The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace...

38
The interpretation of broad diffuse maxima using superspace crystallography Introducing disorder in superspace Ella M. Schmidt and Reinhard B. Neder Institute for Crystallography and Structural Physics, FAU Erlangen-Nürnberg March 20, 2019

Transcript of The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace...

Page 1: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

The interpretation of broad diffuse maxima usingsuperspace crystallography

Introducing disorder in superspace

Ella M. Schmidt and Reinhard B. NederInstitute for Crystallography and Structural Physics, FAU Erlangen-NürnbergMarch 20, 2019

Page 2: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Diffraction pattern of a modulated structure

-4 -2 0 2 4

h

Inte

nsi

ty q

Bragg reflections: h ∈ ZSatellite reflections: h±mq h,m ∈ Z

a

λ = 1q

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 1

Page 3: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Introduction to superspace crystallography

• Describe long-range ordered, modulated structure withfew parameters

• Modulation wave vector q = (α,β ,γ) Paul B. KlarFZU Prague

1-dimensional piano structure in two-dimensional superspace:

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 2

Page 4: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Introduction to superspace crystallography

Changing α ↔ Changing real space periodicity

Paul B. KlarFZU Prague

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 3

Page 5: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Introduction to superspace crystallography

as1

as2

qa1

A

Modulation function:u+(a) =Acos(2πqa)

• q determines periodicity ofmodulation function

• A determines the amplitude ofthe modulation function

• Modulation functions foroccupancy and/or displacement

• Real space≡ cut throughdirect superspace

• Reciprocal space≡ projectionof reciprocal superspace

-4 -2 0 2 4

h

Intensity q

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 4

[1] Van Smaalen, Sander. Incommensurate crystallography. Vol. 21. Oxford University Press, 2007.[2] Janssen, Ted, Gervais Chapuis, and Marc De Boissieu. Aperiodic Crystals: From Modulated Phases to Quasicrystals: Structure and Properties.

Oxford University Press, 2018.

Page 6: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Introduction to superspace crystallography

as1

as2

qa1

A

Modulation function:u+(a) =Acos(2πqa)

• q determines periodicity ofmodulation function

• A determines the amplitude ofthe modulation function

• Modulation functions foroccupancy and/or displacement

• Real space≡ cut throughdirect superspace

• Reciprocal space≡ projectionof reciprocal superspace

-4 -2 0 2 4

hIntensity q

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 4

[1] Van Smaalen, Sander. Incommensurate crystallography. Vol. 21. Oxford University Press, 2007.[2] Janssen, Ted, Gervais Chapuis, and Marc De Boissieu. Aperiodic Crystals: From Modulated Phases to Quasicrystals: Structure and Properties.

Oxford University Press, 2018.

Page 7: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(1+1)D ordered superspace

as1

as2

qa1

A

Modulation function:u+(a) =Acos(2πqa)

as1

as2

qa1

−A

Modulation function:u−(a) =−Acos(2πqa)

→ Sharp satellite reflections at h±q.→ u+(a) and u−(a) cannot be distinguished experimentally.

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 5

Page 8: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(1+1)D disordered superspace

as1

as2

qa1

A

• Phase domains in superspace• Positive correlation along as1

• Warren-Cowley short rangeorder parameter αs

1 > 0

• What happens to the sharpsatellite reflections?

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 6

Page 9: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(1+1)D disordered superspace

as1

as2

qa1

A

• Phase domains in superspace• Positive correlation along as1

• Warren-Cowley short rangeorder parameter αs

1 > 0• What happens to the sharp

satellite reflections?

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 6

Page 10: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(1+1)D disordered superspace - Occupational disorder

• Au/Ag 1:1 crystal

• q =√

77 ≈ 0.378

• Modulation functions:p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered superspace structure with• positive correlation

(αs1 = 0.85)

• mp+ = mp− = 0.5

-4 -2 0 2 4

h

Intensity q

q =√77

αs1 = 0.85

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 7

Page 11: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(1+1)D disordered superspace - Occupational disorder

• Au/Ag 1:1 crystal

• q =√

77 ≈ 0.378

• Modulation functions:p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered superspace structure with• positive correlation

(αs1 = 0.85)

• mp+ = mp− = 0.5

-4 -2 0 2 4

h

Intensity q

q =√77

αs1 = 0.85

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 7

Page 12: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(1+1)D disordered superspace - Peak position tuning

1D occupational disorder• p+(a) = 0.5+ 0.5cos(2πqa)• p−(a) = 0.5−0.5cos(2πqa)

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 8

Page 13: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(1+1)D disordered superspace - Peak width tuning

1D occupational disorder• p+(a) = 0.5+ 0.5cos(2πqa)• p−(a) = 0.5−0.5cos(2πqa)

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 9

Page 14: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D superspace for occupational modulations

