l 3 ) 2

69

279

Page 53: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 53

Table 6 (continued)

116 C3oH2oCl2CU2Fe20i»

117 C3oH2 5FeOP

118 C3oH26Fe3

119 C3iH25Fe02P

120 C3iH25Fe206P

121 C32H2oCl2Fe.401o

122 C33H2uFe09

123 C33H3oFe3

124 C33H3ftFeN2Ol4«H20

125 C35H3.*Fe30

126 C38H3oFeOSn

127 C38H32Fe2O10S2Sn2

128 C3eH3.,F6FeOP2Sn

129 CmH35FeI06P2

130 Cu3H32CleFe70l 2Sb2

131 Cu0H3«.F6Fe2Oi»P3Rh

132 Cw6H39Au2BFl,FeP2

133 C52Hi4oFeu06P2

c ' o \ — c

" ΛΛ.Ρ FrfCO),

/Fe ^Fe

° S PtOCeHslj 0

C I H « C , I

A^L-cOj—CH3

i eH5

[ (n5-C5H,J Fe (r)5-C5H„-CH2-) ] 3

(n5-CH3-C5Hu)Fe(n5-CH3-C5H3-CX)2H) absolute configuration of quinidine salt

Cr \ c * F* — - S n l W j

[(n5-C5H5)Fe(CO)2Sn(C6H5)(OSO-C6H5)(OH)]2

? L > Sn(CH,|,

(n 5 -C 5 H 5 )Fe[P(OC6H5) 3 l2 l 1

{ [ (n5-C5H5)Fe<CO) 2 1 3 (y 3-SbCl) i t t F e C U ]2"«CH2C12

•VA,** {(n 5 -C 5 H 5 )Fe[n 5 -C5H„-Au(PPh3) -Au(PPh 3 ) ] } BFÜ

{ [ ( n 5 - C 5 H 5 ) F e ( C O ) ] ( μ - C O ) 2 [ ( n 5 - C 5 H 5 ) F e ] } 2 -[μ- (C 6 H 5 ) 2 P-CEC-P(C 6 H 5 )2]

92,171

28,562

(n5-C5H5)Fe(n5-C5H»,)2Fe(n5-C5Hu)2Fe(n5-C5H5) 402,405

124,563

457

119

343

545,274

,13,11,123

593

340,468

20,21

120

Page 54: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

54 Carl Kruger et al.

Table 7: Organoiron Complexes Containing Fe-N Bonds.

Fe-N Distance [A]

1 Ci6H36F6Fe2N50PS^ -Χφ/f· br idge

2 . 1 0 4 ( 5 ) 2 .086 (5 ) 1 .193(8)

2 CeFeN5OSi,

3 C29H2 0 F 6 F e N 2 O 2 P 2 FjC,

4 C 3 6 H 3 0 F e N 2 O 2 P 2

5 Cl»H1 0Fe2Ni»Oi,S2

6 C i o H 2 0 F e N 3 O S u

[(FeL)2NO]PF6

L = N/tf '-dimethyl-JVjW'-bisiß-mercapto e t h y l ) e t h y l e n e d i a m i n e

(NO)Fe[S2C2(CN)2]2

F, ICH,),

F e ( N O ) 2 [ P ( C 6 H 5 ) 3 ] 2

Ar'-

[Fe(NO) 2 ] 2 (y -SC 2 H 5 ) 2

Fe(NO)[S 2 C-N(C 2 H 5 ) 2 ] 2

1 .645(7) 1 .661(7)

1 .650(7)

1 .660(8)

1 .690(4)

6

589

176

1 C^ u H 3 5 B F ^FeN 2 0 2 p 2

8 C6Hi2FeN3OS«,

9 C l s H 1 5 F e N 2 0 3 P

10 CioHioFe2N202

11 C 5 H 6 F eN,,0 3

12 C e H 6 F e 2 N 2 0 6

13 C 3 9 H 2 7 F e 2 N 2 0 5 P

14 C 1 6 H 3 0 F e N e O 6

C,HS . F.teO,

F e ( N O ) [ S 2 C - N ( C H 3 ) 2 ] 2

F e (NO) 2 ( CO)[P(C 6 H 5 ) 3 ]

1.702(6)

(at -80°C) 1.720(5) 1.705(16)

Fe-N/C av. 1.7θ9 (CO + NO ligands are disordered)

[(n 5-C 5H 5)Fe] 2(y-NO)2

H,C / \ N-CM,

(CO, °V^» ■•cot,

*0™ tCOJJF»<£L^FtteOII

bis (dimethylglyoximato)-diimidazoleiron(II)-dimethanol

1.768(9)

1.830(3)

1.873(4) 1.882(4)

1.89 1.91 1.95 1.93

1.893(6) 1.918(6) 1.985(5)

229 227

15 C 2 2 H 2 i , C l 2 F e N e O e IC«(\12' (CH3CN)

1.892 1.899 1.938

Page 55: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 55

Table 7 (continued)

Fe-N Distance [Ä]

16 Ci3H9Fe3NOioSi COIj

CO),

SilCH,),

17 C23H2i.Cl2FeN60e [Fe (py3TPN) ] [ClO·. ] 2 py3TPN ■ l , l , l - t r i s ( p y r i d i n e -2-a ld iminomethyl )e thane

18 Ci2H22FeNeO

19 C 2eH 2 7FeN„

20 CieHeFe2N206

21 CieH3oFeNe06

22 CeHieFe.,N60wS2

23 CieH5i»FeN3Si6

24 C2 9HieFe2N206

I CH , |

I CO |

[Fe(NO)]H(U3-S)2[V3-N-C(CH3)3]ü

{ [ (CH 3 )3S i ] 2 N} 3 Fe

<C0I,F» -H-t-n. x_.>

1.920 1.870 1.907

1 .89(2) 1 .99(2) 1 .94(2) 2 . 0 1 ( 1 ) 1 .90(1) 2 . 0 1 ( 2 )

1 .900(2)

1 .904(2) 1 .906(2) 1 .909(3) 1 .915(3)

1 .910(6) 1 .918(6)

1 .910(2) 1 .970(1) 2 .050 (2 )

1 .914(3) 1 .908(3)

1 .917(4)

1.919 1.921 1.960 1.969 / \ /

(COljF· N=C ' C«H5

av. 1.92 25 056Ηι»ι,ΡβΝΐ2 [ (Phthalocyanine) (4-methylpyridine) 2Fe] (phthalocyanine)

•2(4-methylpyridine) av. 2.00 (methylpy)

26 Ci4HH2eFeN50 (Nitrosyl)(α,Β,γ,δ-tetraphenyl-porphinato)iron(II)

1.928(6) 2.001 (-3)

27 C36H2eFe2N20 6

28 C 2 3 H 2 6 F e N 6 0

29 C35H2oFe3N.,09

ofö> (CHj-Crt»,C - N ; J -CIC^-CH,),

(CO),

I

1.94 (axial) 2.12

(CO), '•CO),

Page 56: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

56 Carl Kruger et al.

Table 7 (continued)

Fe-N Distance [A]

3θ C2i»H2 7B2FeFeN7

31 C2oHi3Fe2N06

(imine) 1.95 av. { [ (NC;,HU-CH=N-CH2-CH2-) 3N]Fe}2 [BF* ]Z"

(pyridine) .CWCH,

rICO), ICO),

1.96 1.97 1.98

1.950 1.960

32 CieHioFe2N206

tOyf·^ ^ FeICO),

33 C3oH2 8Cl2FeN,lOeS2«CH30H [Fe(N„S2)]2 (ClOH) I'CHaOH N2S„ = 15,18-Dithia-l,5,8,12-tetraaza-

3,4:9,10:13,14:19,20-tetrabenzo-cycloeicosa-1,11-diene

1 .980 2 . 0 0 0 2 . 0 2 0

1 .979(11) 2 . 0 2 4 ( 7 ) 1 .999(9 ) 2 . 0 1 7 ( 9 )

1 .950(2) 1 .960(2) 1 .980(2 ) 2 . 0 0 0 ( 2 )

34 Cil8Hi,oAs2FeN15 [ (C 6 H5KAs]2Fe(N 3 )5

35 Cl>i»H2 8FeN6012Sb2«8H20 [ l - T r i s ( l , 1 0 - p h e n a n t h r o l i n e ) -iron(II)]bis[antimony(III)-d-tartate]-octa-hydrate [Fe(Ci2HeN2)3][Sb(C„H206)2]«8H20

1.960(4) 1.970(1) 2.040(2)

1.96(1) 1.98(1) 1.97(1) 628,587

36 C9H6Fe2N207

37 C33H2i»Fe2N2O10

C02Ht x COjMt

ICO),

1 .965(10)

1.971 2 .011

38 Ci9HmB2Cl2F5FeN603P [{FB(ONCHC5H3N)3P>Fe] [BF«J~ 1 .972(7 ) - 1 .984(8 ) •CH2C12 ( p y r i d y l )

{ [ F l u o r o b o r o - t r i s ( 2 - a l d o x i - 1 .921(7) - 1 .943(8 ) m o - 6 - p y r i d y l ) p h o s p h i n e ] i r o n ( I I ) } - (aldoximo) t e t r a f l u o r o b o r a t e

-1 3»

39 C36H26Cl3FeN6Oi3

40 Ci7Hii»FeN208

41 C6H«,Fe2N20e

42 C2 0Hi2Cl2Fe2N2O8

[aqj*, -Η,Ο

CH,02C COjCH,

„Ay-^F.icok

[H2NFe(CO)3]2

9 ~ -( C O ) , F · ^ ^>F*(CO),

IßT·

1.973

1 .979(2 )

1 .98 (2 ) 2 . 0 1 ( 2 ) 1 .98(2) 1 .96(2)

1 .980(1) 2 . 0 2 0 ( 1 ) 44,45

Page 57: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Table 7 (continued)

Structure, Bonding in Organic Iron Compounds 57

Fe-N Distance [A] Ref.

43 C5oH36ClFeNe»CH3OH bis(imidazole)-a,β,γ,δ-tetra- 1.989 phenyl-porphinatoiron(III) chloride 1.957(4) (imid)

1.991(5)

217,179

44 C 2 6 H i 6 F e N 6 0 2 S 2 • C H C 1 3 » C 2 H 5 0 H « H 2 0

45 C 1 9 H i 0 F e 2 N 2 O 7

46 C36H30Fe2Ni»O6

-9 "So

CHa,C^|OH-HjO

l<^>]2

?

(COljFe^U^^co),

«CHj-c^q^ ^icyi -CH,) ,

(CO», FeCOJ»

1 .90 1.93

1.99 2 .01

1 .993(9) 2 .004 (8 ) 2 . 0 0 0 ( 8 ) 1 .985(8)

1 .990 2 . 0 2 0

47 d,9H3 5Cl3FeN70 (Nitrosyl)(α,β,γ,δ-tetraphenyl- 1.993-porphinato)(1-methylimidazole)iron 2.180

48 C z $ H m F e N 2 0 9

N—N ICO),F/—VtiCO», 2.00(1)

2.01(1)

, _ „, bis(imidazole)octaethylporphinato-49 C,2H5 2NeO,FeCl.2CHCl3 i r o n ( I I I ) p e r c h l 0 r a t e

50 C3„H32ClFeN„0.» α-Chlorohemin

2.001 2.003 2.011 2.013

51 C 1 2 H 5 F e 2 N 0 6 S

52 CeH„FeN2Oi,

8-. . ICO),F·^—^F«(CO),

2.031(2)

53 Cl 9H1 5Fe2NOi0S

54 C42Hi«oFeN50GS

55 C9H5FeNOi,

ο,ε-ε,Ηι-θΗ,

HfXT Η,εοΛ/ F.ICO),

2.04 (p-Nitrobenzenethiolato)(proto- 2.07

porphyrin IX dimethylester)iron(III) 2.09 2.09

©~ W«C<\

Page 58: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

58 Carl Kruger et al.

Table 7 (continued)

Fe-N Distance [A] Ref.

56 C9HeFeN205

57 CieHi3FeN03

58 C3oH2eClFeN202

59 CeeH56Fe2N20

60 C2 2H2oFeN6S2

61 C20H2„ClFeN2O2

62 C22H16FeN6S2

63 C5uH5oFeNb

64 C3 3H3oCl2Fe2NuOi

65 C32H2eFe2N„05

66 C27H3uCl2Fe2N2Oi,

67 Ci6H32ClFeINw

68 Ci2HieCleFe3N6

iCOljF» CH3

H 5 C , - ^ | \ - C , H 5

FHCOb

2.063(5) 2.057 2.01

2.14(1) 2.12(1)

Fe(SANE)2Cl SANE = N-(2-phenylethyl)salicylaldimine

(y-oxo)bis[α,β,γ,ό-tetraphenyl-porphinatoiron(III)] 2.087(3) O(Fe-TPP)2

Fe(C5H5N)k(NCS)2 (NCS)

(pyridine)

(chloro)bis(W-n-propylsalicylald-iminato)iron(III)

Fe(bipy)2(NCS)2 (NCS) (bipy)

bis(piperidine)(α,β,γ,ό-tetra- (ax.) (eq.) phenylporphinato)iron(II)

μ-OlFe-salen ]2·ΟΗ2Οΐ2

y-0[Fe-salen ] 2

[Fe(SALPA)Cl]2«C6H5CH3 SALPA = N-(3-hydroxypropyl)salicyald-imine

N NH

HN| N

[(CH3-CEN)6Fe]2+[FeCl„ ]*

69 C,oHi2FeLiN2Oe«3H20 {Li+[Fe(EDTAb)]"}·3Η20

70 Ci,oHi,8Fe2NH05

71 Ci2H30Br2FeNu

72 θΣΗιοΡθΝβΟ,,ε,

(μ-οχο)bis[(W-n-propylsalicylidene-iminato)iron(III)]

Fe{N[-CH2-CH2-N(CH3)2]3}Br2

[Fe(NH2-NH-CS-NH2)2SOw] (polymeric)

2.088(4) K2.241(4) «2.268(4)

2.09(2) 2.096

2.09(3) 12.17(2) '2.17(2)

2.127(3) 12.008(3) '2.000(3)

2.11 2.13

2.12(1)

2.06(1)

2.13(1) 2.17(1)

2.13(2) 2.24(1)

2.111(9) 2.240(11)

2.14(5) 2.18(5)

2.14(2) 2.14(2) 2.13(2) 2.14(2)

2.150(1) 2.210(1)

2.164(6) 2.195(6)

167 166 165

235,231

235,231

235,231

235,231

235,231

235,231

235,231

235,231

235,231

235,231 235,231

235,231

235,231

235,231

235,231

235,231

235,231

Page 59: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 59

Table 7 (continued)

Fe-N D i s t a n c e [A]

•7T r u n r a M Λ c ( c h l o r o ) [ b i s ( s a l i c y l i d e n i m i n e p h e n y l ) - 2 .166(12) 73 C26HieClFeN202S2 d i s u l f i d o ] i r o n ( I I I ) 2.204(10)

74 C2 7H2i»Cl3FeNu03«3H20 U+CHj-CHj-N-CH-^^-Clj Ft* 2.18

C3oH5oCluFe2N10Oi9 [ (H20) LFe-O-FeL (H20) ] ** + [ClOu 1Ü 2.2 ? 5 C17H2 3ClFeN70uS2 [FeL(NCS)2]ClO- 2.23C5)

(NCS) 2.01(2) L = 2,13-dimethy1-3,6,9,12,18-pentaazabicyclo[l2.3.1]octadeca-l(18),2,12,14,16-pentacne

76 C22H,0Fe2N6O15.6H2O 0 ^ ^ ^ ^ ^ + [ ^ « " > " H O - C H 2 - C H N OV-CO;

2.200 2.270

77 Ci6H36Fe2NwSu

78 C10Hi5FeN2O9

79 CieHwoFe2NuSi,

(μ-L)2Fe2 L = N,W'-dimethyl-lV,JV'-bis($-mer-captoethyl)ethylenediamine

[Fe(HEDTA2?)H20]

2.20(1) 2.32(1)

2.22 2.325 2.207(7) (y-L)2Fe2

L = N,N'-dimethyl-N,N'-bis(ß-mer- 2.337(7) captoethyl)-1,3-propanediamine

412 360

80 Ci»3H3oFe5N6Oi3 [Fe(C5H 5 N)6] 2 + [Feu(CO) 1 3 ] 2

C2 9HuoCaFe2^Oie'8H20 Ca2 + [FeL(H20) ] ! ·8Η20 L = t r a n s - 1 , 2 - d i a m i n o c y c l o h e x a n e -Ν,Ν'-tetraacetate

82 C 3 2 H 2 u Cl 2 FeN e 0 8

2.25(3) 2.28(3) 2.29(3) 2.26(3) 2.22(3) 2.25(3)

2.290(4)

2.284(11) 2.188(10) 2.213(10) 2.184(11) 2.335(10) 2.378(11) 2.465(11) 2.756(11)

83 Cl0H1uFeLiN2O9*2H2O {Li+[Fe (EDTA2>) (H20) 1"}·2Η20 av. 2.325

84 C10HiuFeN2O9Rb»2H2O {Rb+[Fe(EDTA*)(H20)]~}·2Η20 av. 2.317

85 C10HiUFeN2NaO9»2H2O {Na+[Fe(EDTAb)(H20)]~}·2Η20 av. 2.26

86 CnHieFeNsOeOi^O { (CN3H6) + [Fe(EDTA2>) (H20) ]~}·2Η20 av. 2.38

447

447

505

501

87 Ci6Hi,6Fe2NioOIil ( y - o x o ) b i s [ t e t r a e t h y l e n e penta -a m i n e i r o n ( I I I ) ] i o d i d e

2 . 3 2 ( 5 ) 2 . 3 6 ( 4 ) 2 . 3 0 ( 3 ) 2 . 1 2 ( 4 ) 2 .13 (4 )

Page 60: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

60 Carl Kruger et al.

Table 7 (continued)

No. Fe-N D i s t a n c e [Λ] Ref.

