The KEK-All Ion Accelerator (KEK-AIA) · 2π/ω Acceleration region dB/dt Acceleration voltage...

28
1 The KEK-All Ion Accelerator (KEK-AIA) Tanuja Dixit The Graduate University for Advanced Studies, SOKENDAI High Energy Accelerator Research Organization, KEK, JAPAN

Transcript of The KEK-All Ion Accelerator (KEK-AIA) · 2π/ω Acceleration region dB/dt Acceleration voltage...

  • 1

    The KEK-All Ion Accelerator (KEK-AIA)

    Tanuja Dixit

    The Graduate University for Advanced Studies, SOKENDAIHigh Energy Accelerator Research Organization, KEK, JAPAN

  • 2

    Contents• Introduction of Induction synchrotron

    concept and its POP experiment• Motivation for AIA• KEK-PS Booster modification for AIA• Acceleration scenario in the AIA• New cell – 2 μsec long pulse cell• Gate control system • Summary

  • 3

    Induction Synchrotron Concept

    RF VoltageRF Bunch t

    Voltage with gradient

    Combined function

    Acceleration/Confinement

    Pulse voltage

    For Acceleration

    For Confinement

    Separate function

    t

    t

    Induction SynchrotronRF Synchrotron

    Accelerator Ring

    Induction cellfor acceleration

    Induction cellfor confinement

    Proton or Ion bunch

    Vbarrier Vacctime time

    Super-bunch

    for proton and other ions

    Difference between RF Synchrotron and Induction Synchrotron seen in Phase-space

    ΔE

    Induction SynchrotronRF Synchrotron

    RF bunch Super-bunch

    allowed maximumenergy spread

    This space is not available for acceleration.

  • 4

    Induction acceleration system and controls for POP

    Cross-sectionof vacuum pipe

    Induction Cell for Acceleration

    Induction Cell for Confinement

    KEK-PS

    SwitchingPower Supply

    Bunch Monitor

    SwitchingPower Supply

    DSP(1GHz)

    DSP(720MHz)

    Transmission line Transmission line

    ΔR Monitor

    Proton Beam

    PatternController 1

    PatternController 2

    P2 Trigger Delay

    Δp/p>0

    S1S1

    S2S2

    S3S3

    S4S4

    dI/dtdI/dt=0=0

    1)1)

    2)2)

    Gate pulseV

  • 5

    Injection(500MeV)

    Start of acceleration End of acceleration

    (6GeV)

    beam position (10 mm/div)

    Beam current (1012/div) acceleration voltagepulse (1kV/div)

    bunch signal K.Takayama et al., “Experimental Demonstration of theInduction Synchrotron”, Phys. Rev. Lett. 98, 054801 (2007)

    P2 (just start of accel.) P2+400 msec near end of accel. (6GeV)

    Movie of the POP experimentT.Dixit et.al. “ Adiabatic damping of bunch length in Induction Synchrotron” NIM-A 582 (2007)

  • 6

    Contents• Introduction of Induction synchrotron

    concept and its POP experiment• Motivation for AIA• KEK-PS Booster modification for AIA• Acceleration scenario in AIA• New cell – 2 μsec long pulse cell• Gate control system • Goal and time table

  • 7

    from the Induction Synchrotron to All-ion Accelerators

    Stable performance of the switching power supply from ~0Hz to 1MHzMaster trigger signal for the switching P.S. can be generated from a circulating beam signal

    Allow to accelerate even quite slow particles

    All-ion accelerators

    A single circular strong-focusing machine can accelerate from proton to uranium,maybe including cluster ions.

    from the experimental demonstration of induction acceleration in the KEK-PS

    K.Takayama, K.Torikai, Y.Shimosaki, and Y.Arakida, “All Ion Accelerators”, (Patent 3896420, PCT/JP2006/308502), and J. of Appl. Phys. 101, 063304 (2007)

    almost injector-freefor a low intensity beam

    β 1

    1 MHz

    100 kHz

    10 kHz

    1 kHz

    100 Hz

    10 Hz

    frf=f0

    fswitch=f0

    f0(revolution)=cβ/C

    Synchronizationcondition

  • 8

    Contents• Introduction of Induction synchrotron

    concept and its POP experiment• Motivation for AIA• KEK-PS Booster modification for AIA• Acceleration scenario in AIA• New cell – 2 μsec long pulse cell• Gate control system • Summary