• 2D basic structure• q = (σ1,σ2)

• Internal dimension as3 perpendicularto external, physical spacespanned by a1 and a2

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 10

as3

as2

as1

a1

a2σ2

σ1

Page 15: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Occupational disorder

• 2D basic structure• q = (σ1,σ2)

• Modulation functions:

p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 11

as3

as2

as1

a1

a2σ2

σ1

Page 16: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Occupational disorder

• Au/Ag 1:1 crystal• Plane space group p1• One atom per unit-cell at (0,0)

• q =(

12 ,√

77

)• Modulation functions:

p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered super spacestructure with• positive correlations along as1

and as2:αs(1,0) = 0.7

αs(0,1) = 0.5

• mp+ = mp− = 0.5

-2 -1 0 1 2-2

-1

0

1

2

h

k

0

max

Intensity

+q

−q

as3

as2

as1

a1

a2σ2

σ1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 12

Page 17: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Occupational disorder

• Au/Ag 1:1 crystal• Plane space group p1• One atom per unit-cell at (0,0)

• q =(

12 ,√

77

)• Modulation functions:

p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered super spacestructure with• positive correlations along as1

and as2:αs(1,0) = 0.7

αs(0,1) = 0.5

• mp+ = mp− = 0.5

-2 -1 0 1 2-2

-1

0

1

2

h

k

0

max

Intensity

+q

−q

as3

as2

as1

a1

a2σ2

σ1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 12

Page 18: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Occupational disorder

• Au/Ag 1:1 crystal• Plane space group p1• One atom per unit-cell at (0,0)

• q =(

12 ,√

77

)• Modulation functions:

p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered super spacestructure with• positive correlations along as1

and as2:αs(1,0) = 0.7

αs(0,1) = 0.5

• mp+ = mp− = 0.5

-2 -1 0 1 2-2

-1

0

1

2

h

k

0

max

Intensity

+q

−q

as3

as2

as1

a1

a2σ2

σ1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 12

Page 19: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Occupational disorder

• Au/Ag 1:1 crystal• Plane space group p1• One atom per unit-cell at (0,0)

• q =(

12 ,√

77

)• Modulation functions:

p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered super spacestructure with• positive correlations along as1

and as2:αs(1,0) = 0.7

αs(0,1) = 0.5

• mp+ = mp− = 0.5

-2 -1 0 1 2-2

-1

0

1

2

h

k

0

max

Intensity

+q

−q

as3

as2

as1

a1

a2σ2

σ1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 12

Page 20: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Diffuse rods

• Au/Ag 1:1 crystal• Plane space group p1• One atom per unit-cell at (0,0)

• q =(

12 ,√

77

)• Modulation functions:

p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered super spacestructure with• positive correlation along as2:

αs(1,0) = 0.0

αs(0,1) = 0.95

• mp+ = mp− = 0.5

-2 -1 0 1 2-2

-1

0

1

2

h

k

0

max

Intensity

+q

−q

as3

as2

as1

a1

a2σ2

σ1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 13

Page 21: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Diffuse rods

• Au/Ag 1:1 crystal• Plane space group p1• One atom per unit-cell at (0,0)

• q =(

12 ,√

77

)• Modulation functions:

p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered super spacestructure with• positive correlation along as2:

αs(1,0) = 0.0

αs(0,1) = 0.95

• mp+ = mp− = 0.5

-2 -1 0 1 2-2

-1

0

1

2

h

k

0

max

Intensity

+q

−q

as3

as2

as1

a1

a2σ2

σ1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 13

Page 22: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Diffuse rods

• Au/Ag 1:1 crystal• Plane space group p1• One atom per unit-cell at (0,0)

• q =(

12 ,√

77

)• Modulation functions:

p+(a) = 0.5+ 0.5cos(2πqa)p−(a) = 0.5−0.5cos(2πqa)

• Create disordered super spacestructure with• positive correlation along as2:

αs(1,0) = 0.0

αs(0,1) = 0.95

• mp+ = mp− = 0.5

-2 -1 0 1 2-2

-1

0

1

2

h

k

0

max

Intensity

+q

−q

as3

as2

as1

a1

a2σ2

σ1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 13

Page 23: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pg1( 1

2 ,β )Site A: (+0.1,0.0)Site B: (−0.1,0.5)

• Bragg-reflection condition:0k : k = 2n

• q =(

12 ,√

77

)• αs

(1,0) = αs(0,1) = 0.7

• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

Site A: pA(aA) = 0.5±0.5cos(2π(+σ1a1A +σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(−σ1a1B +σ2a2B + a2B))

→ Diffuse satellites obey reflection condition as well

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 14

Page 24: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pg1( 1

2 ,β )Site A: (+0.1,0.0)Site B: (−0.1,0.5)