88 CHsoFejNzOzaSz {[Fe(H20) 6 ] 2 +

[Fe (H20) „ (H3N -CH2-C02 ) 2 ] [SO., ] 2 ~ }

89 Ρβ.,Ν,,Ο,,ε., [ F e ( N O ) K ( y 3 - S ) „

90 C20H22Cl2Fe2N2o„ [Fe(Sal=N-(CH2)30)Cl]2, and other Sal=N-R complexes of iron(III)

ec 91 C^HieB^FeNeOe'bCeH^ FeL'SCeH^

L = l,8-bis(fluoroboro)-2,7,9,14,15,20-hexaoxa-3,6,lO,13,16,19-hexaaza-4,5,11,12,17,18-hexamethylbicyclo[6.6.6Jeicosa-3,5,10,12,16,18-hexaene

92 Ci7HeFe2N207

93 CieH30Fi2FeNeP2 [FeL(CH3CN)2]2+[PF6]2

L = 2,3,9,10-tetramethy1-1,4,8,11-tetraaza-cyclotetradeca-1,3,8,10-tetraene

94 CnH2iCl2FeN705 [Cl-FeL(H20) ]+Cl~«2H20 L = 2,6-diacetylpyridine-bis(semicarbazone)

- O H ^ b HV-CH, C H r C 0 2 H

\ H , - C < " V " 0 1 » XCHrco2H

Page 61: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 61

Table 8: Organoiron Complexes Containing Fe-0 Bonds. No. Formula Fe-0 Distance [Λ]

1 CeeH56Fe2NeO (y-Oxo)bis[a,8,Y,6-tetraphenyl-porphinatoiron(III)] 0(Fe-TPP)2

( y - O x o ) b i s [ t e t r a e t h y l e n e p e n t a -2 d e H ^ P e z N i e O U a m i n e i r o n ( I I I ) ] i o d i d e

3 C32H2eFe2Nk05 μ-OfFe-sa len ]2

(bridge)

4 C22Hi»oFe2N6015«6H20 {[NH3-CH2-CH2-NH3 ] 2 + [LFe ( I I I ) -0 - F e ( I I I ) L ] 2 " } « 6 H 2 0

HO-CH.-CHN ^CH.—COf

t^c-CH,' NIH-COJ-

5 C3 3H3oCl2Fe2Nu05 y-0[Fe-salena]2·0Η2012

6 C3oH28ClFeN2Ol4

7 C27H3oCl2Fe2N20u

Fe(SANE)2Cl SANE = W-(2-phenylethyl)sali-cylaldimine

[Fe(SALPA)Cl]2«C6H5CH3 SALPA = iV- (3 -hydroxypropy l ) sa l i -cylaldimine

8 C26H18ClFeN202S2

9 Ci6Hi^ClFeN202«CH3N02 [Cl-Fe-salena]

10 C16HlwClFeN202 [Cl-Fe-salena]2

11 C20H2uClFeN2O2

(Chloro)[bis(salicylidenimine-phenyl)disulfido]iron(III)

(Chloro)bis(N-n-propylsalicylal-diminato)iron(III)

1.763(1)

1 .93(1) 1 .78(1)

1 .79(1) 1 .80(1) 2 . 0 3 ( 1 )

(average)

1 .791(9) 1 .797(9) 1 .926(9) 1 .924(9) 1 .924(9) 1 .916(9)

1 .85(1) 1 .93(1) 1 .98(1)

1 .86(1) 1 .88(1)

1 .871(8) 1 .909(7)

1 .879(10) 1 .885(11)

1 .898(7) 1 .978(7)

1.887 1 .89(2)

12 Ci8Hi,eCl7Fe3N60i,»,

13 Ci,0Hi,eFe2Nt»O5

14 (\2H38Fe2N6O5

(bridge-O) {[Fe(III)(alanine)2H20]30}(ClO^)7

(H20)

(y-Oxo)bis[bis(W-n-propylsali-cylideneiminato)iron (III)]

y-0[Fe-salen ]?«py2

15 C26H16FeN602S2»CHCl3»C2H50H»H20

16 CioHmClFeO^

17 C^eHibF^FeOPS*

(bridge-O) (salen-O)

CHQj · C^HjOH · H O

{[(C6H5)3PO]Fe[S2C2(CF3)2]2}"

2.07

1.93(1) 1.92(1) 1.94(2) 1.92(1)

1.79 1.93

1.93 2.01

1.95(1)

1.957(15)

Page 62: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

62 Carl Kruger et ah

Table 8 (continued)

Formula Fe-O D i s t a n c e [A] Ref.

18 C2oHioFe2Oe

19 C2oHi5Fe207P

20 C2iH2i,FeN309

21 CioHi5FeN209

22 CnHi3F6FeOi,P

23 Ci5H2iOi0AgClFe

24 CieHi 5 FeN 6 0 6

25 C 1 5 H 2 iFe0 6

26 CgHgFeFeO^P

27 Ci1H1 8FeN50e»3H20

28 C7H6BF3Fe05S

29 Cn^HioAgsFeOePeSe

30 CeH2i»Cl6Fe20i,Si,

31 C2iHi 5 Fe0 6

32 C12HeFe0i»

( see F i g . 6) «oy^—Jwcob H I,F#—fro

0 ) , F · ^Fe(CO),

1 . 967(5 )

1 .969(6 ) 1 .974(6 )

H,C N " ' X H ,

Fe(C6H5-CO-NH-0)3 ·3Η20

[Fe(HEDTA2>)H20]

CH,

PF»" hr

L^O—H

<r i ]^0—N—CHs

CH,

iFtAgCIOt

av . 1 .98 (1 ) av . 2 . 0 6 ( 1 )

1.98

1 .987(10)

av . 1.99

9 Θ \ l

j-CH,

FÄCO),

1 .99 (1 ) 2 . 0 1 ( 1 ) 2 . 0 0 ( 1 ) 2 . 0 1 ( 1 ) 1 .99 (1 ) 2 . 0 0 ( 1 )

1 .992(6 )

1 .995(5 )

{(CN3H6) + [Fe(EDTA1>) (H20) ] " ) · 2 Η 2 0 a v . 2 . 0

-A- (ca,F»*—o

{Ag[P(C 6 H 5 )3]2}3l ' , e (0 2 C 2 S 2 )3

t r a n s - { c i 2 F e [ O S { C H 3 ) 2 ] 1 , } + [ F e C l u ] " 0 -or

Fe (CO),

2 . 0 0 ( 1 )

2 . 0 0 3 ( 6 )

2 . 0 0 6 ( 6 )

2 . 0 0 8 ( 3 )

2 . 0 1 3 ( 3 )

2 . 0 1 7 ( 1 7 ) 2 . 0 9 2 ( 5 )

33 C2eH.,oCaFe2Nlt01e'8H20 Ca2 + [FeL(H20) ] 2 · 8Η 2 0 L = trans-1,2-diaminocyclohexane-W,tf'-tetraacetate

34 C10H1HFeN2NaO9«2H2O {Na+[Fe(EDTA*)(H20)]~}·2Η20 *ν' l'°* (H2O) 2.11

452

412

144,146

216,366

57,56

342

166,168

Page 63: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 63

Table 8 (continued)

Fe-0 Distance [Λ] Ref.

35 C10Hi2FeLiN2Oe»3H2O {Li+[Fe(EDTA*)]~}·3Η20

36 CieHmFe20io «COItF.i S a « , (Öl j©

2.04 1.87 1.94 1.8

2.040(5)

-CH, 37 C25HieFe2Oe

38 C2H6Cl2FeN202 Catena-di(y-chloro)bis(formamido-O) 2.13(1) iron(II)

39 Cz2H16ClFeNe08«6H20 Bis(10-methylisoalloxazine)ferrous 2.165(5) perchlorate hexahydrate

40 C2H10FeN6OuS2 [Fe(NH2-NH-CS-NH2) 2S0., ]

(polymeric) 2.187(5) 2.165(4)

181

305

496

41 C2H2Fe02S»H20 Fe(S-CH2-C02)»H20 2.207(7) 2.186(7) 2.126(9)

42 C2FeO«,»2H20 Iron(II)oxalate dihydrate 2.22 (H20) 2.11

43 C2oHlzCl2Fe2N2Oe • © - -"Si

1.91(1) 2.73(1) 44,45

44 C12H2i4ClFe3O20

45 CnHziClaFeNyOs

[Fe 3 (CH 3 -C0 2 ) 6 0 .3H 2 0] + [C10j"

[Cl-FeL(H20)]+Cl~«2H20 L = 2,6-diacetylpyridine-bis(semi-carbazone)

46 C2oH2 2Cl2Fe2N20^ [Fe(Sal=N-(CH2)30)Cl]2, and other Sal-N-R complexes of iron(II)

oc CH—N N—CH

CH2—CH,

HQjC-CH, CHj-COjH H t E D T A . \ _ C H 2 - C H r - N

HOjC-CH, S C H r C 0 2 H

Page 64: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

64 Carl Kruger et al.

Table 9: Organoiron Complexes Containing Fe-S Bonds.

Formula Fe-S D i s t a n c e [Λ] Ref.

1 C1 6Hi6Fe30eS2

2 C8Hi,l,B2oFeN2S2

3 0 2 1 ^ 3 ^ 2FeNS.»

4 C2-H2iFeS7

5 C32H56Fe2N2S6

6 C13H10Fe2O5S

7 CmHzoFeFeN^Sß

8 C26Hi5Fi2FeOPS^

9 C^uH6eFe2N2S6

ICOI2F^

8 8 rFe(COI2

[NtCHaKli iFe iBKjHujS); , ] 2

2 . 2 0 6 ( 2 ) 2 . 1 4 2 ( 2 )

2 . 1 5 5 ( 3 )

[(n-CuH9)i,N]","{Fe[S2C2(CF3)2]2}" a v . 2 .17

[Fe(CH3-C6Hu-CS3)(CH3-C6H^-CS2)2]

2 . 1 8 4 ( 7 ) 2 . 2 3 8 ( 7 ) 2 . 2 9 7 ( 5 ) 2 . 3 3 6 ( 6 ) 2 . 3 4 3 ( 7 ) 2 . 2 9 6 ( 6 )

2 . 1 8 5 ( 2 )

[ (C 2 H5)uN]i{ (p-S)2Fe2[(SCH2)2C6H^] 2 } 2 " 2 !232 (1 )

^ v Q. 0 ^ 2 . 3 0 3 ( 1 )

Fe[S 2 CN(C2H 5 )2]2[S2C2(CF 3 ) 2 ]

{[ (C6H5)3PO]Fe[S2C2(CF3)2]2}~

2 . 1 8 7 ( 1 ) 2 . 1 8 1 ( 1 )

2 . 1 9 5 ( 3 ) 2 . 3 1 0 ( 3 )

2 . 1 9 9 ( 1 5 ) 2 . 2 2 5 ( 1 5 ) 2 . 2 3 9 ( 1 5 ) 2 . 2 3 1 ( 1 5 )

2.2O0

212,213

471

[(C2H5)uN]i[(y-S)2Fe2(S-C^-p-CHa) .♦ ] 2 ~ \'3°^

10 C2oH2oFei4Si,

11 FelfNi40itS4

12 α2ΐΗ2ι,ΡβΟ„8

[(n5-C5H5)FeK(yJ3-S)„

2.204(4) 2.250(8)

av. 2.206(2) av. 2.256(3)

[Fe(N0)U(y3-S)n av. 2.217(2)

[n5-C5(CH3)5](CO)2Fe-S02-CH2-CH=CH-C6H5 2.218(2)

13 C„eH7?Fe?N,0Se [ ( n - C ^ N N ^ ^ l S z C z i C N ) *]„}*'

14 Ci6H3oFe2S1i4 (U-:

15 C8HieFe^N6O^S2

16 Cl»HioFe2Ni4OHS2

2.20(3) 2.20(3) 2.25(3) 2.28(3)

bridge 2.46

bridge S 2.22(1) SC2H5)2[Fe(S2C-S-C2H5)]2(y-S2C-S-C2H5)2

bridge S2 2.28(1) 2.34(1)

[Fe(NO)K(y3-S)2[y3-N-C(CH3)3]^

(y-SC2H5)2[Fe(NO)2]2

2.224(2) 2.222(2)

2.26(2) 2.28(7)

561

306

152

Page 65: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 65

Table 9 (continued)

Fe-S Distance [A]

17 CeFeNsOSi,

18 C6Fe206S2

19 Cio^oFeNaOSi,

20 C9Fe309S2

21 CioH2oClFeN2Si,

22 CluH16BF„Fe202S2

23 C3oH2eCl2FeNuOeS2'

24 C^H68Fe^N2S8

25 Ci!»H6Fe«,Oi2S3

26 CioHioFe206S2

27 C2oH1 0Fe206S2

28 C2i»H2oFe2S202

29 C32H«,,,FeN2Se

3θ C60Hi,oAS2FeN6S6

31 Cw0He8Fe2N2S«

32 CmH2oFe2S^

Fe(NO)[S2C2(CN)2]2

(U-S2)[Fe(CO)3L

Fe(NO)[S2C-N(C2H5)2]2

(y3-S)2[Fe(CO)3]3·(y-S2)[Fe(CO)3]

Cl-Fe[S2C-N(C2H5)2]2

{(U-SCH3)2[(n5-C5H5)FeCO]2}+[BFu]"

CH3OH [Fe(Ni»S2)]2+(ClOi»)2"«CH30 N H S 2 = 15,18-Dithia-l,5,8,12-tetraaza-3,4:9,10:13,14:19,20-tetrabenzocyclo-eicosa-1,11-diene

[ ( C 2 H 5 ) f N l i t ( y 3 - S ) u ( F e S - C H 2 - C b H 5 ) . J 2 "

( y u - S ) { ( y - S C H 3 ) [ F e ( C 0 ) 3 ] 2 } 2

(U-SC2H 5 ) 2 [Fe(C0) 3 ]2

€( p I \

(COI,F· — »(CO),

(y-SC6H5) -i [ (n5-C5H5)FeCO]2

[ (CH3) fN]£[ (U3-S) Fe (SCeH;,) „ ] 2 ~

[(C6H5)„As]i{Fe[S2C2(CN)2]3}2~

[ ( n - C „ H 9 U N ] 2

7 Y ^ c H , C — C H 2

\ / Hfi—CH,

pHj

< < ;

(y-s2)[(n5-cbH5)Fe]2(y-s-c2H5)2

2 . 2 6 ( 6 ) 2 . 2 6 ( 6 ) 2 . 2 8 ( 6 ) 2 . 2 9 ( 6 )

2.228(2)

2 . 2 8 ( 1 ) 2 . 3 0 ( 1 ) 2 . 3 0 ( 1 ) 2 . 2 6 ( 1 )

2 . 2 2 8 ( 9 ) 2 . 2 2 5 ( 9 ) 2 . 2 3 3 ( 9 ) 2 . 2 2 0 ( 7 ) 2 . 2 1 2 ( 9 )

2 . 2 9 ( 1 ) 2 . 3 1 ( 1 ) 2 . 3 0 ( 1 ) 2 . 3 0 ( 1 )

2.233(4) 2.235(4)

2 . 2 3 6 ( 9 ) 2 . 2 4 6 ( 9 )

2 . 2 3 9 ( 4 )

2.248(8) 2.274(7)

2 . 2 5 9 ( 7 )

2 . 2 5 9 ( 3 )

2 . 2 6 2 ( 6 )

2 . 2 6 3 ( 3 )

2 . 2 6 4 ( 1 ) 2 . 2 5 8 ( 1 ) 2 . 2 7 1 ( 1 )

2 . 2 6 5 ( 3 ) 2 . 2 3 6 ( 3 ) 2 . 5 0 3 ( 3 ) 2 . 2 2 0 ( 3 ) 2 . 2 4 7 ( 3 )

2 . 2 7 3 ( 2 ) 2 . 2 8 9 ( 2 ) 2 . 1 2 9 ( 2 ) 2 . 2 7 5 ( 2 ) 2 . 2 8 5 ( 2 ) 2 . 1 2 9 ( 2 )

373,375

585

27

178

219

93,94,608

291

539

564

Page 66: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

66 Carl Kruger et al.

Table 9 (continued)

Formula Fe-S D i s t a n c e [A] Ref.

33 C1eHi0Fe2O6S2

34 C16H36F6Fe2N50PSH

f * i

(COIjF·: ^Ft lCO),

[ (FeD 2NO]PF6

2 .275 (2 ) 2 . 2 6 1 ( 2 ) 2 . 2 8 1 ( 2 ) 2 . 2 6 4 ( 2 )

b r i d g e 2 . 2 7 6 ( 2 ) 2 . 2 4 5 ( 2 ) 2 . 2 9 8 ( 2 )

L = W/W'-dimethyl-JV^N'-bisiB-mercaptoethyDethylenediamine

35 CmHioFe206S

36 Ci2H5Fe2N06S

i ° I

J^L

2 . 2 7 9 0 ( 6 ) 2 . 2 8 1 4 ( 7 )

2.283(2)

( 2 . 2 8 9 ( 2 ) 37 C7i»H7.,FeOi2P2S6 [ (C6H5) 3 (CeHs-CI^iPhiFe^CCtCOzCaHs) 2 ] 3 } 2 ~ 2 . 3 0 5 ( 2 )

2 . 3 0 1 ( 2 )

38 Ci5H27FeS9 Fe[S2C-S-C(CH3)3]3

39 C a s H ^ w F e ^ n O e { (y-SCH3) 3[Fe(CO) 3 ] 2 } + { F e 2 [ S 2 C 2 ( C F 3 ) 2 k } '

c a t i o n 1 anion a v . j

2 . 2 9 3 ( 3 ) 2 . 2 9 6 ( 3 ) 2 . 2 9 7 ( 3 ) 2 . 3 1 0 ( 3 ) 2 . 2 9 1 ( 3 ) 2 . 2 9 4 ( 2 )

2 . 2 9 5 ( 4 ) 2 . 3 0 5 ( 3 ) 2 . 3 1 0 ( 3 ) 2 . 3 1 0 ( 4 ) 2 . 3 0 3 ( 4 ) 2 . 3 0 7 ( 4 ) 2 . 2 0 6 ( 3 ) 2 . 3 1 1 ( 5 )

40 C6H12FeN3OSw

41 C15H2HClFeN3O^S6

42 C9Hl sFe03S6

43 C27H5i»FeN3S6

44 C2i»H2i,FeN3S6

ON-Fe[S2C-N(CH3)2]2

[Fe (S2C-/^] ) j ]+[ClO- ]"

Fe(S2C-OC2H5)3

Fe[S2C-N(CuH9)2]3

Fe[S2C-N(CH3)(C6H5)]3

2.295(2) 2.298(2) 2.308(2) 2.294(2)

av. 2.300(2)

2.308(3) 2.326(3)

av. 2.418(6)

2.308(9) 2.317(9) 2.307(8) 2.328(9) 2.280(9) 2.334(8)

229,227

463

376

374

Page 67: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Table 9 (continued)

Structure, Bonding in Organic Iron Compounds 67

Fe-S D i s tance [Λ] Ref.

45 C15H2-FeN3S6

46 C2 3Hi9Fe02PS

47 Ci»2Hi,oFeNs06S

Fe(S2C-O

& ^ ( p - N i t r o b e n z e n e t h i o l a t o ) ( p r o t o p o r p h y r i n IX

d i m e t h y l e s t e r ) i r o n ( I I )

2 . 4 1 ( 1 ) 2 . 4 0 ( 1 ) 2 . 4 4 ( 1 ) 2 . 4 1 ( 1 ) 2 . 3 8 ( 1 ) 2 . 4 0 ( 1 )

2 .313

2.32

48 Cn,H20FeN2O2Si,

49 Ci1H10B2FeO3S

51 Ci5H3oFeN3S6

trans to CO

50 CeH2„FeN2P„Si, Fe[S-P(CH3)2-N-P(CH3)2-S]2

Fe[S2C-N(C2H5)2]3

42.337(6) '2.340(6)

. . S2.309(5) 3 X 1 3 1 ! 2.308(5)

2.342

2.356(3) 2.364(3) 2.339(3) 2.380(3)

2.364(3) 2.362(3) 2.351(3) 2.356(3) 2.361(3) 2.352(3)

52 CieH2eCl2FeMoS2

53 C2Hi0FeNsOi,S2

54 C2H2Fe02S»H20

55 CibH2uFeN303S6«CH2Cl2

% ^ \ , / C ' \ , .

>-CtH,

[Fe (NH2-NH-CS-NH2 ) 2S0i, ] (polymeric)

Fe(S-CH2-C02)»H20

Φ<-ο],

2.384(5) 2.387(5)

2.427(2) 2.425(2)

2 . 4 3 6 ( 7 ) 2 . 4 3 2 ( 5 )

2 . 4 5 2 ( 4 ) 2 . 4 3 1 ( 4 ) 2 . 4 2 4 ( 4 ) 2 . 4 2 3 ( 4 ) 2 . 4 3 2 ( 4 ) 2 .420 (4 )

2 . 4 7 1 ( 5 ) 56 Ci6H36Fe2Ni,Si» (y -L) 2 Fe 2 2 . 3 7 9 ( 5 )

L = jv , /V'-dimethyl-JV,tf ' -bis(ß-mercaptoethyl)ethylenediainine 2 . 3 0 4 ( 5 )

111,112

Page 68: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

68 Carl Kruger et al

Table 9 (continued)

Fe-S D i s t a n c e [A] Ref.

2 . 4 9 0 ( 3 ) 57 Ci8Hii0Fe2NilS., ( y - L ) 2 F e 2 2 . 4 1 1 ( 2 ) 377

L = N ^ ' - d i m e t h y l - N ^ ' - b i s t ß - m e r c a p t o e t h y D - l ^ - p r o p a n e - 2 . 3 2 5 ( 2 ) diamine

58 C26HieClFeN202S2 (Chloro)-bis(salicylideniminephenyl)(di- 2.536(4) 65 sulfido)iron(III)

59 C10H2oFeIN2S- I-Fe[S2C-N(C2H5)2]2 2.82(2) 351

6 0 C2 8Hb2Fe^NNab08S8 Natt (C-H9) uN]+{ (y 3-S) jFe (S-CH2-CH2-CO*) ]* }6~ •5(C5H9NO) «5(W-methyl pyrrolidone) Ι1β

61 ClbH2oFe2OuS2 [ 2 , 3 - n : y - S ( C H 3 - C H = C - C ^ ) ] 2 [ F e ( C O ) 2 ] 2 527 I H

C2H5

62 C1 6F2uFe3Sio« ,5Se (y3"S) (y-S) [ y 3 - S 2 C 2 (CF3) 2 ] [ F e S 2 C 2 (CF3) 2 ] 3, l s S e 312

Page 69: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 69

Table 10: Organoiron Compounds Containing Iron-(Main Group Element)Bonds.