  • 9

    Monitor system

    Low current bunch monitor

    Low current ΔR monitor

    Main Magnet/Orbit

    Low field operationCOD correction

    Source/ Injection groupECR ion source

    200 keV beam lineElectrostatic kickerExtraction kicker

    AIAAcceleration system

    Acceleration scenarioNew cell

    Gate control system

    AIA Working Groups

  • 10

    AIA using KEK PS-Booster

    extraction kicker #1 - #3

    injection bump & stripping foil

    extraction kicker #4

    extraction bump 1

    extraction bump 2

    low field extraction septum high field

    extraction septum

    LINAC Debuncher

    RF

    RF KEK 12GeV-PS 500 MeV Booster Rapid Cycle Synchrotron

    40 MeV BTL

    Booster Ring

    beam monitors

    two kickers

    low field septum

    Induction Cells

    AIA Induction Synchrotron

    Booster Ring Ion Source

    Electric Kicker for injection

    Induction Cells

    "8" figure back-leg coils

    Parameters Value

    Magnetic flux, Bmin 0.02916 T

    Magnetic flux, Bmax 0.8583 TFrequency of magnet ramping

    10 Hz

    Bending radius, ρ 3.3 m

    Circumference, C0 37.71 m

    Maximum acceleration voltage

    3.24 kV

    40Argon

    E. Nakamura, Y.Arakida, T.Dixit, et.al, Proceedings of PAC07, Albuquerque, NM USA

  • 11

    Booster Synchrotron –A Rapid cycle synchrotron

    t

    Bmax

    2π/ω

    Acceleration region

    dB/dt

    Acceleration voltage requirement always transient from 0 V to peak to 0 V

    Solution - Pulse density control

    0( )

    acdB tV C

    dtρ=

    ( ) cosacdc ac B

    B t B B tω= −

    Vac=3.24 kV (peak)

    for 10 Hz operation

    Near injection, revolution time is large therefore longer flat acceleration voltage pulse is required

    3.02.52.01.51.00.50.0

    kV

    50403020100 msec

    2

    4

    681

    2MHz

    Designed Acc. VoltageRevolution Frequency

  • 12

    Pulse density control• Trigger based system – acceleration voltage

    pulses can be controlled using trigger

    Acceleration voltage requirement is dynamic ∝ dB/dt

    Induction acceleration cells output is fixed

    Pulse density control

    Δt

    t

    ac cellV dt VΔ

    =∫V

    t

  • 13

    Contents• Introduction of Induction synchrotron

    concept and its POP experiment• Motivation for AIA• KEK-PS Booster modification for AIA• Acceleration scenario in AIA• New cell – 2 μsec long pulse cell• Gate control system • Summary

  • 14

    Confinement voltage

    ACCELERATION

    SCHEME for AIA

    Bunch

    Acceleration voltage

    Prerequisites

    •4 usec injected bunch

    •2.2 kV and 2 usec Acceleration voltage pulse

    •1.8 kV and 250nsec confinement voltage pulse

    4

    3

    2

    1

    0

    kV

    50403020100msec

    Vac(des.)Vcell

    III

    IIIIV

  • 15

    4

    3

    2

    1

    0

    kV

    50403020100msec

    Vac(des.)Vcell

    III

    IIIIV

    Confinement voltage

    ACCELERATION

    SCHEME for AIA

    Bunch

    Acceleration voltage

  • 16

    4

    3

    2

    1

    0

    kV

    50403020100msec

    Vac(des.)Vcell

    III

    IIIIV

    Confinement voltage

    ACCELERATION

    SCHEME for AIA

    Bunch

    Acceleration voltage

  • 17

    4

    3

    2

    1

    0

    kV

    50403020100msec

    Vac(des.)Vcell

    III

    IIIIV

    Confinement voltage

    ACCELERATION

    SCHEME for AIA

    Bunch

    Acceleration voltage

  • 18

    Simulation resultsNo. of particles – 10000 Initial beam Δp/p - ± 0.4% (assumption)

    Momentum aperture - ± 1% Barrier voltage - 1.8 kVBeam survival & Energy gain Vs Time

