The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By...

15
Chapter 20 Additional Topics in Trigonometry Section 20.6 The Inverse Trigonometric Functions

Transcript of The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By...

Page 1: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

Chapter 20 Additional Topics in Trigonometry

● Section 20.6 The Inverse Trigonometric Functions

Page 2: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

By solving the equation y = sin x for the independent variable x,

we will get:

x = sin -1 y, −π2

≤x≤π2

Page 3: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

By solving the equation y = sin x for the independent variable x,

we will get:

x = sin -1 y, −π2

≤x≤π2

-1

-0.5

0

0.5

1

-3π/2 -π -π/2 0 π/2 π 3π/2 2π-2π

x

ysin(x)

-360° -270° -180° -90° 90° 180° 270° 360°

Page 4: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

By solving the equation y = sin x for the independent variable x,

we will get:

x = sin -1 y, −π2

≤x≤π2

-1

-0.5

0

0.5

1

-3π/2 -π -π/2 0 π/2 π 3π/2 2π-2π

x

ysin(x)

-360° -270° -180° -90° 90° 180° 270° 360°

Recall that:a function is invertible if it is one-to-one, i.e. there is only one value y for each value x.

Page 5: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

≤sin−1 x≤π2

0≤cos−1 x≤π

-1

-0.5

0

0.5

1

-3π/2 -π -π/2 0 π/2 π 3π/2 2π-2π

x

ycos(x) sin(x)

-360° -270° -180° -90° 90° 180° 270° 360°

y

x

sin−1 x

cos−1 x

Page 6: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

< tan−1 y≤π2

0<cot−1 y≤π

π2

−π2

−π 0 ππ2

0 −π2

−π π

tan x cot x

Page 7: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

< tan−1 x≤π2 0<cot−1 x≤π

−π2

0

π

π2

Page 8: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

≤csc−1 y≤π2

0≤sec−1 y≤π

csc−1 y≠0 sec−1 y≠π2

π2

−π2 0−π π

Page 9: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

≤csc−1 x≤π2

0≤sec−1 x≤π

csc−1 x≠0 sec−1 x≠π2

π2

π2

0

−π2

π

Page 10: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

≤sin−1 x≤π2

0≤cos−1 x≤π

−π2

≤csc−1 x≤π2

csc−1 x≠0

0≤sec−1 x≤πsec−1 x≠π

2

−π2

< tan−1 x≤π2

0<cot−1 x≤π

Example 1: Find

(a)

(b)

(c)

sin−1 √32

sec−1√2

sin−1−√32

Page 11: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

Values of Trigonometric Functions

Page 12: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

≤sin−1 x≤π2

0≤cos−1 x≤π

−π2

≤csc−1 x≤π2

csc−1 x≠0

0≤sec−1 x≤πsec−1 x≠π

2

−π2

< tan−1 x≤π2

0<cot−1 x≤π

Example 2: Evaluate

(a)

(b)

sin ( tan−1√3)

sec (cos−1−0.5)

Page 13: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

≤sin−1 x≤π2

0≤cos−1 x≤π

−π2

≤csc−1 x≤π2

csc−1 x≠0

0≤sec−1 x≤πsec−1 x≠π

2

−π2

< tan−1 x≤π2

0<cot−1 x≤π

Example 3: Evaluate sin (2 tan−1 2)

Page 14: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

≤sin−1 x≤π2

0≤cos−1 x≤π

−π2

≤csc−1 x≤π2

csc−1 x≠0

0≤sec−1 x≤πsec−1 x≠π

2

−π2

< tan−1 x≤π2

0<cot−1 x≤π

Example 4: Find the exact value of x for

tan−1 x=sin−1(25)

Page 15: The Inverse Trigonometric Functions · 2020. 4. 22. · The Inverse Trigonometric Functions By solving the equation y = sin x for the independent variable x, we will get: x = sin

The Inverse Trigonometric Functions

−π2

≤sin−1 x≤π2

0≤cos−1 x≤π

−π2

≤csc−1 x≤π2

csc−1 x≠0

0≤sec−1 x≤πsec−1 x≠π

2

−π2

< tan−1 x≤π2

0<cot−1 x≤π

Example 5: Solve the equation

for x.1− y=cos−1(1−x)