Distance [A]

1 Ci2HieB6Fe2 l,6-bis(n5-cyclopentadienyl)--1,6-diferra-2,3-dicarba-cIoso-decaborane(8)

Fe-B

2 . 0 9 6 ( 6 ) 2 . 1 9 6 ( 6 ) 2 . 2 1 9 ( 6 ) 1 . 9 3 0 ( 6 ) 2 . 0 8 9 ( 6 ) 2 . 0 8 3 ( 6 )

2 . 1 5 ( 1 )

2.277 2.282

I

[(n-C«,H9KN] + [ ( n 2 - B y H 1 2 ) F e ( C 0 ) . j " a v . 2 . 2 0 ( 2 )

Fe-Si

(n5-C;,H5)FeH(SiCl3)2CO

2 CeHUi4B2oFeN2S2 [ (CH3 ) kN]t [Fe (Βχ 0 H ! 0S) 2 V

3 CuHioB2Fe0 3S

4 C2oHueB7FeNOu

B. Silicon

1 C6H6Cl6FeOSi2

C. Germanium

1 C10Hn»Cl2FeGe

2 CmHi 0Cl 2Fe 2GeOu [ (n5-C5H5)Fe(CO) 2]?.Cy-GeCl2) 3 CieH22Fe2Ge205

,Fe— (5·-α

2.252(3)

Fe-Ge

2.28

Ci2HieFe2Ge306

C3iH2oFe2Ge207

[ (n 5 -C 5 H5)Fe(CO)2]2LU-Ge(CH3 )2-OGe(CH3)2]

[p -Ge(CH 3 )2 ]3 [Fe(CO) 3 ]2

(p-CO)[p-Ge(C6H 5 )2] 2 [Fe(CO)3]2

Ci eHi oCli»Co2FeGe206 IT I 7 Ci6H2oFeaGe^Oe

D. Tin

1 C7H5Br3Fe02Sn

2 C7H5Cl3Fe02Sn

3 Ci3HioCl2Fe02Sn

(C0)4

[y-Ge(C2H5)2]^[Fe(CO)u]2

(n5-C5H5)Fe(CO)2SnBr3

(n5-C5H5)Fe(CO)2SnCl3

(n5-C5H5)(CO)2Fe-SnCl2(C6H5)

4 C26H2 0Fe2OeS2Sn [(n5-C5H5)Fe(CO)2]2[U-Sn(S02-C6H5)2]

5 Cii,HioCl2Fe201.Sn [ (n5-C5H5)Fe(CO) 2 h (y-SnCl2)

6 C38H32Fe20ioS2Sn2 [(n5-C5H5)Fe(CO)2Sn(C6H5)(S02-C6H5)(OH)]2 2.499(1)

2 . 3 5 7 ( 4 )

2 . 3 7 2

2 . 3 9 8 ( 5 )

2 . 4 1 6 ( 3 ) 2 . 4 3 2 ( 3 ) 2 . 4 0 2 ( 3 ) 2 . 4 4 0 ( 3 )

2 . 4 3 3 ( 8 )

2 . 4 3 8 ( 4 )

a v . 2 . 4 9 2

Fe-Sn

2 . 4 6 5 ( 3 ) 2 . 4 6 2 ( 2 )

2 . 4 6 6 ( 2 )

2 . 4 6 7 ( 2 )

, 2 . 4 9 0 ( 1 0 ) : J 2 . 5 0 7 ( 1 0 )

2 . 4 9 2 ( 8 )

0H)]2 2 . 4 9 9 ( 1 )

105

1

89,281

282

58

283

630

98 481

98

333

97

507

546

Page 70: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

70 Carl Kruger et al.

Table 10 (continued)

D i s t a n c e [A]

7 C38H3^F6FeOP2Sn

8 C25H2oFe02Sn

9 Ci6Fei,Oi6Sn

10 C38H3uFeOSn

11 CmH10Fei:N2OeSn

12 Ci 6 Hi 6 Fe 2 0vSn

13 C2i«H2uFe20i»Sn

14 C22HisClFe2MoO/Sn

15 C2oHi2FeuOi6Sn3

16 C1 2Hi2Fe208Sn2

E. Lead

1 Ci6Hj6Fe2Ot,Pb

F. Phosphorus

1 CmH3 5FeI06P2

2 C w l H 3 3 FeI0 6 P 2

3 C3 lH25Fe02P

4 C2eH23FeOPS

5 C„2H3l4Fe02P2

6 C23H2oFe02PI

? L > SnICHjIj

(n5-C5H5)Fe(CO)2Sn(C6H5)3 (two independent molecules)

( y „ - S n ) [ F e ( C O U U

C6"5

! — f t — S n — C 6 H 5 C f i ^ CO CßHg

[ (n5-C5Hb)Fe(CO)2 h[y-Sn(ONO)2]

[ (n 5 -C 5 H s )Fe(CO)212[y-Sn(CH 3 )2]

[ (n 5 -C 5 H 5 )Fe (CO) 2 ]2 [y -Sn(n 1 -C ; ) H5)2 ]

[(n5-cbH5)Fe(co)2]2(y-snci)-[(nb-C5H5)Mo(CO)3]

( y „ - S n ) { [ y - S n ( C H 3 ) 2 ] [ F e ( C O ) „ ] 2 } 2

[ y - S n ( C H 3 ) 2 ] 2 [ F e ( C O ) ^ ] 2 (two d i s t i n c t m o l e c u l e s )

[ (Ti5-C!>H5)Fe(CO) 2 h iy-Pb(CH3) 2 ] av.

(n5-CbH5)Fe[P(OC6HO 3 1 2 I

"isomer" of No. F.

8 (H,C,0I ,P —·» F · - · — P IOC,H5)2

PKW,

(- I

7 C30H2sFeOP

2.536(3) 2.560(5)

2.533(5) 2.540(5)

2.56

2.602 2.608

2.568 2.573

2.583(7) 2.598(7)

2.625(8) 2.747(8)

2.631(11) 2.647(8)

Fe-Pb

2.708

Fe-P

2.15(1)

2.14

2.17 2.16

2.207(3) 2.234(3)

2.23(1)

2.23 2.24

274 545

69

69

,72,70

,72,70

74,71

508

73

11,123,13

11,14

563 124

562 28

Page 71: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 71

Table 10 (continued)

D i s t a n c e [Λ] Ref.

8 C33H33Fe309P3

9 C^HibFeaPOn

I C H , ) 2 P C 6 H S

FeCCOIj

/ \

/T\ \ HsCt P P C6HS

ICHJ)2 ICH,!,

F*ICO)4 (06Η5),Ρ--Ρ·(εθ),

ICO)^· ^F»iCO>, «COlaF^—^F«(CUI,

Κ,Η, ί ,Ρ

2 . 2 4 2 ( 9 ) 2 . 2 3 2 ( 9 ) 2 . 2 3 6 ( 9 )

A 2 . 2 4 ( 1 ) B 2 . 2 5 ( 1 ) 223,224

«V¥l

10 C2 9H2oF6FeN202P2

P2 «W,

11 Ci6HiiFeOi,P (COKFe<-PH(C6H5)2

12 C39H2eCl2Fe208P2Pcl2

13 C27Hi9Fe206P

14 Ci*Hi 2 Fe20 e P 2

15 Ο 1 0 Ηι ζ Ρβ2ΐ2θ6 Ρ2

16 C5^Hi»oFei,06P2

17 CH2 6 BieFeP 2

18 C19H1:>FeN203P

19 C3bH3oFeN^02P2

20 C9K!^Fe09P^

21 C32H22Fe20,P2

22 C u H n F e , 0 5 P

23 C2oHi:,Fe207P

(CO)4F· M Pi -F»(COk

2 . 2 4 0 ( 2 ) 2 . 2 4 8 ( 2 )

2 . 2 3 7 ( 2 )

CeHs-CH, 2 . 2 4 ( 2 )

F*ICOb£H2

X 2.25 PPh,

[u-P(CH3)2-P(CH 3 ) 2 ] [Fe(CO)^] 2 2 . 2 6 0 ( 5 )

| ^ P \ 2 . 2 9 3 ( 6 ) , C 0 , , F V ^ ? , C 0 1 » 2 . 3 1 2 ( 6 )

<CH,|2

{[(r^-CiHgJFetCO) ] ( y - C O ) ^ [ ( n 5 -C5Hb)Fe]}2[y-(C6H5)2P-C=C-P(C6H; ) )2]

Fe(BsH9CHPCH3)2

Fe(NO) / (CO)[P(C 6 H5) 3 ] 2 . 2 6 0 ( 3 )

Fe(NO)i.[P(C6H5) 3 ] 2 2 . 2 6 7 ( 2 )

v^rv p 0

a 2 . 1 9 0 ( 4 ) b 2 . 1 1 6 ( 4 )

2 . 2 5 0 ( 3 ) 2 . 2 5 7 ( 3 )

(COI,F·- -^»(COis

^ P

;F*C0,J a v . 2 . 1 9 4

2 . 2 3 9 ( 3 ) 2 . 2 3 6 ( 3 )

120

590

6

6

Page 72: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

72 Carl Kruger et al.

Table 10 (continued)

No. Distance [A] Ref.

24 C23Hi9Fe02PS

25 Ci»6HioF2oFe206P2

e ;-c,H5

I C O I j F · — ^ t i C O l ,

'S*.

X ^ 0

P«C*^),

2 .233(3) 2 .212(4 )

26 C16H30Fe2HgN2O6P2 (y-Hg){Fe(CO)2(NO)[P(C2H5)3]}2

27 C,0H3 2AS2FeFe2O.>P2 { (C6H5) 2P-C=C[AS (CH3) 2 ]-CF2^CF2 >2~ Fe2(CO)„

28 CeH12F3FeP

29 C„H5F6Fe03P

30 C9HsF6Fe02P

31 Cs^sFeNiOsP

CX) —P·—P(CFj ) ,

«CO),

< ^ - N i <

F t - P C F ^

•ICOIj

32 C3eH2oF6Fe30eP2 \ p At?**

33 Cmji^FeFezO^PsRh

3 4 C26Hi5Fe206P

35 Ci»6H30Fe2O6P2

36 C39H27Fe2N205P

37 067Η6ι,ΒΒΓθΐ2ΡβΡι»

38 C22HlbAsFl»FeOi,P

39 C27Hi6AsFi,Fe309P

Ph, Ph,

I C O I , F . ^ ^ F . { C O » ,

'S* VT rt«COI,

« A I , ► KW,

\\y\ (COIJF.^^-^Ft«COIl

KM

(B(C«Hs)«]~· CH2Cl2

(CH,I2

2.223(3)

2.270(2)

2.024

2 .191(3 )

2 .265(3)

2.220(3)

2.366 2 .283

2 .241(3) 2 .222(3)

2 .213(2) 2 .224(2)

2 .287(2) 2 .298(2 )

2 .06

2 .299(5) 2 .248(5) 2 .181(5) 2 .215(5 )

2.224(3)

2.252 2.243

577

277

431

46,47

46,47

43

468,340

(two molecules in the asymmetric unit)

Page 73: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 73

Table 10 (continued)

Dis tance [Λ]

40 CoHeaFeOeP^ cis-H2Fe[P(CbH5) (OC2Hb) 2]i»

2.134(2) 2.119(2) 2.153(2) 2.151(2)

41 C9HiBFe09P2

42 Ci,i»H3 5BF^FeN202P2

43 C37H2oF6Fe307P2

44 C2iH2 7Fe205P

45 C3iH25Fe206P

trans-[P(OCH3)3]2Fe(CO)3

47 C32H3oFe209P2

N = N — » FeiCOJ,

****** "*!***

(coijFt;

H s C V ,C|Hs

(C,H512

4 6 C 2 e H 2 2 F e 0 3 P 2 CH2 F.ICO),

( C O ) j F t ^ - ^ ( C O ) ,

(C,H5I2

2 .155(1)

2 .261(2) 2 .266(2)

2 .241(6) 2 .173(9) 2 .229(5)

2.220(2)

2 .126(4) 2 .125(4)

2 .209(3) 2 .225(3)

2 .226(3) 2 .206(4)

211

G. Arsenic

1 CieHizAs2Fi»Fe3O10

(CO); (CH3) 2

SK JH ICO)2 ICHJJJ

ICH,),

2 Ci3Hn,AS2Fo03

3 Ci0Hi/Asi,Fe2Ob

OC Fc(CO), / > H * CH,

(CH,)2 N- ^ n

iCO»,Fe ^Ff(CO),

4 CmHi2As2F^Fe206 { (CH3) 2As-C=C[As (CH3) * ] -CF 2 -CF 2 } -[ F e ( C 0 ) 3 ] 2

5 Ci/Hi2As2F.»Fe30y [ (CH3) 2As-C=C-CF^-CF2 ][As (CH3) 2 -Fe 3 (CO) 9 ]

6 C27Hi6AsFi,Fe309P

2 .300(6) 2 .301(7)

2 .36 2.31

2 .336 2.311

2.350(5) 2.470(5)

2 .371(4 ) 2 .322(4 ) 2 .360(4 )

271,270

272,273

(two molecules i n the asymmetric u n i t )

Page 74: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

74 Carl Kruger et al.

Table 10 (continued)

No. D i s t a n c e [A]

CoH32AS2FeFe20fP2 { (C 6 H 5 ) 2 P-(>C[As(CH3)2]-CF*-CF2}2- 2 . 4 4 9 ( 1 ) Fez(CO)„ 2 . 3 6 3 ( 1 )

8 C7H9AsFeOu

9 Ci6As2F1 0FeO^

(COUFe<-As(CH 3 ) 3

* v

HS*

_F»(CO)«

H. Antimony Fe-Sb

1 CyHeFeOuSb (CO) ^Fe<— Sb(CH3) 3 2 . 4 9

2 CmHioCl9Fe2O^Sb3 { [ (n5-C5H5)Fe(CO) 2 ] 2 SbCl 2 }Sb 2 Cl 7 av . 2 . 4 4 0

3 C22Hi5FeOuSb (COUFe«-Sb(C 6 H 5 ) 3 2 . 4 7 2 ( 1 )

4 Cu3H3?Cl8Fe7012Sb2 { [ ( r ^ - C s H s J F e l C O j J a i U a - S b C i n i . _ . [ F e C n ] 2 " . C H 2 C l 2

a v ' 2 · 5 4

443

278

102

593

Page 75: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 75

Table 11: Organoiron Compounds Containing Iron-Metal Bonds. No. Formula D i s t a n c e [A] Ref.

1 C 5 iH 5 6 Fe 2 03

2 C2„H36Fe20.,

3 C2i»H32Fe2O^S2

4 Ci0Hi0Fe2N2O2

5 CleH10Fe2N2O6

6 C9H6Fe2N207

7 C2 9HieFe2N206

8 C36H3oFe2N„06

t-Bu ,5 \ t-Bu'

J (CO»,

[(n5-C5H5)Fe]2(U-NO)

;H, CH,

CO^F« ^ FeICO),

C6HS (CO)jP· -N—C

| \ / (CO)jF* N = C

C*Hs

(CO)JPi^_^i.>e(CO)J

(CO),F* <- ^ Fe(CO>,

9 C36H2eFe2N206 (θΗ,-ο,Η,ί,ε ■ N ^ N - C I ^ - C H j l j Fe

(CO), Q 10 Ci2H5Fe2N06S

11 C n H i o F e 2 N 2 0 7

12 C2 0H1 3Fe2NO6

(CO),F*^- - * F ,

ICOI ,Fe' i^-^F. iCO),

FelCOI.

^ ' W ■•ICOI,

2 .177(3 )

2 .326 (4 )

2.37 2.372(2)

2 .391(7 )

2 .416(3 )

32 34

13 C35H20Fe3N4O9

14 CiiHbFe3N20y

15 C33H2.»Fe2N201o

(CO)/* ί FF«lCO»,

'F*(CO>,

ΝΐΟ,Η,),

(P3-N-CH 3 ) 2 [Fe(CO) 3 ] 3

C02M*

2 .43 2 .46

(3 .06)

2 .436 (7 ) 2 . 4 8 8 ( 7 )

(3 .044)

16 CieHieFe 2 0 6 jWCO),

F»(CO»,

2 . 4 6 2 ( 3 )

Page 76: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

76 Carl Kruger et al.

Table 11 (continued)

Distance [A]

17 Cl6H36F6Fe2N5OPSi,

-X^/f 2 . 4 6 8 ( 2 )

[(FeL)2NO]PF6 L « w^' -d imethy l -W/W'-b i s iB-mercaptoe thyDethy lened iamine

18 C2oH22Cl2Fe2N20«,

19 C2 3HioFe309

[C6HuOCHN(CHz) 3 0 ] 2 Γβ*Ο. 2

(C6H5-C=C-C6H5)Fea(CO)9

AHCjH,), CO

20 C26H%oAl2Fe2Ow ^ - ^ ^ ^ ^ - ^

21 Cii»HioFe2Oi,

22 C12HeFe^Oe

23 C11HeFe2N20(>

24 C«,iH2eFe20„

25 CZHH30Fe2O6

26 C2oHioFe206S2

27 C22H36Fe2Oi0Sii,

28 CvaHsoFesNeOis

29 C3oHieFe^06

30 C2i»H^oFet,Ou

31 C2i,H2oF6Fei,0.,P

CO Ö—AUC2Hj),

(n5-C5H!>)2Fe2(COK

HjC" >ICO)j

HO '

(C5HeN2)Fe2(C0)6

ΙΟΟ}2Ρ#ς^^Ρ#^ rQ 0 - W " c = c u i X i

iCHjijSiO 0&1CH,),

. C H ^ O ^ Q · ' ^ 0 Ft(COI, Si ICH,),

[F e (C 5 H 5 N) 6 ] a + [F e ^(CO) i3 ] 2

[(n5-C5H5)Fe]u(M3-CO)^

2.470

2.480 2.500 2.579

2 . 4 9 1 ( 8 )

2 . 4 9 ( 2 )

2 .490

2 . 4 9 4 ( 5 )

2 .496(2 )

2.500(3)

2 . 5 7 0 ( 6 ) 2 .600(5 ) 2 .580 (5 ) 2 .500 (6 ) 2 .500 (6 ) 2 .500 (6 )

2 .501 (3 )

2 .506 - 2 . 5 3 0

{ [ < n 5 - C 5 H 5 ) F e K ( W 3 - C O U } + [ P F 6 r 2 l478 (2 )

2.506(2) 2.467(2) 2.478(2) 2.484(2)

498,416

264

554

Page 77: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 77

Table 11 (continued)

Distance [A] Ref.