    100

    80

    60

    40

    20

    0

    Sur

    viva

    l %

    50403020100time msec

    60

    40

    20

    0

    Energy MeV/au

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Nor

    mal

    ised

    Em

    ittan

    ce

    5040302010jitter in nsec

    Normalised emittance vs jitter

    100

    80

    60

    40

    20

    0

    Surv

    ival

    in %

    50403020100jitter amplitude in nsec

    Survival vs jitter amplitude

  • 19

    Simulation results

    Pulse density Vs Time

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Puls

    e de

    nsity

    1.00.80.60.40.2time msec

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Puls

    e de

    nsity

    2.01.81.61.41.21.0time msec

  • 20

    Argon Ion Longitudinal phase space plots

    -1.0

    -0.5

    0.5

    1.0 dp/p %

    -1000

    0

    1000

    V

    -4x10-6 -2 0 2 4sec

    At injection

    Blue- Barrier voltage pulse Green-Acceleration voltage pulse Red- Particles

    -1.0

    -0.5

    0.5

    1.0 dp/p %

    -2000

    -1000

    0

    1000

    2000

    V

    -2x10-6 -1 0 1 2 sec

    At 5.11 ms

    -1.0

    -0.5

    0.5

    1.0 dp/p %

    -4000

    -2000

    0

    2000

    4000

    V

    -400x10-9 -200 0 200 400sec

    At 20 ms

    -1.0

    -0.5

    0.5

    1.0dp/p %

    -2000

    0

    2000

    V

    -150x10-9 -100 -50 0 50 100 150 sec

    At 40 ms

  • 21

    New requirement-

    •Long acceleration voltage pulse

    •Dynamic allocation of induction acceleration cells using DSP’s

    Designed Acceleration voltage , Revolution Frequency Vs Time

    3.02.52.01.51.00.50.0

    kV

    50403020100 msec

    2

    4

    681

    2MHz

    Designed Acc. VoltageRevolution Frequency

  • 22

    Contents

    • Introduction of Induction synchrotron concept and its POP experiment

    • Motivation for AIA• KEK-PS Booster modification for AIA• Acceleration scenario in AIA• New cell – 2 μsec long pulse cell• Gate control system • Summary

  • 23

    Existing Induction acceleration cell

    •Maximum rep-rate of 1 MHz

    •Maximum output voltage of 2 kV with a droop of 15% in 250 ns

    ( ) exp where Z is total impedance (Cell + Matching resistance) L is Inductance of Cell

    droop Zt L∝ −

    10

    5

    0

    -5

    -10

    A

    7.5x10-67.06.56.05.5 sec

    V0 C0 Z0(120Ω)

    Z

    R C

    L

    Induction CellV1

    Switching P.S.

    C11

    C12

    C13

    C14

    Transmission line(60m long)

    (210 Ω matching resistance)

    CT

    V2

  • 24

    SPICE SIMULATION

    V0 C0 Z0(120Ω)

    Z

    R C

    L

    Induction CellV1

    Switching P.S.

    C11

    C12

    C13

    C14 CT

    V2R11

    R12

    R13

    R14

    DC P.S.

    Equivalent circuit

    • Flatness due to multiple reflections

    •Undershoot because of downstream circuit conditions

    1000

    800

    600

    400

    200

    0

    -200

    V

    4x10-63210sec

    SPICEMeas.

    1 TURN to 2 TURN

    Demerit -

    Secondary voltage becomes HALF

    Vs=Vp/2

    1 turn cell

    L=110 μH

    C=260 pF

    R=330 Ω

    Rm=220 Ω

    2 turn cell

    L=440 μH

    C=180 pF

    R=1280 Ω

    Rm=134 Ω

  • 25

    Wire Measurement

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    V

    6x10-6420-2 sec

    Serial trigger Math signal

    -2000

    0

    2000

    V

    13x10-612111098sec

    Parallel trigger Math signal

    GND Stand

    Insulation

    Ch1 Ch2

    OSC

    Pb1

    V+V-

    Wire

    Wire experiment setup for 3 cells (2 turn)

    InsulationGND Stand

    Insulation

    Ch1 Ch2

    OSC

    Pb1

    V+V-

    Wire

    Wire experiment setup for 3 cells (2 turn)

    Insulation

  • 26

    Contents• Introduction of Induction synchrotron

    concept and its POP experiment• Motivation for AIA• KEK-PS Booster modification for AIA• Acceleration scenario in AIA• New cell – 2 μsec long pulse cell• Gate control system• Summary

  • 27

    5 DSP’s needs to be synchronized for start and stop of generation of SET/RESET pulse of acceleration

    DSP usage

    DC power supply

    DSP Optical trigger unit

    Switching Power Supply

    Power lineAcceleration cell

    beam simulator

    Gate control

  • 28

    Contents• Introduction of Induction synchrotron concept and its POP experiment• Motivation for AIA• KEK-PS Booster modification for AIA• Acceleration scenario in AIA• New cell – 2 μsec long pulse cell• Gate control system • Summary

    beamcommission

    modification works•beam line

    •replacement of RF by IAS

    ECR ion source cluster ion source

    Accelerator09082007Year

    beamcommission

    modification works•beam line

    •replacement of RF by IAS

    ECR ion source cluster ion source

    Accelerator09082007Year

    The KEK-All Ion Accelerator �(KEK-AIA)ContentsInduction Synchrotron Concept Induction acceleration system and controls for POP ContentsContentsAIA using KEK PS-BoosterPulse density controlContentsSimulation resultsSimulation resultsNew requirement-ContentsContentsDSP usage Contents