32 C15Hi2Fe207

33 CieH8Fe2N206

34 C2oH2 2Fe20l4N2

35 Ci7H10Fe2N2O3

36 C2oH15Fe207P

37 C16HmFe2SiOu

38 CieHioFe20,.S2

39 CjoHisFe^Oio

40 CieHl9Fe2N03

41 ClBH19Fe2N03

42 CeH2Br2Fe206

43 C2i»HmFe206

44 Ci2H6Fe206

45 CieHi2As2Fi4Fe3Oio

46 C37H2oF6Fe307P2

(COIjFt^—^F»(CO)j

" C H — C H - p 0 A ° ί

2.507(8)

ICOljFe ^FelCO) 3

°CNC-i-CNC°

C»HS

(CO) ,Fe - ^ F e l C O ) ,

C6«5

ICO) 4 F* 2 ;

F*(CO)3

(n 5 -C 5 H5)2Fe 2 (CO)3[C=N-C(CH 3 )3]

ICH^CH-CH,-N-C g CQ

II

(CO) / *

f\^V\ - &

(CO)j

KOt\JA° ico>2

HjCrTcO»,

:0»jFt^—^F»«CO)j

(«Cv^CH) icoV^^-^Ftlcaj

»CH,)2

ICH,) ,

2 . 5 1 1 ( 2 )

2 . 5 1 6 ( 2 )

2 . 5 1 9 ( 2 )

2.523(2)

2.524(3)

2 . 5 2 5 ( 3 )

2 . 5 2 6

2 . 5 2 7 ( 6 )

2.530 2.650 2.650

2.532(11) 2.665(8)

2

116

531

Page 78: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

78 Carl Kruger et al.

Table 11 (continued)

Distance [A]

47 C39H2 7Fe2N20;>P

48 Cn,HioFe2Oi»

49 C2oHioFe206S

5θ CmHi0Fe2Oi4

51 C i e H l u F e 2 0 i u

52 C 1 3H 9Fe 3N0 l ü Si

53 C 1 6 H 1 6 Fe 2N 202

54 CieHioFe20eRh2

"Ό* teO),F««£l-^WCOI,

>t(COIj

A/

2 . 5 3 1 ( 2 ) 2 .533

2 . 5 3 3 ( 1 )

2.534(2)

, c o ^ < * 2 ' 5 3 5 1 2 ' FtiCOl,

I SilCH,),

( C 0 ) , F · ^ -F#(CO)4

NCH,

V I NCH,

av . 2 . 5 3 5 ( 2 )

2 . 5 3 8 ( 1 )

2 . 5 3 9 ( 7 ) 148,156

55 C5 2H 4 0FeHO6P2 {[(n5-C5H:>)Fe(CO)](y-CO)2[(n5-C5H!,)Fe]}2- 2 5 4 Q [μ- (CbH5) 2P-C^C-P (C6H5 ) -i ]

56 C2>H18Fe20e r S S 2*54 H 3 C \ c r f ^ , C 0 , 3 «CH,)2PC6H5

F«(COh / \

ICO)2F* >*JCO!2

HSC, P P C»H, "CH,)2 <CH,)2

58 C39H2 3F6Fe309P2*2C6H6 {Fe3(CO)7[Ph2PC(C02Me)C(CF3)C2- 2.543(2) (CF3)](PPh2)}«2C6H6 2.683(2)

2.679(2)

57 C 3 3 H 3 3 F e 3 0 9 P 3

2.540(7) 2.688(7) 2.689(7)

59 C3iH2 5Fe206P

60 Cn»Hi0Fe2O6

61 C 6Fe 20 6S 2

o icules in the

2.543(3) 2.548(3)

(two molecules in the asymmetric unit) -CO-CH,

(W-S2)[Fe(CO)3]2 2.550

62 CibFesOiiS^ (u3-S)2[Fe(CO)3

A ]3*(y-S2)[Fe(CO)3]2

A \\'

3.371(10) 582(9)

2.609(10) 2.545(11)

120

31

474,542

15

609,610

610

Page 79: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 79

Table 11 (continued)

Distance [A]

63 C2,H2,Fe6N20lb [(CH3),N]i[Fe6(CO)16C]2- , { * ^ * \ " ί ί η ! " ?'"?i}°! 163' (non br idged) 2 . 6 4 6 ( 1 0 ) - 2 . 7 4 3 ( 1 0 ) 155

V ffc>S «CO>,Ft

64 C i 6 H 5 F e 3 0 n R h \

\ l

ICOIj

65 C2i,H22Fe20i,

66 C s e H 2 ( ,P s Fe-O e P 2 \ 1 / N » i

° i

2 . 5 5 3 ( 3 ) 2 . 5 8 6 ( 3 ) 2 . 5 9 4 ( 3 )

2.553(2)

«*""* 67 C2oHioFe2Oe

ICO),F. -ίί,ΚΟί, r 449,293

£o /- u o c l,6-bis(n -cyclopentadienyl)-l,6- 0 „ i m 68 ClzHieBbF2 diferra-2,3-dicarba-c2oso-decaborane (8) ^*'1*1'

69 Ci6H16B2Fe20i, P^kkA CH, / \ tH,

70 Ci7Hi7Fe3NOii [(C2H5)3NH] [HFe3(CO)n]"

71 C2oHioFi2Fe202

72 C3„H16Fe206

73 Ci3H10Fe2O5S

CF, 4 >.-^>

2.577(3) 2.685(3) 2.696(3)

2.596(4)

2.597(1) 2.584(1)

(two molecules in the asymmetric unit)

74 C 2 6 H 1 I t Fe ? N 2 0 9 I C O v C L w b

75 C 2 6 H l b Fe20 6 P , Ο , , Γ . ^ Ρ . , Ο Ο , ,

^ C«fc 0 n ^

76 Ci7HeFe2N207 X±s/* »F* F«(C0),

2 . 5 9 7 ( 3 )

2 . 5 9 7 ( 2 )

517

203

Page 80: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

80 Carl Kruger et al.

Table 11 (continued)

Distance [A]

77 Ci 6Hi 6Fe 3O eS2

78 Ci2HiiFe205P

(CH.I;

8 A ICO)2Fe- — F H C O I j

> - ^ F , C O ) ,

(two independent molecules)

79 Ci6H3oFe2Si„ (y-SC2H5) ztFeiSjC-S-CzH.,) ] 2 -(y-S2C-S-C2H 5) 2

80 C2!,H1eFe20e

2.645(2) 2.611(2)

2.615 2.638

2.618(2)

<*ι-° F.«),

81 Fe„N„0HS„

82 C22HioFe20e

83 Ci9Hi5Fe2NOioS

84 C8HI«Fe<lN60i,S2

85 C2oH2oFei,Se

86 Cn,HioFe207

(y3-S)u[Fe(N0)]u

^S-CeHt-CH,

Ft(C0i,

(y3-S)2[y3-NC(CH3)3]2[Fe(NO)]*

[(n5-c5H5)Fe]u(y3-s)2(y3-s2)2

(COyV ife: 87 CieHisFe207

88 C2oH2oFe*SH (y 3 -S) H [(n 5 -C 5 H 5 )Fek

89 C3iH2oFe2Ge207 (y-CO)[y-Ge(C6H5)2l2[Fe(CO)3]2

2.634

2.635(3)

2.636(2)

2.642(1) 2.562(1) 2.496(1)

2.64

2.642(1)

>(C0», (non bridged)

(bridged, av.)

90 Ci2Fe3012

91 C32H3oFe209P2

92 C27Hi6AsFi,Fe309P

93 Ci2H 6Fe 20 6

Fe 3 (C0) i2

9~ •C0»j4^—J-AtlCH,!,

icoi,f#- lUcr* P»IC0)j

2 .645(2 )

2 .650 (6 ) 3 .365(6 )

2 . 6 6 6 ( 3 )

2 . 6 6 8 ( 7 ) 2 . 5 6 0 ( 6 ) 2 . 6 7 8 ( 5 )

2 .671 (2 )

2 .676 2 .866

306

488

553

COIjPt —Ft<C<\,

Page 81: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 81

Table 11 (continued)

Distance [Λ]

94 CioHi2AsuFex00

0 5 C ? . , H 1 6 F e - , 0 , IC0),Fe

Hfi CH,

As *S

H,C— As Äs—CH»

IX! (COIjFe -F* (C0>,

9 6 C 3 ? H r > f , F e ? N ? S f > | (C?H.,) „N | ? { ( t J - S ) ? F o ? | (SCH, ) ?Cf.H,, | ? } ' ~

97 Ci,f,H|„F?oFi-vOf,P?

98 C32H22Fe207P2

99 CuH1oFe2NuOiiS2

100 C17Hi6Fe205

Pr F£f xCeF5

CH2

[ F e ( N O ) 2 ] 2 ( y - S C 2 H 5 ) 2

I ICO^Fe-^HCO),

2 . 6 9 1 - 2 . 7 7 6

2.72(0)

205

189

101 CiaHieFeaGesOe [ μ - G e ( C H 3 ) 2 ] 3 [ F e ( C O ) 3 ] 2 2 . 7 5 0 ( 1 1 ) 281,89

{(U-SCH3)3[Fe(CO) 3 ] 2 ) +

102 C25H9F2l,Fe.,Sii06 {Fe2[S2C2(CF3)2]^}" two cation - anion pairs in the unit cell

103 C27Hi5Fe209PPt

104 C 2 3HmFe 20 5

105 Ci7Hi6Fe205

106 Ci2H8Fe2(CO)5

107 Ci6H12Fe206

3.062(4) 2.756(4) 2.777(3)

PIC6H5),

/ \ (COUFe FelCOlt

FeCOIj

(CO^Fe / N ^

J^y (ST* ^ - 5 = — - F e ( C O ) ,

®-£ FelCOIj

F.ICO),

<ήζ^

2.758(8)

2.765

2.766(1)

2.769(3)

2.786(2)

469

S3

190

145,137

197

108 C8oH6oFe2N2OeP4-2CH3CN {[(C6H5)3P]2N}\[Fe2(CO)8]2~- 2 1Q7{2) •2CH 3 CN

1 0 9 C i u F . , F e 2 0 8

ü\f·—^F«ICO)t

2 . 7 9 7 ( 1 )

Page 82: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

82 Carl Kruger et al.

Table 11 (continued)

No. Formula D i s t a n c e [A]

E , 3 P ^ F » I C 0 ) ,

110 C21H27Fe205P f FL4) J~1 2.804(1) i c o ^ ™ 0 1 '

111 C 1 3 H8Fe 2 0 6

112 C ^ o ^ A s z F e F e a O - P , { [ (C6H5) 2P-C=C[As (CH3) 2 ] -CF 2 -CF 2 ] h~2Q69 ( 1 } 2?? Fe2(CO)4

113 Ci6Feu016Sn (y^-Sn)[Fe(CO)-K 2.870 448

114 Ci-H12As2F„Fe206 {(CH3)2As-C=C[As(CH3)2]-CF2-CF2 }- 2 89(1) 271 270 [Fe(CO)3]2 " '

115 Ci7Hi3As2FuFe3Os [(CH3)2As-C=C-CF2-CF2][As(CH3)2- 2.917(5) 273 Fe3(CO)9] 2.667(5) 272

116 Ci«,H l b BF^Fe 2 0 2 S 2 {[ (n 5 -C 5 H 5 )FeCO] 2 (y-SCH3) 2 }+[BF„ ] " 2 . 9 2 5 ( 4 ) 180

117 Ci6H3 6Fe2NuSi, ( y - L ) 2 F e 2 3 . 2 0 6 ( 5 ) 377 L = W / W , - d i m e t h y l - W / W ' - b i s ( ß - m e r c a p t o e t h y l ) e t h y l e n e d i a m i n e

118 C i eH^oFe2NuSu ( y - L ) 2 F e 2 3 . 3 7 1 ( 2 ) 377 L = W , N ' - d i m e t h y l - N , J V ' - b i s ( ß - i n e r c a p t o e t h y l ) - l , 3 - p r o p a n e d i a m i n e

119 Ci2Hi»Fe30ii OCHj I

B. Cobalt ~"WC0,t Fe-Co

1 Ci8H28Co3Fe018p3 {HtFeCo3(CO)9][P(OCH3)3]3} 2.560(2)

\A/° 2 C23H18CoFe05P 0~~^VA" 0 0 » 2.540(4)

3 C16Hl3CoFe0^ ^/^-pCo 2.520(1) 115 0 S o

4 CnHsCoFeOe (n 5 -C 5 H 5 ) (CO)Fe(y-CO) 2 Co(CO) 3 2 . 5 4 5 ( 1 ) 114

5 Cm,H30CoFeNOeP2 {[ (C6H5) 3 P] 2 N} + [FeCo (CO) 8 ] " 2 . 8 3 5 ( 3 ) 127

C. Nickel «sCev

1 C3 i»H2 5FeNi03P ® - * r \ V>tCO»} H3C CH 3 2 . 4 4 0 ( 2 )

Α \ Κ | H,C^D 'COb Ni C H 3

2 C 1 9 H 2 - F e N i 0 3 H3C Γ CHT 2 . 4 4 9 ( 3 )

D. Ruthenium Fe-Ru

2.620(1) 2.640(1) 1 C13H2Fe013Ru3 H2FeRu3(CO)13 2.670(1) 2.670(1)

2.270(1) 2.690(1)

Page 83: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 83

Table 11 (continued)

Distance [Ä] Ref.

E. Rhodium

1 C i 6 H 5 F e 3 0 i i R h

φ y

ICO),P· ■Fe(CO),

(CO))

2 . 5 6 8 ( 3 ) 2 . 6 1 5 ( 3 ) 2 . 6 0 7 ( 3 )

2 C18HioFe20eRh2

3 CoHst.FeFeaOnPaRh

F. Palladium

1 C39H2eCl2Fe20eP2Pd2

G. Molybdenum

1 C i e H 2 eCl2FeMoS 2

Rh Rh

IXI (CO>,F««· F*ICO)4

(C0)4F^- Pd PÖ -

I C ^ P Cl

^FelCOJi

I Ϊ - C I H »

\ .

2 . 5 7 0 ( 5 ) 2 . 5 9 8 ( 5 )

2 . 6 7 4 ( 1 ) 2 . 6 5 9 ( 2 )

2 . 6 7 1 2 . 6 6 0

Fe-Pd

. CHS-CM, 2 .59(1)

Fe-Mo

( 3 . 6 6 0 )

148,156

111,113

H. Manganese

1 Ci2H5FeMn07 (n5-C5H5)(CO)2Fe-Mn(CO)5

Fe-Mn

(two crystallographically independent molecules)

2.840 2.845

J. Mercury

1 CuBr^Fel^Oi*

2 CnHsCoFeHgOe

3 C16H3oFe2HgN206P2

4 CmH10Cl2FeHg2N2Oi4

Fe-Hg

2 . 4 4 0 ( 7 ) 2 . 5 9 0 ( 7 ) (BrHg)2Fe(CO)i,

[ ( n 5 - C 5 H 5 ) (CO)2Fe]HgCo(COU 2 . 4 9

(y-Hg){Fe(CO) 2 (NO) [P(C 2 H 5 ) 3 D 2 2 . 5 3 4 ( 2 )

[ ( C 5 H 5 N ) H g C l ] 2 [ y - F e ( C O ) ^ ] 2 . 5 5 2 ( 8 )

37

93

577

39

J. Platinum <C0)4 F e

/ \ 1 C 5 9 H „ 5 F e O m P 3 P t 2 I^CeOljP-^Pt Pi—PIOCjHs),

IHsCeOljP C PICeH,),

2 C 2 7Hi 5 Fe 2 09PPt ICOUFe F«1C0)4

Fe-Pt

2.583(6) 2.550(5)

2 . 5 9 7 ( 5 ) 2 . 5 3 0 ( 5 )

4,5

Page 84: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

84 Carl Kruger et al.

Table 12ι Biorganic iron compounds and relevant model systems.

Ref.

1 α-Chlorohemin 424 α,β,γ,δ-Tetraphenylporphine diacid,

2 [Η4ΤΡΡ]2+[θΓ, FeCliJ 3 Ferric hydroxide tetraphenylporphine monohydrate 294 4 Methoxyiron(III) mesoporphyrin-IX dimethyl ester 361 5 Chloroiron(III) tetraphenylporphine 362

(y-Oxo)[bis(a,β,γ,ό-tetraphenylporphinato-iron(III))] Bis(imidazole)-a,3,yf6-tetraphenylporphinato-iron (III) chloride Di[cyclohexane-l,2-dioximato(1-)]diimidazole-iron(II)

298,365

217

538

Bis(imidotetramethyldithiodiphosphino-SS)-iron(II), a model for Rubredoxin '

10 Iron(II) sulphate pentahydrate glycine 453 Ferrichrome-A tetrahydrate (fungal metabolite including a hexapeptide ring)

12 Atrovenetin, orange trimethyl ether ferrichloride 520 13 (Vitamin-A aldehyde)tricarbonyliron 66

u [(n5-C5H5)2Mo](y-S-72-C1+H9)2[FeCl2], m 1U

a model for Nitrogenase System ' 15 Ferroverdin 117 16 Ferrioxamine E 534

(Nitrosyl)(a,β,γ,ό-tetraphenylporphinato)-(1-methylimidazole)iron (N-methylimidazole) (dioxygen) (zneso-tetra-α,β,γzo­o-pi valylamidephenyl-porphinato) iron(III)

19 Ferrichrysin 504 Bis(10-methylisoalloxazine)iron(II) perchlorate hexahydrate

Page 85: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 85

REFERENCES

Adams, R.D., Cotton, F.A., and Frenz, B.A., J. Organometal. Chem., 73, 93 (1974). Adams, R.D., Cotton, F.A., and Troup, J.M., Inorg. Chem., 13, 257 (1974). Adman, E., Rosenblum, M., Sullivan, S., and Margulis, T.N., J. Amer. Chem. Soc, 89, 4540 (1967). Albano, V.G., Ciani, G., Bruce, M.I., Shaw, G., and Stone, F.G.A., J. Organometal. Chem., 42, C 99 (1972). Albano, V.G., and Ciani, G., J. Organometal. Chem. 66, 311 (1974). Albano, V.G., Araneo, A., Bellon, P.L., Ciani, G., and Manassero, M., J. Organometal. Chem., 67, 413 (1974). Allen, F.H., Trotter, J., and Williston, C.S., J. Chem. Soc. A, 1970, 907. Allegra, G., Colombo, A., Immirzi, A., and Bassi, I.W., J. Amer. Chem. Soc, 90, 4455 (1968). Allison, D.A., Clardy, J., and Verkade, J.G., Inorg. Chem., 11, 2804 (1972). Allmann, R., Angew. Chem., 82, 982, (1970); Angew. Chem. Int. Ed. Engl., 9, 958 (1970). Andrianov, V.G., Chapovskii, Yu.A., Semion, V.A., and Struchkov, Yu.T., Chem. Commun., 1968, 282. Andrianov, V.G., and Struchkov, Yu.T., Chem. Commun., 1968, 1590. Andrianov, V.G., and Struchkov, Yu.T., Zh. Strukt. Khim., 9, 240 (1968); J. Struct. Chem., 9, 182 (1968). Andrianov, V.G., and Struchkov, Yu.T., Zh. Strukt. Khim., 9, 503 (1968); J. Struct. Chem., 9, 426 (1968). Andrianov, V.G., and Struchkov, Yu.T., Zh. Strukt. Khim., 9, 845 (1968); J. Struct. Chem., 9, 737 (1968). Andrianov, V.G., Martynov, V.P., Anisimov, K.N., Kolobova, N.E., and Skripkin, V.V., J. Chem. Soc. D, Chem. Commun., 1970, 1252. Andrianov, V.G., Sergeeva, G.N., Struchkov, Yu.T., Anisimov, K.N., Kolobova, N.E., and Beschastnov, A.S., Zh. Strukt. Khim., 11, 168 (1970); J. Struct. Chem., 11, 163 (1970). Andrianov, V.G., Martynov, V.P., and Struchkov, Yu.T., Zh. Strukt. Khim., 12, 866 (1971); J. Struct. Chem., 12, 793 (1971). Andrianov, V.G., Struchkov, Yu.T., Rybinskaya, M.I., Rybin, L.V., and Gubenko, N.T., Zh. Strukt. Khim., 13, 86 (1972); J. Struct. Chem., 13, 74 (1972). Andrianov, V.G., Struchkov, Yu.T., and Rossinskaya, E.R., J. Chem. Soc. Chem. Commun., 1973, 338. Andrianov, V.G., Struchkov, Yu.T., and Rossinskaya,

83.

84.

85.86.87.

88.

89.

90.

91.

92.

93.

94.

95.

96.97.

98.

99.

100.

101.

102.

103.

104.105.

106.

107.

Page 86: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Carl Kruger et ah

E.R., Zh. Strukt. Khim., 15, 74 (1974); J. Struct. Chem., 15, 65 (1974). Anzenhofer, K., and de Boer, J.J., Rec. Trav. Chim. Pays-Bas, 88, 286 (1969). Ariyaratne, J.K.P., Bierrum, A.M., Green, M.L.H., Ishaq, M., Prout, C.K., and Swanwick, M.G., J. Chem. Soc. A, 1969, 1309. Astakhova, I.S., and Struchkov, Yu.T., Zh. Strukt. Khim., 11, 472 (1970); J. Struct. Chem., 11, 432 (1970). Atovmyan, L.O., D'yachenko, O.A., and Soboleva, S.V., Zh. Strukt. Khim., 11, 557 (1970); J. Struct. Chem., 11, 517 (1970). Aumann, R. , Averbeck, H. , and Krüger, C , Chem. Ber., 108, 3336 (1975). Averill, B.A., Herskovitz, T. , Holm, R.H., and Ibers, J.A. , J. Amer. Chem. Soc, 95, 3523 (1973). Avoyan, R.L., Chapovskii, Yu.A., and Struchkov, Yu.T., Zh. Strukt. Chem. 7, 900 (1966); J. Struct. Chem., 7, 839 (1966). Bacci, M. , and Ghilardi, CA., Inorg. Chem., 13, 2398 (1974). Bagga, M.M., Baikie, P.E., Mills, O.S., and Pauson, P.L., Chem. Commun., 1967, 1106. Bagga, M.M., Ferguson, G., Jeffreys, J.A.D., Mansell, C.M., Pauson, P.L., Robertson, I.e., and Sime, J.G., J. Chem. Soc. D, Chem. Commun., 1970, 672. Baikie, P.E., and Mills, O.S., Chem. Commun., 1966, 707. Baikie, P.E., and Mills, O.S., Chem. Commun., 1967, 1228. Baikie, P.E., and Mills, O.S., Inorg. Chim. Acta, 1, 55 (1967). Bailey, N.A., and Mason, R., Acta Crystallogr., 21, 652 (1966). Bailey, N.A., Cook, D.F., Cummins, D., and McKenzie, E.D., Inorg. Nucl. Chem. Lett., 11, 51 (1975). Baird, H.W., and Dahl, L.F., J. Organometal. Chem., 7, 503 (1967). Baker, J., Engelhardt, L.M., Figgis, B.N., and White, A.H., J. Chem. Soc. Dalton Trans., 1975, 530. Baker, R.W., and Pauling, P., J. Chem. Soc. D, Chem. Commun., 1970, 573. Ballhausen, C.J., and Dahl, J.P., Acta Chem. Scand., 15, 1333 (1961). Barnett, B.L., and Davis, R.E., Amer. Cryst. Assoc, Winter Meeting 1970, New Orleans, Abstracts, p.45. Barnett, B.L., and Krüger, C., Angew. Chem., 83, 969

83.

84.

85.86.87.

88.

89.

90.

91.

92.

93.

94.

95.

96.97.98.

99.

100.

101.

102.

103.

104.

105.

106.

Page 87: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 87

(1971); Angew. Chem. Int. Ed. Engl., 10, 910 (1971). Barnett, B.L., and Krüger, C. , Cryst. Struct. Commun., 2, 347 (1973). Barrow, M.J., and Mills, O.S., Angew. Chem., 81, 898 (1969); Angew. Chem. Int. Ed. Engl., 8, 879 (1969). Barrow, M.J., and Mills, O.S., J. Chem. Soc A, 1971, 864. Barrow, M.J., Sim, G.A., Dobbie, R.C., and Mason, P.R., J. Organometal. Chem., 69, C 4 (1974). Barrow, M.J., and Sim, G.A., J. Chem. Soc. Dalton Trans., 1975, 291. Bassi, I.W., and Scordamaglia, R., J. Organometal. Chem., 37, 353 (1972). Bats, J.W., de Boer, J.J., and Bright, D., Inorg. Chim. Acta, 5, 605 (1971). Battelle, L.F., Bau, R., Gokel, G.W., Oyakawa, R.T., and Ugi, I.K., J. Amer. Chem. Soc, 95, 482 (1973). Beckett, R., Heath, G.A., Hoskins, B.F., Kelly, B.P., Martin, R.L., Roos, I.A.G., and Weickhardt, P.L., Inorg. Nucl. Chem. Lett., 6, 257 (1970). Beddoes, R.L., Lindley, P.F., and Mills, O.S., Angew. Chem., 82, 293 (1970); Angew. Chem. Int. Ed. Engl., 9, 304 (1970). Behrens, U., and Weiss, E., J. Organometal. Chem., 73, C 64 (1974). Bennett, M.A., Robertson, G.B., Tomkins, I.B., and Whimp, P.O., J. Chem. Soc. D, Chem. Commun. 1971, 341. Bennett, M.J., Jr., Cotton, F.A., Davison, A., Faller, J.W., Lippard, S.J., and Morehouse, S.M., J. Amer. Chem. Soc, 88, 4371 (1966). Bennett, M.J., Cotton, F.A., and Weaver, D.L., Nature, 212, 286 (1966). Bennett, M.J., Cotton, F.A., and Weaver, D.L., Acta Crystallogr., 23, 581 (1967). Bennett, M.J., Brooks, W., Elder, M., Graham, W.A.G., Hall, D. , and Kummer, R. , J. Amer. Chem. Soc, 92, 208 (1970). Bennett, M.J., Graham, W.A.G., Stewart, P.R., Jr., and Tuggle, L.M., Inorg. Chem., 12, 2944 (1973). Bennett, M.J., Graham, W.A.G., Smith, R.A., and Stewart, R.P., Jr., J. Amer. Chem. Soc, 95, 1684 (1973). Bernal, J., and Sequeira, A., Amer. Cryst. Assoc., Summer Meeting 1967, Abstracts, p.75. Bernstein, T., and Herbstein, F.H., Acta Crystallogr., B 24, 1640 (1968). Bertrand, J.A., Breece, J.L., Kalyanaraman, A.R., Long, G.J., and Baker, W.A. , Jr., J. Amer. Chem. Soc,

83.

84.

85.86.87.

88.

89.

90.

91.

92.

93.

94.

95.

96.97.

98.

99.

100.

101.102.

103.

104.105.

106.

107.

Page 88: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Carl Kruger et al.

92, 5233 (1970). Bertrand, J.A., Breece, J.L., and Eller, P.G., Inorg. Chem., 13, 125 (1974). Bertrand, J.A., and Breece, J.L., Inorg. Chim. Acta, 8, 267 (1974). Birch, A.J., Fitton, H., Mason, R., Robertson, G.B., and Stangroom, J.E., Chem. Commun., 1966, 613. Birnbaum, G.I., J. Amer. Chem. Soc., 94, 2455 (1972); Amer. Cryst. Assoc, Summer Meeting 1970, Ottawa, Abstracts, p.81. Bir'yukov, B.P., Struchkov, Yu.T., Anisimov, K.N., Kolobova, N.E., and Skripkin, V.V., Chem. Commun., 1967, 750. Bir'yukov, B.P., Anisimov, K.N., Struchkov, Yu.T., Kolobova, N.E., and Skripkin, V.V., Zh. Strukt. Khim., 8, 556 (1967); J. Struct. Chem., 8, 498 (1967). Bir'yukov, B.P., Struchkov, Yu.T., Anisimov, K.N., Kolobova, N.E., and Skripkin, V.V., Chem. Commun., 1968, 159. Bir'yukov, B.P., Struchkov, Yu.T., Anisimov, K.N., Kolobova, N.E., and Skripkin, V.V., Chem. Commun., 1968, 1193. Bir'yukov, B.P., and Struchkov, Yu.T., Zh. Strukt. Khim., 9, 488 (1968); J. Struct. Chem., 9, 412 (1968). Bir'yukov, B.P., Struchkov, Yu.T., Anisimov, K.N., Kolobova, N.E., and Skripkin, V.V., Zh. Strukt. Khim., 9, 922 (1968); J. Struct. Chem., 9, 821 (1968). Bir'yukov, B.P., and Struchkov, Yu.T., Zh. Strukt. Khim., 10, 95 (1969); J. Struct. Chem., 10, 86 (1969). Bjämer Birnbaum, K., Altman, J., Maymon, T., and Ginsburg, D., Tetrahedron Lett., 1970, 2051. Blake, A.B., and Fräser, L.R., J. Chem. Soc. Dal ton Trans., 1975, 193. Blount, J.F., Dahl, L.F., Hoogzand, C , and Hübel, W., J. Amer. Chem. Soc, 88, 292 (1966). Bok, L.D.C., Leipoldt, J.G., and Basson, S.S., Z. anorg. allg. Chem., 389, 307 (1972). le Borgne, G., and Grandjean, D., Acta Crystallogr., B 29, 1040 (1973). Borovyak, T.E., Shklover, V.E., Gusev, A.I., Gubin, S.P., Koridze, A.A., and Struchkov, Yu.T., Zh. Strukt. Khim., 11, 1087 (1970); J. Struct. Chem., 11, 1012 (1970). Bottrill, M., Goddard, R., Green, M., Hughes, R.P., Lloyd, M.K., Lewis, B., and Woodward, P., J. Chem. Soc. Chem. Commun., 1975, 253. Bowman, K., Gaughan, A.P., and Dori, Z., J. Amer. Chem. Soc, 94, 727 (1972).

83.

84.

85.86.87.

88.

89.

90.

91.

92.

93.

94.

95.

96.97.

98.

99.

100.

101.

102.

103.

104.105.

106.

107.

Page 89: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 89

83. Bradley, D.C., Hursthouse, M.B., Rodesiler, P.F., Chem. Commun., 1969, 14.

84. Brennan, J.P., Grimes, R.N., Schaeffer, R., and Sneddon, L.G., Inorg. Chem., 12, 2266 (1973).

85. Bright, D., and Mills, O.S., Chem. Commun., 1966, 211. 86. Bright, D., and Mills, O.S., Chem. Commun., 1967, 245. 87. Bright, D., and Mills, O.S., J. Chem. Soc. A, 1971,

1979. 88. Bright, D., and Mills, O.S., J. Chem. Soc. Dalton

Trans., 1972, 2465. 89. Brooks, E.H., Elder, M., Graham, W.A.G., and Hall, D.,

J. Amer. Chem. Soc, 90, 3587 (1968). 90. Brown, D.S., and Bushneil, G.W., Acta Crystallogr.,

22, 296 (1967). 91. Brown, G.M., Hedberg, F.L., and Rosenberg, H., Amer.

Cryst. Assoc, Winter Meeting 1973, Gainesville (Florida), Abstracts, p.90.

92. Bruce, M.I., Clark, R., Howard, J., and Woodward, P., J. Organometal. Chem., 42, C 107 (1972).

93. Bryan, R.F., and Weber, H.P., Acta Crystallogr., 21, A 138 (1966).

94. Bryan, R.F., and Weber, H.P., Chem. Commun., 1966, 329.

95. Bryan, R.F., Amer. Cryst. Assoc., Winter Meeting 1967, Abstracts, p.49.

96. Bryan, R.F., J. Chem. Soc. A, 1967, 192. 97. Bryan, R.F., and Manning, A.R., Chem. Commun., 1968,

1220. 98. Bryan, R.F., Greene, P.T., Melson, G.A., Stokely, P.F.,

and Manning, A.R., J. Chem. Soc. Dr Chem. Commun., 1969, 722.

99. Bryan, R.F., Greene, P.T., Field, D.S., and Newlands, M.J., J. Chem. Soc. D, Chem. Commun., 1969, 1477.

100. Bryan, R.F., and Greene, P.T., J. Chem. Soc. A, 1970, 3064.

101. Bryan, R.F., Greene, P.T., Newlands, M.J., and Field, D.S., J. Chem. Soc. A, 1970, 3068.

102. Bryan, R.F., and Schmidt, W.C., Jr., J. Chem. Soc. Dalton Trans., 1974, 2337.

103. Burlitch, J.M., Petersen, R.B., Conder, H.L., and Robinson, W.R. , J. Amer. Chem. Soc, 92, 1783 (1970).

104. Bush, M.A., and Woodward, P., Chem. Commun., 1967, 166. 105. Bush, M.A., and Woodward, P., J. Chem. Soc. A, 1967,

1833. 106. Butler, W.M., Enemark, J.H., J. Organometal. Chem., 49,

233 (1973). 107. Calderon, J.L., Fontana, S., Frauendorfer, E., Day,

V.W., and Iske, S.D.A., J. Organometal. Chem., 64,

Page 90: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

90 Carl Kruger et al.

C 16 ( 1 9 7 4 ) . 108. Callahan, K.P., Evans, W.J., Lo, F.Y., Strouse, C.E.,

and Hawthorne, M.F., J. Amer. Chem. Soc, 97, 296 (1975).

109. Calvarin, G., Bouvaist, J., and Weigel, D., C.R. Acad. Sei., Ser. C, 268, 2288 (1969).

110. Calvarin, G., and Weigel, D., Acta Crystallogr., B 27, 1253 (1971).

111. Cameron, T.S., and Prout, C.K., J. Chem. Soc. Chem. Commun., 1971, 161.

112. Cameron, T.S., and Prout, C.K., Acta Crystallogr., B 28, 453 (1972).

113. Cameron, T.S., Maguire, J.F., Turbitt, T.D., and Watts, W.E., J. Organometal. Chem., 49, C 79 (1973).

114. Campbell, I.L.C., and Stephens, F.S., J. Chem. Soc. Dalton Trans., 1975, 22.

115. Campbell, I.L.C., and Stephens, F.S., J. Chem. Soc. Dalton Trans., 1975, 226.

116. Campbell, I.L.C., and Stephens, F.S., J. Chem. Soc. Dalton Trans., 1975, 982.

117. Candeloro, S., Grdenic, D., Taylor, N., Thompson, B., Viswamitra, M., and Crowfoot Hodgkin, D., Nature, 224, 589 (1969).

118. Carrell, H.L. , and Glusker, J.P., Amer. Cryst. Assoc, 25 th Anniversary Meeting 1975, Charlottesville (Virginia), Abstracts, p.12.

119. Carter, O.L., McPhail, A.T., and Sim, G.A., J. Chem. Soc. A, 1967, 365.

120. Carty, A.J., Ng, T.W., Carter, W., Palenik, G.J., and Birchall, T., J. Chem. Soc. D, Chem. Commun., 1969, 1101.

121. Carty, A.J., Madden, D.P., Mathew, M., Palenik, G.J., and Birchall, T., J. Chem. Soc. D, Chem. Commun., 1970, 1664.

122. Carty, A.J., Ferguson, G., Paik, H.N., and Restivo, R., J. Organometal. Chem., 74, C 14 (1974).

123. Chapovskii, Yu.A., Andrianov, B.G., Struchkov, Yu.T., and Semion, V.A., Zh. Strukt. Khim., 8, 559 (1967); J. Struct. Chem., 8, 501 (1967).

124. Chapovskii, Yu.A., Semion, V.A., Andrianov, V.G., and Struchkov, Yu.T., Zh. Strukt. Khim., 9, 1100 (1968); J. Struct. Chem., 9, 990 (1968).

125. Chatt, J., and Duncanson, L.A. , J. Chem., Soc, 1953, 2939.

126. Chin, H.B. , and Bau, R. , J. Amer. Chem. Soc, 95, 5068 (1973).

127. Chin, H.B., Smith, M.B., Wilson, R.D., and Bau, R. , J. Amer. Chem. Soc, 96, 5285 (1974).

Page 91: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 91

128. Churchill, M.R., and Mason, R., Proc. Chem. Soc, 1964, 226.

129. Churchill, M.R. , Chem. Commun., 1966, 450. 130. Churchill, M.R., and Mason, R., Advan. Organometal.

Chem., 5, 93 (1967). 131. Churchill, M.R., Inorg. Chem., 6, 185 (1967). 132. Churchill, M.R., Inorg. Chem., 6, 190 (1967). 133. Churchill, M.R., and Mason, R., Proc. Roy. Soc.(London)

A, 301, 433 (1967). 134. Churchill, M.R., and Gold, K., Chem. Commun., 1968,

693. 135. Churchill, M.R., and Wormald, J., Chem. Commun., 1968,

1033. 136. Churchill, M.R., Wormald, J., Giering, W.P., and

Emerson, G.F., Chem. Commun., 1968, 1217. 137. Churchill, M.R., and Wormald, J., Chem. Commun., 1968,

1597. 138. Churchill, M.R. , and Bird, P.H. , J. Amer. Chem. Soc,

90, 3241 (1968). 139. Churchill, M.R., and Gold, K., Inorg. Chem., 8, 401

(1969). 140. Churchill, M.R., and Wormald, J., Inorg. Chem., 8, 716

(1969). 141. Churchill, M.R., and Wormald, J., Inorg. Chem., 8,

1936 (1969). 142. Churchill, M.R., and Bird, P.H., Inorg. Chem., 8, 1941

(1969). 143. Churchill, M.R., and Wormald, J., Inorg. Chem., 8,

1970 (1969). 144. Churchill, M.R., Wormald, J., Young, D.A.T., and Kaesz,

H.D., J. Amer. Chem. Soc, 91, 7201 (1969). 245. Churchill, M.R., and Wormald, J., Inorg. Chem., 9,

2239 (1970). 146. Churchill, M.R., and Wormald, J., Inorg. Chem., 9,

2430 (1970). 147. Churchill, M.R., Wormald, J., Ross, D.A., Thomasson,

J.E., and Wojcicki, A., J. Amer. Chem. Soc, 92, 1795 (1970).

148. Churchill, M.R., and Veidis, M.V., J. Chem. Soc. D, Chem. Commun., 1970, 529.

149. Churchill, M.R., and Wormald, J. J. Chem. Soc. D, Chem. Commun., 1970, 703.

150. Churchill, M.R., and Fennessey, J.P., J. Chem. Soc. D, Chem. Commun., 1970, 1056.

151. Churchill, M.R., and Veidis, M.V., J. Chem. Soc D, Chem. Commun., 1970, 1470.

152. Churchill, M.R., and Wormald, J., Inorg. Chem., 10, 572 (1971).

Page 92: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

92 Carl Kruger et al.

153. Churchill, M.R., and Wormald, J., Inorg. Chem., 10, 1778 (1971).

154. Churchill, M.R. , and Wormald, J. , J. Amer. Chem. Soc, 93, 354 (1971).

155. Churchill, M.R., Wormald, J., Knight, J., and Mays, M.J., J. Amer. Chem. Soc, 93, 3073 (1971).

156. Churchill, M.R., and Veidis, M.V., J. Chem. Soc. A, 1971, 2170.

157. Churchill, M.R., and Reis, A.H., Jr., Inorg. Chem., 11, 2299 (1972).

158. Churchill, M.R., and DeBoer, B.G., Inorg. Chem., 12, 525 (1973).

159. Churchill, M.R., DeBoer, B.G., and Kalra, K.L., Inorg. Chem., 12, 1646 (1973).

160. Churchill, M.R., and Kalra, K.L., Inorg. Chem., 12, 1650 (1973).

161. Churchill, M.R., and Lin, K.-K.G., Inorg. Chem., 12, 2274 (1973).

162. Churchill, M.R., and Chang, S.W.-Y.N., J. Amer. Chem. Soc, 95, 5931 (1973) .

163. Churchill, M.R., and Wormald, J., J. Chem. Soc Dalton Trans., 1974, 2410.

164. Churchill, M.R., and Chang, S.W.-Y., Inorg. Chem., 14, 1680 (1975).

165. de Cian, A., and Weiss, R., Chem. Commun., 1968, 348. 166. de Cian, A., and Weiss, R., Nat. Proprietes Liason

Coordin. Coll. Internation. Paris, 261 (1970). 167. de Cian, A., and Weiss, R., Acta Crystallogr., B 28,

3264 (1972). 168. de Cian, A., and Weiss, R., Acta Crystallogr., Β 28,

3273 (1972). 169. de Cian, A., L'Huillier, P.M., and Weiss, R., Bull.

Soc Chim. Fr., 1973, 451. 170. de Cian, A., L'Huillier, P.M., and Weiss, R., Bull.

Soc Chim. Fr., 1973, 457. 171. Clark, R., Howard, J., and Woodward, P., J. Chem. Soc.

Dalton Trans., 1974, 2027. 172. Clearfield, A., Singh, P., and Bernal, I., Amer. Cryst.

Assoc., Winter Meeting 1970, New Orleans, Abstracts,* p.65.

173. Clearfield, A., Singh, P., and Bernal, I., J. Chem. Soc. D, Chem. Commun., 1970, 389.

174. Coggon, P., McPhail, A.T., Mabbs, F.E., and McLachlan, V.N., J. Chem. Soc. A, 1971, 1014.

175. Cohen, G.H., and Hoard, J.L., J. Amer. Chem. Soc, 88, 3228 (1966).

176. Colapietro, M., Domenicano, A., Scaramuzza, L., Vaciago, A., and Zambonelli, L. , Chem. Commun. , 1967, 583.

Page 93: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 93

177. Coda, A., Kamenar, B., Prout, K., Carruthers, J.R., and Rollett, J.S., Acta Crystallogr., B 31, 1438 (1975).

178. Coleman, J.M., Wojcicki, A., Pollick, P.J., and Dahl, L.F., Inorg. Chem., 6, 1236 (1967).

179. Collins, D.M., Countryman, R., and Hoard, J.L., J. Amer. Chem. Soc, 94, 2066 (1972).

180. Connelly, N.G. , and Dahl, L.F., J. Amer. Chem. Soc, 92, 7472 (1970).

181. Constant, G. , Daran, J.-C, and Jeannin, Y., J. Inorg. Nucl. Chem., 33, 4209 (1971).

182. Constant, G. , Daran, J.-C, and Jeannin, Y., J. Organometal. Chem., 44, 353 (1972).

183. Constant, G. , Daran, J.-C, and Jeannin, Y. , 1st Europ. Crystallogr. Meeting 1973, Bordeaux, Abstracts, Group A6.

184. Constant, G. , Daran, J.-C, and Jeannin, Y. , J. Inorg. Nucl. Chem., 35, 4083 (1973).

185. Cooke, M., Howard, J.A.K., Russ, C.R., Stone, F.G.A., and Woodward, P., J. Organometal. Chem., 78, C 43 (1974).

186. Corradini, P., Pedone, C , and Sirigu, A., Chem. Commun., 1966, 341.

187. Corradini, P., Pedone, C , and Sirigu, A., Chem. Commun., 1968, 275.

188. Cotton, F.A., and Yagupsky, G., Inorg. Chem., 6, 15 (1967).

189. Cotton, F.A. , and LaPrade, M.D., J. Amer. Chem. Soc, 90, 2026 (1968).

190. Cotton, F.A. , and Takats, J. , J. Amer. Chem. Soc, 90, 2031 (1968).

191. Cotton, F.A. , and Edwards, W.T. , J. Amer. Chem. Soc, 91, 843 (1969).

192. Cotton, F.A., DeBoer, B.G., and Marks, T.J., J. Amer. Chem. Soc, 93, 5069 (1971).

193. Cotton, F.A. , and Pipal, J.R. , J. Amer. Chem. Soc, 93, 5441 (1971).

194. Cotton, F.A., and Troup, J.M., J. Amer. Chem. Soc, 95, 3798 (1973).

195. Cotton, F.A., Day, V.W., Frenz, B.A., Hardcastle, K.I., and Troup, J.M., J. Amer. Chem. Soc, 95, 4522 (1973).

196. Cotton, F.A., Hardcastle, K.I., and Rusholme, G.A., J. Coord. Chem., 2, 217 (1973).

197. Cotton, F.A., Frenz, B.A., Deganello, G., and Shaver, A., J. Organometal. Chem., 50, 227 (1973).

198. Cotton, F.A., Frenz, B.A., Troup, J.M., and Deganello, G., J. Organometal. Chem., 59, 317 (1973).

Page 94: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

94 Carl Kruger et al.

199. Cotton, F.A., Frenz, B.A., and White, A.J., J. Organometal. Chem., 60, 147 (1973).

200. Cotton, F.A., Frenz, B.A., and Troup, J.M., J. Organometal. Chem., 61, 337 (1973).

201. Cotton, F.A., and Frenz, B.A., Inorg. Chem., 13, 253 (1974).

202. Cotton, F.A., Frenz, B.A., and White, A.J., Inorg. Chem., 13, 1407 (1974).

203. Cotton, F.A., and Troup, J.M., J. Amer. Chem. Soc., 96, 1233 (1974).

204. Cotton, F.A. , and Troup, J.M. , J. Timer. Chem. Soc, 96, 3438 (1974).

205. Cotton, F.A., and Troup, J.M., J. Amer. Chem. Soc, 96, 4422 (1974).

206. Cotton, F.A. , and Troup, J.M., J. Amer. Chem. Soc, 96, 5070 (1974).

207. Cotton, F.A., and Troup, J.M., J. Organometal. Chem., 76, 81 (1974).

208. Cotton, F.A., and Troup, J.M., J. Organometal. Chem., 77, 83 (1974).

209. Cotton, F.A., and Troup, J.M., J. Organometal. Chem., 77, 369 (1974).

210. Cotton, F.A., and Lahuerta, P., Inorg. Chem., 14, 116 (1975).

211. Cotton, F.A. , and Hunter, D.L., J. Amer. Chem. Soc, 97, 5739 (1975).

212. Coucouvanis, D., and Lippard, S.J., J. Amer. Chem. Soc, 90, 3281 (1968) .

213. Coucouvanis, D., and Lippard, S.J., J. Amer. Chem. Soc, 91, 307 (1969) .

214. Coucouvanis, D., Lippard, S.J., and Zubieta, J.A., J. Amer. Chem. Soc, 91, 761 (1969).

215. Coucouvanis, D., Lippard, S.J., and Zubieta, J.A., Inorg. Chem., 9, 2775 (1970).

216. Coucouvanis, D., and Piltingsrud, D., J. Amer. Chem. Soc, 95, 5556 (1973).

217. Countryman, R., Collins, D.M., and Hoard, J.L., J. Amer. Chem. Soc, 91, 5166 (1969).

218. Cramer, R. , J. Amer. Chem. Soc, 86, 217 (1964). 219. Dahl, L.F., and Wei, C.-H., Inorg. Chem., 2, 328

(1963). 220. Dahl, L.F., and Blount, J.F., Inorg. Chem., 4, 1373

(1965). 221. Dahl, L.F., Doedens, R.J., Hübel, W., and Nielsen, J.,

J. Amer. Chem. Soc, 88, 446 (1966). 222. Dahl, L.F., Costello, W.R., and King, R.B., J. Amer.

Chem. Soc, 90, 5422 (1968). 223. Dahm, D.J., and Jacobson, R.A., Chem. Commun., 1966,

Page 95: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 95

496 . 224. Dahm, D.J., and Jacobson, R.A., J. Amer. Chem. Soc,

90, 5106 (1968). 225. Davey, G., and Stephens, F.S., J. Chem. Soc. Dalton

Trans., 1974, 698. 226. Davidson, J.L., Green, M., Stone, F.G.A., and Welch,

A.J., J. Chem. Soc. Chem. Commun., 1975, 286. 227. Davies, G.R., Mais, R.H.B., and Owston, P.G., Chem.

Commun., 1968, 81. 228. Davies, G.R., Mais, R.H.B., Owston, P.G., and Thompson,

D.T., J. Chem. Soc. A, 1968, 1251. 229. Davies, G.R., Jarvis, J.A.J., Kilbourn, B.T., Mais,

R.H.B., and Owston, P.G., J. Chem. Soc. A, 1970, 1275. 230. Davies, J.E., and Gatehouse, B.M., J. Chem. Soc. D,

Chem. Commun., 1970, 1166. 231. Davies, J.E., and Gatehouse, B.M., Acta Crystallogr.,

B 28, 3641 (1972). 232. Davies, J.E., and Gatehouse, B.M., Cryst. Struct.

Commun., 1, 115 (1972). 233. Davies, J.E., and Gatehouse, B.M., Acta Crystallogr.,

B 29, 1934 (1973). 234. Davis, B.R., and Bernal, I., J. Cryst. Mol. Struct.,

2, 107 (1972). 235. Davis, B.R., and Bernal, I., J. Cryst. Mol. Struct.,

2, 261 (1972). 236. Davis, M.I., and Speed, C.S., J. Organometal. Chem.,

21, 401 (1970). 237. Davis, R.E., Chem. Commun., 1968, 248. 238. Davis, R.E., Chem. Commun., 1968, 1218. 239. Davis, R.E., Amer. Cryst. Assoc., Winter Meeting 1969,

Abstracts, p.78. 240. Davis, R.E., Amer. Cryst. Assoc., Winter Meeting 1970,

New Orleans, Abstracts, p.45. 241. Davis, R.E., Cupper, G.L., and Simpson, H.D., Amer.

Cryst. Assoc, Summer Meeting 1970, Ottawa, Abstracts, p.80.

242. Davis, R.E., and Pettit, R. , J. Amer. Chem. Soc, 92, 716 (1970).

243. Davis, R.E. , and Simpson, H.D., Amer. Cryst. Assoc, Winter Meeting 1971, Columbia (South Carolina), Abstracts, p.66.

244. Davis, R.E., Simpson, H.D., Grice, N., and Pettit, R., J. Amer. Chem. Soc, 93, 6688 (1971).

245. Davis, R.E., Barnett, B.L., Amiet, R.G., Merk, W., McKennis, J.S., and Pettit, R., J. Amer. Chem. Soc, 96, 7108 (1974).

246. Degreve, Y., Meunier-Piret, J., van Meerssche, M., and Piret, P., Acta Crystallogr., 23, 119 (1967).

Page 96: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

96 Carl Kruger et al.

247. Deppisch, B., Acta Crystallogr., A 31, S 137 (1975). 248. Dewar, M.J.S., Bull. Soc. Chim. Fr., 1951, C 71. 249. Deyrieux, R., and Peneloux, A., Bull. Soc. Chim. Fr.,

1969, 2675. 250. Dickens, B. , and Lipscomb, W.N. , J. Amer. Chem. Soc,

83, 489 (1961). 251. Dickens, B., and Lipscomb, W.N. , J. Amer. Chem. Soc,

83, 4862 (1961). 252. Dickens, B., and Lipscomb, W.N., J. Chem. Phys., 37,

2084 (1962). 253. Dighe, S.V., and Orchin, M. , J. Amer. Chem. Soc, 86,

3895 (1964). 254. Dodge, R.P., and Schomaker, V., Nature, 186, 798

(1960). 255. Dodge, R.P., J. Amer. Chem. Soc, 86, 5429 (1964). 256. Dodge, R.P., and Schomaker, V., Acta Crystallogr., 18,

614 (1965). 257. Dodge, R.P., and Schomaker, V., J. Organometal. Chem.,

3, 274 (1965). 258. Doedens, R.J., and Dahl, L.F. , J. Amer. Chem. Soc, 88,

4847 (1966). 259. Doedens, R.J., Chem. Commun., 1968, 1271. 260. Doedens, R.J., Inorg. Chem., 7, 2323 (1968). 261. Doedens, R.J., Inorg. Chem., 8, 570 (1969). 262. Doedens, R.J., and Ibers, J.A., Inorg. Chem., 8, 2709

(1969). 263. Doedens, R.J., Inorg. Chem., 9, 429 (1970). 264. Doedens, R.J. , and Little, R.G., Amer. Cryst. Assoc,

Summer Meeting 1971, Ames (Iowa), Abstracts, p.75. 265. Donohue, J., and Caron, A., Acta Crystallogr., 17,

663 (1964). 266. Donohue, J., and Caron, A., J. Phys. Chem., 70, 603

(1966). 267. Drummond, J., and Wood, J.S., J. Chem. Soc. D, Chem.

Commun., 1969, 1373. 268. Dunitz, J.D., Orgel, L.E., and Rich, A., Acta

Crystallogr., 9, 373 (1956). 269. Eiland, P.F., and Pepinsky, R., J. Amer. Chem. Soc,

74, 4971 (1952). 270. Einstein, F.W.B., Cullen, W.R., and Trotter, J., J.

Amer. Chem. Soc, 88, 5670 (1966). 271. Einstein, F.W.B., and Trotter, J., J. Chem. Soc. A,

1967, 824. 272. Einstein, F.W.B., and Svensson, A.-M., J. Amer. Chem.

Soc, 91, 3663 (1969) . 273. Einstein, F.W.B., Pilotti, A.-M., and Restivo, R.,

Inorg. Chem., 10, 1947 (1971). 274. Einstein, F.W.B., and Restivo, R., Inorg. Chim. Acta,

Page 97: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 97

5, 501 (1971). 275. Einstein, F.W.B., and Jones, R.D.G., J. Chem. Soc

Dalton Trans., 1972, 442. 276. Einstein, F.W.B., and Jones, R.D.G., J. Chem. Soc

Dalton Trans., 1972, 2563. 277. Einstein, F.W.B., and Jones, R.D.G., Inorg. Chem., 12,

255 (1973). 278. Einstein, F.W.B., and Jones, R.D.G., Inorg. Chem., 12,

1690 (1973). 279. Einstein, F.W.B., and MacGregor, A.C., J. Chem. Soc.

Dalton Trans., 1974, 778. 280. Eiss, R., Inorg. Chem., 9, 1650 (1970). 281. Elder, M., and Hall, D., Inorg. Chem., 8, 1424 (1969). 282. Elder, M., Inorg. Chem., 8, 2703 (1969). 283. Elder, M., and Hutcheon, W.L., J. Chem. Soc. Dalton

Trans., 1972, 175. 284. Eller, P.G., Breece, J.L., and Bertrand, J.A., Amer.

Cryst. Assoc, Winter Meeting 1973, Gainesville (Florida), Abstracts, p.70.

285. Elmes, P.S., Leverett, P., and West, B.O., J. Chem. Soc. D, Chem. Commun., 1971, 747.

286. Epstein, E.F., and Bernal, I., Amer. Cryst. Assoc, Winter Meeting 1969, Abstracts, p.79.

287. Epstein, E.F., and Dahl, L.F. , J. Amer. Chem. Soc, 92, 493 (1970).

288. Epstein, E.F., and Dahl, L.F. , J. Amer. Chem. Soc, 92, 502 (1970).

289. Epstein, E.F., Bernal, I., and Balch, A.L., J. Chem. Soc. D, Chem. Commun., 1970, 136.

290. Epstein, E.F., and Bernal, I., Amer. Cryst. Assoc, Winter Meeting 1971, Columbia (South Carolina), Abstracts, p.61.

291. Ferguson, G., Hannaway, C , and Islam, K.M.S., Chem. Commun., 1968, 1165.

292. Fischer, D.W., Acta Crystallogr., 17, 619 (1964). 293. Fischer, E.O., Kiener, V., Bunbury, D.St.P., Frank, E.,

Lindley, P.F., and Mills, O.S., Chem. Commun., 1968, 1378.

294. Fleischer, E.B., Miller, C.K., and Webb, L.E., J. Amer. Chem. Soc, 86, 2342 (1964).

295. Fleischer, E.B., Stone, A.L., Dewar, R.B.K., Wright, J.D., Keller, C.E., and Pettit, R., J. Amer. Chem. Soc, 88, 3158 (1966) .

296. Fleischer, E.B., and Hawkinson, S.W., Acta Crystallogr., 22, 376 (1967).

297. Fleischer, E. , and Hawkinson, S. , J. Amer. Chem. Soc, 89, 720 (1967).

298. Fleischer, E.B., and Srivastava, T.S., J. Amer. Chem.

Page 98: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

98 Carl Kruger et al.

Soc, 91, 2403 (1969) . 299. Fleischer, E.B., Gebala, A.E., Swift, D.R., and Tasker,

P.A., Inorg. Chem., 11, 2775 (1972). 300. Flippen, J.L., Inorg. Chem., 13, 1054 (1974). 301. Forrester, A.R., Hepburn, S.P., Dunlop, R.S., and

Mills, H.H., J. Chem. Soc. D, Chem. Commun., 1969, 698.

302. Foxman, B.M., J. Chem. Soc. Chem. Commun, 1975, 221. 303. Freeman, H.C., Milburn, G.H.W., Nockolds, C.E.,

Hemmerich, P., and Knauer, K.H., J. Chem. Soc. D, Chem. Commun., 1969, 55.

304. Frenz, B.A., Troup, J.M., and Cotton, F.A., Amer. Cryst. Assoc, Winter Meeting 1973, Gainesville (Florida), Abstracts, p.90.

305. Fritchie, C.J., Jr., and Wade, T.D., Amer. Cryst. Assoc., Summer Meeting 1974, Pennsylvania State University, Abstracts, p.239.

306. Gall, R.S., Chu, C.T.-W., and Dahl, L.F., J. Amer. Chem. Soc, 96, 4019 (1974).

307. Gatehouse, B.M., J. Chem. Soc. D, Chem. Commun., 1969, 948.

308. Gerloch, M., and Mabbs, F.E., J. Chem. Soc. A, 1967, 1598.

309. Gerloch, M., and Mabbs, F.E., J. Chem. Soc. A, 1967, 1900.

310. Gerloch, M., McKenzie, E.D., and Towl, A.D.C., Nature, 220, 906 (1968).

311. Gerloch, M., McKenzie, E.D., and Towl, A.D.C., J. Chem. Soc. A, 1969, 2850.

312. Gerst, K., and Nordman, C.E., Amer. Cryst. Assoc., Summer Meeting 1974, Pennsylvania State University, Abstracts, p.225.

313. Gibbons, C.S., and Trotter, J., J. Chem. Soc. A, 1971, 2659.

314. Gieren, A., and Hoppe, W., Acta Crystallogr., B 28, 2766 (1972).

315. Gilmore, C.J., and Woodward, P., J. Chem. Soc. D, Chem. Commun, 1970, 1463.

316. Gilmore, C.J., and Woodward, P., J. Chem. Soc. Dal ton Trans., 1972, 1387.

317. Ginderow, D., Acta Crystallogr., B 30, 2798 (1974). 318. Ginsberg, A.P., and Robin, M.B., Inorg. Chem., 2,

817 (1963). 319. Gitany, R., Paul, I.C., Acton, N., and Katz, T.J.,

Tetrahedron Lett., 1970, 2723. 320. Goddard, R., Howard, J., and Woodward, P., J. Chem.

Soc. Dal ton Trans., 1974, 2025. 321. Goedken, V.L., Molin-Case, J., and Christoph, G.G.,

Page 99: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 99

Inorg. Chem., 12, 2894 (1973). 322. Goedken, V.L., Molin-Case, J., and Whang, Y.-a., J.

Chem. Soc. Chem. Commun., 1973, 337. 323. Goedken, V.L., Peng, S.-M., and Park, Y.-a., J. Amer.

Chem. Soc, 96, 284 (1974). 324. Goedken, V.L., Park, Y.-a., Peng, S.-M., and Molin

Norris, J. , J. Amer. Chem. Soc, 96, 7693 (1974). 325. Goedken, V.L., and Peng, S.-M., J. Amer. Chem. Soc,

96, 7826 (1974). 326. Greaves, E.O., Knox, G.R., Pauson, P.L., Toma, S.,

Sim, G.A., and Woodhouse, D.I., J. Chem. Soc. Chem. Commun., 1974, 257.

327. Green, M., Tolson, S., Weaver, J., Wood, D.C., and Woodward, P., J. Chem. Soc. D, Chem. Commun., 1971, 222.

328. Green, M., Hughes, R.P., and Welch, A.J., J. Chem. Soc, Chem. Commun., 1975, 487.

329. Green, M.L.H., and Nagy, P.L.I., Advan. Organometal. Chem., 2, 325 (1964).

330. Green, M.L.H., Ariyaratne, J.K.P., Bjerrura, A.M., Ishaq, M., and Prout, C.K., Chem. Commun., 1967, 430.

331. Greene, P.T., and Bryan, R.F., Inorg. Chem., 9, 1464 (1970).

332. Greene, P.T., and Bryan, R.F., J. Chem. Soc. A, 1970, 1696.

333. Greene, P.T., and Bryan, R.F., J. Chem. Soc A, 1970, 2261.

334. Gress, M.E., and Jacobson, R.A., Inorg. Chem., 12, 1746 (1973).

335. Guggenberger, L.J., Titus, D.D., Flood, M.T., Marsh, R.E., Orio, A.A., and Gray, H.B. , J. Amer. Chem. Soc, 94, 1135 (1972).

336. Guilard, R., and Dusausoy, Y., J. Organometal. Chem., 77, 393 (1974).

337. Gyepes, E., and Hanic, F., Crust. Struct. Commun., 4, 229 (1975).

338. Hackert, M.L., and Jacobson, R.A., Acta Crystallogr., B 27, 1658 (1971).

339. Hall, L.H., and Brown, G.M., Acta Crystallogr., B 27, 81 (1971).

340. Haines, R.J., Mason, R., Zubieta, J.A., and Nolte, C.R., J. Chem. Soc. Chem. Commun., 1972, 990.

341. Hamilton, W.C., and Bernal, I., Inorg. Chem., 6, 2003 (1967).

342. Hamor, T.A., and Watkin, D.J., J. Chem. Soc D, Chem. Commun., 1969, 440.

343. Hanic, F., Sevcik, J., and McGandy, E.L., Chem. Zvesti, 24, 81 (1970).

Page 100: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

100 Carl Kruger et al.

344. Hansen, P.J., and Jacobson, R.A., J. Organometal. Chem., 6, 389 (1966) .

345. Hanson, A.W., Acta Crystallogr., 15, 930 (1962). 346. Hardy, A.D.U., and Sim, G.A., J. Chem. Soc. Dalton

Trans., 1972, 2305. 347. Harrison, W. , and Trotter, J. , Amer. Cryst. Assoc,

Summer Meeting 1970, Ottawa, Abstracts, p.85. 348. Harrison, W., and Trotter, J., J. Chem. Soc. A, 1971,

1542. 349. Haymore, B.L., and Ibers, J.A., Inorg. Chem., 14,

1369 (1975). 350. Healy, P.C., and White, A.H., J. Chem. Soc. Dalton

Trans., 1972, 1163. 351. Healy, P.C., White, A.H., and Hoskins, B.F., J. Chem.

Soc. Dalton Trans., 1972, 1369. 352. Healy, P.C., and Sinn, E., Inorg. Chem., 14, 109

(1975). 353. Heimbach, P., and Traunmüller, R., Justus Liebigs

Ann. Chem., 727, 208 (1969). 354. van der Helm, D., Merritt, L.L., Jr., Degeilh, R.,

and MacGillavry, C.H., Acta Crystallogr., 18, 355 (1965).

355. Henslee, W., and Davis, R.E., Cryst. Struct. Commun., 1, 403 (1972).

356. Herbstein, F.H., and Reisner, M.G., J. Chem. Soc. Chem. Commun., 1972, 1077.

357. Hiraishi, J., Finseth, D., and Miller, F.A., Spectrochim. Acta, 25 A, 1657 (1969).

358. Hirotsu, K., Higuchi, T., and Shimada, A., Bull. Chem. Soc. Jap., 41, 1557 (1968).

359. Hitchcock, P.B., and Mason, R., Chem. Commun., 1967, 242.

360. Hoard, J.L., Kennard, C.H.L., and Smith, G.S., Inorg. Chem., 2, 1316 (1963).

361. Hoard, J.L., Hamor, M.J., Hamor, T.A., and Caughey, W.S., J. Amer. Chem. Soc, 87, 2312 (1965).

362. Hoard, J.L., Cohen, G.H., and Glick, M.D., J. Amer. Chem. Soc, 89, 1992 (1967).

363. Hock, A.A., and Mills, O.S., Proc Chem. Soc, 1958, 233.

364. Hock, A.A., and Mills, O.S., Acta Crystallogr., 14, 139 (1961).

365. Hoffman, A.B., Collins, D.M., Day, V.W., Fleischer, E.B., Srivastava, T.S., and Hoard, J.L., J. Amer. Chem. Soc, 94, 3620 (1972).

366. Hollander, F.J., and Coucouvanis, D., Inorg. Chem., 13, 2381 (1974).

367. Hollander, F.J., Pedelty, R., and Coucouvanis, D.,

Page 101: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 101

J. Amer. Chem. Soc, 96, 4032 (1974). 368. Hollander, 0., Clayton, W.R., and Shore, S.G., J.

Chem. Soc. Chem. Commun., 1974, 604. 369. Holt, E.M., Holt, S.L., Tucker, W.F., Asplund, R.O.,

and Watson, K.J., J. Amer. Chem. Soc, 96, 2621 (1974).

370. Horspool, W.M., Iball, J., Rafferty, M., and Scrimgeour, S.N., J. Chem. Soc. Dalton Trans., 1974, 401.

371. Holloway, C.E., Hulley, G., Johnson, B.F.G., and Lewis, J., J. Chem. Soc. A, 1969, 53.

372. Hoppe, W., Brodherr, N., Englmeier, Hp., Gassmann, J., Gieren, A., Hechtfischer, S., Preuss, L., Roehrl, M., Schaeffer, J., Schmidt, E., Steigemann, W., and Zechmeister, K., Pure Appl. Chem., 18, 465 (1969).

373. Hoskins, B.F., Martin, R.L., and White, A.H., Nature, 211, 627 (1966).

374. Hoskins, B.F., and Kelly, B.P., Chem. Commun., 1968, 1517.

375. Hoskins, B.F., and White, A.H., J. Chem. Soc. A, 1970, 1668.

376. Hoskins, B.F., and Kelly, B.P., J. Chem. Soc. D, Chem. Commun., 1970, 45.

377. Hu, W.-j., and Lippard, S.J., J. Amer. Chem. Soc, 96, 2366 (1974).

378. Huie, B.T., Knobler, C.B., and Kaesz, H.D., J. Chem. Soc. Chem. Commun., 1975, 684.

379. Hulme, R., and Powell, H.M., J. Chem. Soc, 1957, 719. 380. Hursthouse, M.B., Massey, A.G., Tomlinson, A.J., and

Urch, D.S., J. Organometal. Chem., 21, P 51 (1970). 381. Huttner, G., and Gartzke, W., Chem. Ber., 105, 2714

(1972). 382. Huttner, G., and Regler, D., Chem. Ber., 105, 2726

(1972). 383. Huttner, G., and Regler, D., Chem. Ber., 105, 3936

(1972). 384. Huttner, G., and Bejenke, V., Chem. Ber., 107, 156

(1974). 385. Huttner, G., and Gartzke, W., Chem. Ber., 107, 3786

(1974). 386. Iball, J., and Morgan, C.H., Acta Crystallogr., 23,

239 (1967). 387. Immirzi, A., J. Organometal. Chem., 76, 65 (1974). 388. van Ingen Schenau, A.D., Verschoor, G.C., and Romers,

C , 2nd Europ. Crystallogr. Meeting 1974, Keszthely (Hungary), Abstracts, p.370.

389. Irngartinger, H., 2nd Europ. Crystallogr. Meeting 1974, Keszthely (Hungary), Abstracts, p.372.

Page 102: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

102 Carl Kruger et al.

390. Janse-van Vuuren, P., Fletterick, R.J., Meinwald, J., and Hughes, R.E., J. Chem. Soc. D, Chem. Commun., 1970, 883.

391. Janse Van Vuuren, P., Fletterick, R.J., Meinwald, J., and Hughes, R.E., J. Amer. Chem. Soc, 93, 4394 (1971).

392. Jarvis, J.A.J., Job, B.E., Kilbourn, B.T., Mais, R.H.B., Owston, P.G., and Todd, P.F., Chem. Commun., 1967, 1149.

393. Jarvis, J.A.J., Mais, R.H.B., Owston, P.G., and Thompson, D.T., J. Chem. Soc. A, 1968, 622.

394. Jeannin, S., Jeannin, Y., and Lavigne, G., J. Organometal. Chem., 40, 187 (1972).

395. Jeffreys, J.A.D., Willis, C.M., Robertson, I.C., Ferguson, G., and Sime, J.G., J. Chem. Soc. Dalton Trans., 1973, 749.

396. Johnson, S.M., and Paul, I.C., J. Chem. Soc. B, 1970, 1783.

397. Johnston, D.L., Rohrbaugh, W.L., and DeW. Horrocks, W., Jr., Inorg. Chem., 10, 1474 (1971).

398. Jones, N.D., Marsh, R.E., and Richards, J.H., Acta Crystallogr., 19, 330 (1965).

399. Kaluski, Z.L., Avoyan, R.L., and Struchkov, Yu.T., Zh. Strukt. Khim., 3, 599 (1962); J. Struct. Chem., 3, 573 (1962).

400. Kaluski, Z.L., Struchkov, Yu.T., and Avoyan, R.L., Zh. Strukt. Khim., 5, 743 (1964); J. Struct. Chem., 5, 683 (1964).

401. Kaluski, Z.L., and Struchkov, Yu.T., Zh. Strukt. Khim., 6, 104 (1965); J. Struct. Chem., 6, 90 (1965).

402. Kaluski, Z.L., and Struchkov, Yu.T., Zh. Strukt. Khim., 6, 316 (1965); J. Struct. Chem., 6, 296 (1965).

403. Kaluski, Z.L., and Struchkov, Yu.T., Zh. Strukt. Khim., 6, 475 (1965); J. Struct. Chem., 6, 456 (1965).

404. Kaluski, Z.L., and Struchkov, Yu.T., Zh. Strukt. Khim., 6, 745 (1965); J. Struct. Chem., 6, 705 (1965).

405. Kaluski, Z.L., Acta Crystallogr., 21, A 119 (1966). 406. Kaluski, Z., and Struchkov, Yu.T., Bull. Acad. Pol.

Sei. Ser. Sei. Chim., 14, 719 (1966). 407. Kaluski, Z.L., Avoyan, R.L., and Struchkov, Yu.T., Zh.

Strukt. Khim., 7, 131 (1966); J. Struct. Chem., 7, 130 (1966).

408. Kaluski, Z.L., and Struchkov, Yu.T., Zh. Strukt. Khim., 7, 283 (1966); J. Struct. Chem., 7, 278 (1966).

409. Kaluski, Z., and Struchkov, Yu.T., Bull. Acad. Pol. Sei. Ser. Sei. Chim., 16, 557 (1968).

410. Kaluski, Z.L., Gusev, A.I., Kalinin, A.E., and Struchkov,, Yu.T., Zh. Strukt. Khim., 13, 950 (1972);

Page 103: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 103

J. Struct. Chem., 13, 888 (1972). 411. Karlin, K.D., Lewis, D.L., Rabinowitz, H.N., and

Lippard, S.J., J. Amer. Chem. Soc, 96, 6519 (1974). 412. Kennard, C.H.L., Inorg. Chim. Acta., 1, 347 (1967). 413. Kettle, S.F.A., and Mason, R., J. Organometal. Chem.,

5, 573 (1966). 414. Kilbourn, B.T., and Mais, R.H.B., Chem. Commun., 1968,

1507. 415. Kilbourn, B.T., Raeburn, U.A., and Thompson, D.T., J.

Chem. Soc. A, 1969, 1906. 416. Kim, N.E., Nelson, N.J., and Shriver, D.F., Inorg.

Chim. Acta, 7, 393 (1973). 417. Kimball, G.E., J. Chem. Phys., 8, 188 (1940). 418. King, G.S.D., Acta Crystallogr., 15, 243 (1962). 419. King, T.J., Logan, N., Morris, A., and Wallwork, S.C.,

J. Chem. Soc. D, Chem. Commun., 1971, 554. 420. Kirchner, R.M., and Ibers, J.A., J. Organometal. Chem.,

82, 243 (1974). 421. Klanderman, K.A., Dissert. Abstr., 25, 6253 (1965). 422. Kobayashi, T., Kurokawa, F., Ashida, T., Uyeda, N., and

Suito, E., J. Chem. Soc. D, Chem. Commun., 1971, 1631. 423. Koch, S., Tang, S.C., Holm, R.H., Frankel, R.B., and

Ibers, J.A., J. Amer. Chem. Soc, 97, 916 (1975). 424. Koenig, D.F., Acta Crystallogr., 18, 663 (1965). 425. König, E., and Watson, K.J., Chem. Phys. Lett., 6,

457 (1970). 426. Kurahashi, M., Kawase, A., Hirotsu, K., Fukuyo, M.,

and Shimada, A., Bull. Chem. Soc. Jap., 45, 1940 (1972).

427. Krüger, C , J. Organometal. Chem., 22, 697 (1970). 428. Krüger, C , and Tsay, Y.-H., Angew. Chem., 83, 250

(1971); Angew. Chem. Int. Ed. Engl., 10, 261 (1971). 429. Krüger, C , and Tsay, Y.-H., J. Organometal. Chem.,

33, 59 (1971). 430. Krüger, C , Tsay, Y.-H., Grevels, F.W., and Koerner

von Gustorf, E., Israel J. Chem., 10, 201 (1972). 431. Krüger, C , and Tsay, Y.-H., 1st Europ. Crystallogr.

Meeting 1973, Bordeaux, Abstracts, Group A6. 432. Krüger, C , Chem. Ber., 106, 3230 (1973). 433. Krüger, C , and Kisch, H., J. Chem. Soc. Chem. Commun.,

1975, 65. 434. Krukonis, A.P., Silverman, J., and Yannoni, N.F., Acta

Crystallogr., B 28, 987 (1972). 435. Kuz'mina, L.G., Bokii, N.G., Struchkov, Yu.T.,

Arutyunyan, A.V., Rybin, L.V., and Rybinskaya, M.I., Zh. Strukt. Khim., 12, 875 (1971); J. Struct. Chem., 12, 801 (1971).

436. Kuz'mina, L.G., Struchkov, Yu.T., and Nekhaev, A.I.,

Page 104: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

104 Carl Kruger et al.

Zh. Strukt. Khim., 13, 1115 (1972); J. Struct. Chem., 13, 1033 (1972).

437. Kuz'min, V.S., Zol'nikova, G.P., Struchkov, Yu.T., and Kritskaya, I.I., Zh. Strukt. Khim., 15, 162 (1974); J. Struct. Chem., 15, 153 (1974).

438. Laing, M.B., and Trueblood, K.N., Acta Crystallogr., 19, 373 (1965).

439. Lauher, J.W., and Ibers, J.A., Inorg. Chem., 14, 348 (1975).

440. Lecomte, C , Dusausoy, Y., Protas, J., Moise, C , and Tirouflet, J., Acta Crystallogr., B 29, 488 (1973).

441. Lecomte, C , Dusausoy, Y., Protas, J., and Moise, C , Acta Crystallogr., B 29, 1127 (1973).

442. Lecomte, C., Dusausoy, Y., Protas, J., Gautheron, B., and Broussier, R., Acta Crystallogr., B 29, 1504 (1973).

443. Legendre, J.-J., Girard, C , and Huber, M., Bull. Soc. Chim. Fr., 1971, 1998.

444. Leipoldt, J.G., and Coppens, P., Inorg. Chem., 12, 2269 (1973).

445. Lewis, D.F., Lippard, S.J., and Zubieta, J.A., Inorg. Chem., 11, 823 (1972).

446. Lewis, J., and Nyholm, R.S., 23rd Int. Congr. Pure Appl. Chem. 1971, Butterworth, London, 1971, Vol. 6, p.61.

447. Lind, M.D., Hoard, J.L., Hamor, M.J., and Hamor, T.A., Inorg. Chem., 3, 34 (1964).

448. Lindley, P.F., and Woodward, P., J. Chem. Soc. A, 1967, 382.

449. Lindley, P.F., and Mills, O.S., J. Chem. Soc. A, 1969, 1279.

450. Lindley, P.F., and Mills, O.S., J. Chem. Soc. A, 1970, 38.

451. Lindley, P.F., and Smith, A.W., J. Chem. Soc. D, Chem. Commun., 1970, 1355.

452. Lindner, H.J., and Göttlicher, S., Acta Crystallogr., B 25, 832 (1969).

453. Lindqvist, I., and Rosenstein, R., Acta Chem. Scand., 14, 1228 (1960).

454. Lingafelter, E.C., Bailey, M.F., Howe, N.L., Kirchner, R.M. , Mealli, C , and Torre, L.P., Amer. Cryst. Assoc. , Summer Meeting 1970, Ottawa, Abstracts, p.81.

455. Lingafelter, E.C., and Dunaj-Jurco, M., Acta Crystallogr., A 28, S 79 (1972).

456. Lippard, S.J., Schugar, H., and Walling, C , Inorg. Chem., 6, 1825 (1967).

457. Lippard, S.J., and Martin, G., J. Amer. Chem. Soc, 92, 7291 (1970).

Page 105: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 105

458. Luxmoore, A.R., and Truter, M.R., Proc. Chem. Soc, 1961, 466.

459. Luxmoore, A.R., and Truter, M.R., Acta Crystallogr., 15, 1117 (1962).

460. Maglio, G., Musco, A., Palumbo, R., and Sirigu, A., J. Chem. Soc. D, Chem. Commun., 1971, 100.

461. Manojlovic-Muir, L., Muir, K.W., and Ibers, J.A., Inorg. Chem., 9, 447 (1970).

462. Margulis, T.N., Schiff, L., and Rosenblum, M., J. Amer. Chem. Soc, 87, 3269 (1965).

463. Martin, R.L., Rohde, N.M., Robertson, G.B., and Taylor, D., J. Amer. Chem. Soc, 96, 3647 (1974).

464. Mason, R., McKenzie, E.D., Robertson, G.B., and Rusholme, G.A., Chem. Commun., 1968, 1673.

465. Mason, R., 23rd. Int. Congr. Pure Appl. Chem. 1971, Butterworth, London 1971, Vol. 6., p.31.

466. Mason, R., and Robertson, G.B., J. Chem. Soc. A, 1970, 1229.

467. Mason, R., Zubieta, J., Hsieh, A.T.T., Knight, J., and Mays, M.J., J. Chem. Soc. Chem. Commun., 1972, 250.

468. Mason, R., and Zubieta, J.A., J. Organometal. Chem., 66, 279 (1974).

469. Mason, R., and Zubieta, J.A., J. Organometal. Chem., 66, 289 (1974).

470. Mathew, M., and Palenik, G.J., Inorg. Chem., 11, 2809 (1972).

471. Mayerle, J.J., Denmark, S.E., DePamphilis, B.V., Ibers, J.A., and Holm, R.H., J. Amer. Chem. Soc, 97, 1032 (1975).

472. Macdonald, A.C., and Trotter, J., Acta Crystallogr., 17, 872 (1964).

473. McArdle, P., Manning, A.R., and Stevens, F.S., J. Chem. Soc. D, Chem. Commun., 1969, 1310.

474. McDonald, W.S., Moss, R.J., Raper, G., Shaw, B.L. Greatrex, R., and Greenwood, N.N., J. Chem. Soc. D, Chem. Commun., 1969, 1295.

475. McKechnie, J.S., and Paul, I.e., J. Amer. Chem. Soc, 88, 5927 (1966).

476. McKechnie, J.S., Bersted, B., Paul, I.C., and Watts, W.E., J. Organometal. Chem., 8, P 29 (1967).

477. McKechnie, J.S., Maier, C.A., Bersted, B., and Paul, I.C., J. Chem. Soc. Perkin Trans. II, 1973, 138.

478. McWeeny, R., Mason, R., and Towl, A.D.C., Discuss. Faraday Soc, 47, 20 (1969).

479. Meakin, P., Guggenberger, L.J., Jesson, J.P., Gerlach, D.H., Tebbe, F.N., Peet, W.G., and Muetterties, E.L., J. Amer. Chem. Soc, 92, 3482 (1970).

480. Mealli, C., and Lingafelter, E.C., J. Chem. Soc D,

Page 106: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

106 Carl Kruger et al.

Chem. Commun., 1970, 885. 481. Melson, G.A., Stokely, P.F., and Bryan, R.F., J. Chem.

Soc. A, 1970, 2247. 482. Meunier-Piret, J., Piret, P., and van Meerssche, M.,

Acta Crystallogr., 19, 85 (1965). 483. Miller, J., Balch, A.L., and Enemark, J.H., J. Amer.

Chem. Soc, 93, 4613 (1971). 484. Mills, O.S., Acta Crystallogr., 11, 620 (1958). 485. Mills, O.S., and Robinson, G., Proc. Chem. Soc, 1960,

421. 486. Mills, O.S., and Robinson, G., Acta Crystallogr., 16,

758 (1963). 487. Mills, O.S., and Redhouse, A.D., Chem. Commun., 1966,

444. 488. Mills, O.S., and Redhouse, A.D., J. Chem. Soc A, 1968,

1282. 489. Minasyan, M.Kh., Struchkov, Yu.T., Kritskaya, I.I., and

Avoyan, R.L., Zh. Strukt. Khim., 7, 903 (1966); J. Struct. Chem., 7, 840 (1966).

490. Minasyants, M.Kh., and Struchkov, Yu.T., Zh. Strukt. Khim., 9, 665 (1968); J. Struct. Chem., 9, 577 (1968).

491. Minasyants, M.Kh., Andrianov, V.G., and Struchkov, Yu.T., Zh. Strukt. Khim., 9, 1055 (1968); J. Struct. Chem., 9, 939 (1968).

492. Molin Case, J.A., Dissert. Abstr., B 28, 2786 (1968). 493. Moriarty, R.M., Chen, K.-N., Yeh, C.-L., Flippen, J.L.,

and Karle, J., J. Amer. Chem. Soc, 94, 8944 (1972). 494. Moriarty, R.M., Chen, K.-N., Churchill, M.R., and

Chang, S.W.-Y., J. Amer. Chem. Soc, 96, 3661 (1974). 495. Murahashi, S.-I., Mizoguchi, T., Hosokawa, T.,

Moritani, I., Kai, Y., Kohara, M., Yasuoka, N., and Kasai, N., J. Chem. Soc Chem. Commun., 1974, 563.

496. Naik, D.V., and Palenik, G.J., Chem. Phys. Lett., 24, 260 (1974).

497. Nassimbeni, L.R., and Thackeray, M.M., Inorg. Nucl. Chem. Lett., 9, 539 (1973).

498. Nelson, N.J., Kirne, N.E., and Shriver, D.F., J. Amer. Chem. Soc, 91, 5173 (1969).

499. Nesmeyanov, A.N., Astakhova, I.S., Zol'nikova, G.P., Kritskaya, I.I., and Struchkov, Yu.T., J. Chem. Soc D, Chem. Commun., 1970, 85.

500. Nesmeyanov, A.N., Rybinskaya, M.I., Rybin, L.V., Arutyunyan, A.V., Kuz'mina, L.G., and S truchkov, Yu.T., J. Organometal. Chem., 73, 365 (1974).

501. Nesterova, Ya.M., Polynova, T.N., Martynenko, L.I., and Pechurova, N.I., Zh. Strukt. Khim., 12, 1110 (1971); J. Struct. Chem., 12, 1028 (1971).

502. Neuman, M.A., Trinh-Toan, and Dahl, L.F., J. Amer.

Page 107: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 107

Chem. Soc, 94, 3383 (1972). 503. Nicholas, K., Bray, L.S., Davis, R.E., and Pettit, R.,

J. Chem. Soc. D, Chem. Commun., 1971, 608. 504. Norrestam, R., and Stensland, B., Acta Crystallogr.,

A 28, S 39 (1972). 505. Novozhilova, N.V., Polynova, T.N., Porai-Koshits, M.A.,

and Martynenko, L.I., Zh. Strukt. Khim., 15, 111 (1974); J. Struct. Chem., 15, 621 (1974).

506. Novozhilova, N.V., Polynova, T.N., Porai-Koshits, M.A., Pechurova, N.I., Martynenko, L.I., and Ali-Khadi, Zh. Strukt. Khim., 14, 745 (1973); J. Struct. Chem., 14, 694 (1973).

507. O'Connor, J.E., and Corey, E.R., Inorg. Chem., 6, 968 (1967).

508. OfConnor, J.E., and Corey, E.R., J. Amer. Chem. Soc, 89, 3930 (1967).

509. O'Connor, T., Carty, A.J., Mathew, M., and Palenik, G.J., J. Organometal. Chem., 38, C 15 (1972).

510. Oliver, J.D., and Davis, R.E., Amer. Cryst. Assoc, Winter Meeting 1971, Columbia (South Carolina), Abstracts, p.61.

511. Orchin, M., and Schmidt, P.J., Inorg. Chim. Acta Rev., 2, 123 (1968).

512. Paik, H.N., Carty, A.J., Mathew, M., and Palenik, G.J., J. Chem. Soc. Chem. Commun., 1974, 946.

513. Paik, H.N., Carty, A.J., Dymock, K., and Palenik, G.J., J. Organometal. Chem., 70, C 17 (1974).

514. Palenik, G.J., Amer. Cryst. Assoc., Winter Meeting 1967, Abstracts, p.62.

515. Palenik, G.J., Inorg. Chem., 8, 2744 (1969). 516. Palenik, G.J., Inorg. Chem., 9, 2424 (1970). 517. Patel, H.A., Carty, A.J., Mathew, M., and Palenik,

G.J., J. Chem. Soc. Chem. Commun., 1972, 810. 518. Patel, H.A., Fischer, R.G., Carty, A.J., Naik, D.V.,

and Palenik, G.J., J. Organometal. Chem., 60, C 49 (1973).

519. Paquette, L.A., Ley, S.V., Broadhurst, M.J., Truesdell, D., Fayos, J., and Clardy, J., Tetrahedron Lett., 1973, 2943.

520. Paul, I.C., and Sim, G.A., J. Chem. Soc, 1965, 1097. 521. Paul, I.C., Chem. Commun., 1966, 377. 522. Paul, I.C., Johnson, S.M., Paquette, L.A., Barrett,

J.H., and Haluska, R.J., J. Amer. Chem. Soc, 90, 5023 (1968).

523. Pedone, C , and Sirigu, A., Acta Crystallogr., 23, 759 (1967) .

524. Pedone, C , and Sirigu, A., Inorg. Chem., 7, 2614 (1968).

Page 108: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

108 Carl Kruger et al.

525. Pettersen, R.C., Dissert. Abstr., B 27, 3894 (1967). 526. Pettersen, R.C., Cihonski, J.L., Young, F.R., and

Levenson, R.A., J. Chem. Soc. Chem. Commun., 1975, 370.

527. Pfluger, C.E., Acta Crystallogr., A 31, S 136 (1975). 528. Piciulo, P.L., Rupprecht, G., and Scheldt, W.R., J.

Amer. Chem. Soc, 96, 5293 (1974). 529. Pierpont, CG., and Eisenberg, R., Inorg. Chem., 11,

828 (1972). 530. Pierrot, M., Kern, R., and Weiss, R., Acta

Crystallogr., 20, 425 (1966). 531. Piret, P., Meunier-Piret, J., van Meerssche, M., and

King, G.S.D., Acta Crystallogr., 19, 78 (1965). 532. Piron, J., Piret, P., and van Meerssche, M., Bull.

Soc. Chim. Belg., 76, 505 (1967). 533. Piron, J., Piret, P., Meunier-Piret, J., and van

Meerssche, M., Bull. Soc. Chim. Belg., 78, 121 (1969). 534. Poling, M., and van der Helm, D., Amer. Cryst. Assoc,

Spring Meeting 1974, Berkeley (Calif.), Abstracts, p.lll.

535. Polynova, T.N., Bokii, N.G., and Porai-Koshits, M.A., Zh. Strukt. Khim., 6, 878 (1965); J. Struct. Chem., 6, 841 (1965).

536. Powell, H.M., and Ewens, R.V.G., J. Chem. Soc., 1939, 286.

537. Powell, H.M., and Bartindale, G.W.R., J. Chem. Soc, 1945, 799.

538. Prout, C.K., and Wiseman, T.J., J. Chem. Soc, 1964, 497.

539. Que, L., Jr., Bobrik, M.A., Ibers, J.A., and Holm, R.H., J. Amer. Chem. Soc, 96, 4168 (1974).

540. Rae, A.I.M., Chem. Commun., 1967, 1245. 541. Radonovich, L.J., Bloom, A., and Hoard, J.L., J. Amer.

Chem. Soc, 94, 2073 (1972). 542. Raper, G., and McDonald, W.S., J. Chem. Soc. A, 1971,

3430. 543. Reeves, L.W., Can. J. Chem., 38, 736 (1960). 544. Reid, K.I.G., and Paul, I.C., J. Chem. Soc. D, Chem.

Commun., 1970, 1106. 545. Restivo, R., and Einstein, F.W.B., Amer. Cryst. Assoc.,

Summer Meeting 1970, Ottawa, Abstracts, p.79. 546. Restivo, R., and Bryan, R.F., J. Chem. Soc. A, 1971,

3364. 547. Ricci, J.S., Eggers, CA., and Bernal, I., Inorg. Chim.

Acta, 6, 97 (1972). 548. Riley, P.E., and Davis, R.E., Amer. Cryst. Assoc,

25th Anniversary Meeting 1975, Charlottesville (Virgi­nia) Abstracts, p.11.

Page 109: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 109

549. Roberts, P.J., Penfold, B.R., and Trotter, J., Inorg. Chem., 9, 2137 (1970).

550. Robinson, W.T., Amer. Cryst. Assoc, Winter Meeting 1973, Gainesville (Florida), Abstracts, p.70.

551. Robinson, W.T., Rodley, G.A., and Jameson, G.B., Acta Crystallogr., A 31, S 49 (1975).

552. Robson, A., and Truter, M.R., J. Chem. Soc A, 1968, 794.

553. Rodrique, L., van Meerssche, M., and Piret, P., Acta Crystallogr., B 25, 519 (1969).

554. Sappa, E., Milone, L., and Andreetti, G.D., Inorg. Chim. Acta, 13, 67 (1975).

555. Scheldt, W.R., and Frisse, M.E., J. Amer. Chem. Soc, 97, 17 (1975).

556. Schlueter, A.W., and Gray, H.B., Amer.. Cryst. Assoc., Summer Meeting 1971, Ames (Iowa), Abstracts, p.41.

557. Schmitt, H.-J., and Ziegler, M.L., Z. Naturforsch., B 28, 508 (1973).

558. Schrauzer, G.N., Rabinowitz, H.N., Frank, J.A.K., and Paul, I.C., J. Amer. Chem. Soc, 92, 212 (1970).

559. Schrauzer, G.N., Glockner, P., Reid, K.I.G., and Paul, I.C., J. Amer. Chem. Soc, 92, 4479 (1970).

560. Schultz, A.J., and Eisenberg, R., Inorg. Chem., 12, 518 (1973).

561. Schunn, R.A., Fritchie, C.J., Jr., and Prewitt, C.T., Inorg. Chem., 5, 892 (1966).

562. Semion, V.A., and Struchkov, Yu.T., Zh. Strukt. Khim., 10, 88 (1969); J. Struct. Chem., 10, 80 (1969).

563. Semion, V.A., and Struchkov, Yu.T., Zh. Strukt. Khim., 10, 664 (1969); J. Struct. Chem., 10, 563 (1969).

564. Sequeira, A., and Bernal, I., J. Cryst. Mol. Struct., 3, 157 (1973).

565. Shklober, V.E., Skripkin, V.V., Gusev, A.I., and Struchkov, Yu.T., Zh. Strukt. Khim., 13, 744 (1972); J. Struct. Chem., 13, 698 (1972).

566. Shriver, D.F., Lehman, D., and Strope, D., J. Amer. Chem. Soc, 97, 1594 (1975).

567. Siebert, W., Augustin, G., Full, R., Krüger, C., and Tsay, Y.-H., Angew. Chem., 87, 286 (1975); Angew. Chem. Int. Ed. Engl., 14, 262 (1975).

568. Singh, P., Clearfield, A., and Bernal, I., J. Coord. Chem., 1, 29 (1971).

569. Skarstad, P., Janse-van Vuuren, P., Meinwald, J., and Hughes, R.E., J. Chem. Soc. Perkins Trans. II, 1975, 88.

570. Smith, D.L., and Dahl, L.F., J. Amer. Chem. Soc, 84, 1743 (1962).

571. Smith, H.W., Svetich, G.W., and Lingafelter, E.C.,

Page 110: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

110 Carl Kruger et al.

Amer. Cryst. Assoc., Summer Meeting 1973, Storrs (Connecticut), Abstracts, p.174.

572. Smith, M.B., and Bau, R., J. Amer. Chem. Soc, 95, 2388 (1973).

573. Snow, M.R., and Ibers, J.A., Inorg. Chem., 12, 249 (1973).

574. S0tofte, I., and Rasmussen, S.E., Acta Chem. Scand., 21, 2028 (1967).

575. Sproul, G.D., and Stucky, G.D., Inorg. Chem., 11, 1647 (1972).

576. Starovskii, O.V., and Struchkov, Yu.T., Zh. Strukt. Khim., 5, 257 (1964); J. Struct. Chem., 5, 231 (1964).

577. Stephens, F.S., J. Chem. Soc. Dalton Trans., 1972, 2257.

578. Stephens, F.S., J. Chem. Soc. A, 1970, 1722. 579. Stone, A., and Fleischer, E.B., J. Amer. Chem. Soc,

90, 2735 (1968). 580. Stork-Blaisse, B.A., Verschoor, G.C., and Romers, C ,

Acta Crystallogr., B 28, 2445 (1972). 581. Struchkov, Yu.T., Dokl. Akad. Nauk. SSSR, Fiz. Khim.,

110, 67 (1956). 582. Sweet, R.M., Fritchie, C.J., Jr., and Schunn, R.A.,

Inorg. Chem., 6, 749 (1967). 583. Takahashi, K., Iwanami, M., Tsai, A., Chang, P.L.,

Harlow, R.L., Harris, L.E., McCaskie, J.E., Pluger, C.E., and Dittmer, D.C., J. Amer. Chem. Soc, 95, 6113 (1973).

584. Takenaka, A., Sasada, Y., Watanabe, E.-i., Ogoshi, H., and Yoshida, Z.-i., Chem. Letters, 1972, 1235.

585. Tasker, P.A., and Fleischer, E.B., J. Amer. Chem. Soc, 92, 7072 (1970).

586. Taylor, N.J., Paik, H.N., Chieh, P.C., and Carty, A.J., J. Organometal. Chem., 87, C 31 (1975).

587. Templeton, D.H., Zalkin, A., and Ueki, T., Acta Crystallogr., 21, A 154 (1966).

588. Terzis, A., and Rivest, R., Inorg. Chem., 12, 2132 (1973).

589. Thomas, J.T., Robertson, J.H., and Cox, E.G., Acta Crystallogr., 11, 599 (1958).

590. Todd, L.J., Paul, I.C., Little, J.L., Welcker, P.S., and Peterson, C.R., J. Amer. Chem. Soc, 90, 4489 (1968).

591. Treichel, P.M., Dean, W.K., and Calabrese, J.C., Inorg. Chem., 12, 2908 (1973).

592. Treichel, P.M., Johnson, J.W., and Calabrese, J.C., J. Organometal. Chem., 88, 215 (1975).

593. Trinh-Toan, and Dahl, L.F., J. Amer. Chem. Soc, 93, 2654 (1971).

Page 111: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

Structure, Bonding in Organic Iron Compounds 111

594. Trinh-Toan, Fehlhammer, W.P., and Dahl, L.F., J. Amer. Chem. Soc, 94, 3389 (1973).

595. Trotter, J., Acta Crystallogr., 11, 355 (1958). 596. Trotter, J., and MacDonald, A.C., Acta Crystallogr.,

21, 359 (1966). 597. Trotter, J., and Williston, C.S., J. Chem. Soc. A,

1967, 1379. 598. Troup, J.M., Frenz, B.A., and Cotton, F.A., Amer.

Cryst. Assoc, Winter Meeting 1973, Gainesville (Florida), Abstracts, p.41.

599. Vahrenkamp, H., J. Organometal. Chem., 63, 399 (1973). 600. Di Vaira, M., and Orioli, P.L., Acta Crystallogr.,

B 24, 1269 (1968). 601. Vergamini, P.J., Ryan, R.R., and Kubas, G.J., Amer.

Cryst. Assoc., Winter Meeting 1973, Gainesville (Florida), Abstracts, p.45.

602. Waite, M.G., and Sim, G.A., J. Chem. Soc. A, 1971, 1009.

603. Wang, A.H.-J., Paul, I.C., and Schrauzer, G.N., J. Chem. Soc. Chem. Commun., 1972, 736.

604. Wang, A.H.-J., Paul, I.e., and Aumann, R., J. Organometal. Chem., 69, 301 (1974).

605. Watanabe, Y., and Yamahata, K., Sei. Pap. Inst. Phys. Chem. Res., Tokyo, 64, 71 (1970).

606. Weaver, J., and Woodward, P., J. Chem. Soc. A, 1971, 3521.

607. Weaver, J., and Woodward, P., J. Chem. Soc. Dalton Trans., 1973, 1439.

60S. Weber, H.P., and Bryan, R.F., J. Chem. Soc. A, 1967, 182.

609. Wei, C.H., and Dahl, L.F., Inorg. Chem., 4, 1 (1965). 610. Wei, C.H., and Dahl, L.F., Inorg. Chem., 4, 493 (1965). 611. Wei, C.H., Wilkes, G.R., Treichel, P.M., and Dahl,

L.F., Inorg. Chem., 5, 900 (1966). 612. Wei, C.H., and Dahl, L.F., J. Amer. Chem. Soc, 91,

1351 (1969). 613. Wester, D., and Palenik, G.J., J. Amer. Chem. Soc,

95, 6505 (1973). 614. Wheatley, P.J., in Dunitz, J.D., and Ibers, J.A.(Eds.),

Perspectives in Structural Chemistry, Vol.1, Wiley, New York 1967, p.l.

615. Wheelock, K.S., Nelson, J.H., Cusachs, L.C., and Jonassen, H.B., J. Amer. Chem. Soc, 92, 5110 (1970).

616. Whitesides, T.H., Slaven, R.W., and Calabrese, J.C., Inorg. Chem., 13, 1895 (1974).

617. Whiting, D.A., Cryst. Struct. Comm., 1, 379 (1972). 618. Wilford, J.B., Smith, N.O., and Powell, H.M., J.

Chem. Soc. A, 1968, 1544.

Page 112: The Organic Chemistry of Iron || STRUCTURE AND BONDING IN ORGANIC IRON COMPOUNDS

112 Carl Kruger et al.

619. Willis, B.T.M., Acta Crystallogr., 13, 1088 (1960). 620. Williston, C.S., Dissert. Abstr., B 28, 2801 (1968). 621. Wong, Y.S., Paik, H.N., Chieh, P.C., and Carty, A.J.,

J. Chem. Soc Chem. Commun., 1975, 309. 622. Woodhouse, D.I., Sim, G.A., and Sime, J.G., J. Chem.

Soc. Dalton Trans., 1974, 1331. 623. Yannoni, N.F., Krukonis, A.P., and Silverman, J.,

Amer. Cryst. Assoc, Summer Meeting 1970, Ottawa, Abstracts, p.80.

624. Yamamoto, Y., Aoki, K., and Yamazaki, H., J. Amer. Chem. Soc, 96, 2647 (1974).

625. Yasuda, N., Kai, Y., Yasuoka, N., Kasai, N., and Kakudo, M., J. Chem. Soc. Chem. Commun., 1972, 157.

626. Zalkin, A., Templeton, D.H., and Hopkins, T.E., J. Amer. Chem. Soc, 87, 3988 (1965).

627. Zalkin, A., Forrester, J.D., and Templeton, D.H., J. Amer. Chem. Soc, 88, 1810 (1966).

628. Zalkin, A., Templeton, D.H., and Ueki, T., Inorg. Chem., 12, 1641 (1973).

629. Ziegler, M.L., Angew. Chem., 80, 239 (1968); Angew. Chem. Int. Ed. Engl., 7, 222 (1968).

630. Zimmer, J.-C, and Huber, M., C.R. Acad. Sei. Ser. C, 267, 1685 (1968).

631. Hursthouse, M.B., and Rodesiler, P.F., J. Chem. Soc. Dalton Trans., 1972, 2100.