• Bragg-reflection condition:0k : k = 2n

• q =(

12 ,√

77

)• αs

(1,0) = αs(0,1) = 0.7

• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

Site A: pA(aA) = 0.5±0.5cos(2π(+σ1a1A +σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(−σ1a1B +σ2a2B + a2B))

→ Diffuse satellites obey reflection condition as well

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 14

Page 25: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pg1( 1

2 ,β )Site A: (+0.1,0.0)Site B: (−0.1,0.5)

• Bragg-reflection condition:0k : k = 2n

• q =(

12 ,√

77

)• αs

(1,0) = αs(0,1) = 0.7

• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

Site A: pA(aA) = 0.5±0.5cos(2π(+σ1a1A +σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(−σ1a1B +σ2a2B + a2B))

→ Diffuse satellites obey reflection condition as well

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 14

Page 26: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pg1( 1

2 ,β )Site A: (+0.1,0.0)Site B: (−0.1,0.5)

• Bragg-reflection condition:0k : k = 2n

• q =(

12 ,√

77

)• αs

(1,0) = αs(0,1) = 0.7

• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

Site A: pA(aA) = 0.5±0.5cos(2π(+σ1a1A +σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(−σ1a1B +σ2a2B + a2B))

→ Diffuse satellites obey reflection condition as well

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 14

Page 27: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pg1( 1

2 ,β )Site A: (+0.1,0.0)Site B: (−0.1,0.5)

• Bragg-reflection condition:0k : k = 2n

• q =(

12 ,1+

√7

7

)• αs

(1,0) = αs(0,1) = 0.7

• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

qold

Site A: pA(aA) = 0.5±0.5cos(2π(+σ1a1A +σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(−σ1a1B +σ2a2B + a2B))

→ Diffuse satellites obey reflection condition as well→ "Virtual" satellite reflection condition 0k : k = 2n+ 1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 15

Page 28: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pg1( 1

2 ,β )Site A: (+0.1,0.0)Site B: (−0.1,0.5)

• Bragg-reflection condition:0k : k = 2n

• q =(

12 ,1+

√7

7

)• αs

(1,0) = αs(0,1) = 0.7

• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

qold

Site A: pA(aA) = 0.5±0.5cos(2π(+σ1a1A +σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(−σ1a1B +σ2a2B + a2B))

→ Diffuse satellites obey reflection condition as well→ "Virtual" satellite reflection condition 0k : k = 2n+ 1

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 15

Page 29: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pm1(0,β )s0

with internal translationSite A: (+0.1,0.0)Site B: (−0.1,0.0)

• Satellite-reflection conditiona:hk : h 6= 0

• q =(

0,√

77

)• α(1,0) = α(0,1) = 0.7• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

Site A: pA(aA) = 0.5±0.5cos(2π(σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(σ2a2B +

12))

→ Diffuse satellites obey superspace reflection condition as well

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 16

a For occupational modulation functions with only one cosine-term.

Page 30: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pm1(0,β )s0

with internal translationSite A: (+0.1,0.0)Site B: (−0.1,0.0)

• Satellite-reflection conditiona:hk : h 6= 0

• q =(

0,√

77

)• α(1,0) = α(0,1) = 0.7• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

Site A: pA(aA) = 0.5±0.5cos(2π(σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(σ2a2B +

12))

→ Diffuse satellites obey superspace reflection condition as well

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 16

a For occupational modulation functions with only one cosine-term.

Page 31: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

(2+1)D disordered superspace - Reflection condition

• Basic structure shows symmetry• Superspace group pm1(0,β )s0

with internal translationSite A: (+0.1,0.0)Site B: (−0.1,0.0)

• Satellite-reflection conditiona:hk : h 6= 0

• q =(

0,√

77

)• α(1,0) = α(0,1) = 0.7• Modulation functions:

-2 -1 0 1 20

1

2

3

4

h

k

0

0.1· max

Intensity

q

Site A: pA(aA) = 0.5±0.5cos(2π(σ2a2A))Site B: pB(aB) = 0.5±0.5cos(2π(σ2a2B +

12))

→ Diffuse satellites obey superspace reflection condition as well

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 16

a For occupational modulation functions with only one cosine-term.

Page 32: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Possible applications

Diffuse rods showing ’extinctionconditions’

Sharp satellites on top of diffusescattering

Phase transitions: Diffuse scattering turns into sharp satellite reflections

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 17

Page 33: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Possible applications

Diffuse rods showing ’extinctionconditions’

Sharp satellites on top of diffusescattering

Phase transitions: Diffuse scattering turns into sharp satellite reflections

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 17

Page 34: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Possible applications

Diffuse rods showing ’extinctionconditions’

Sharp satellites on top of diffusescattering

Phase transitions: Diffuse scattering turns into sharp satellite reflections

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 17

Page 35: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Summary

• Disordered superspace models allow to characterize width and position ofdiffuse maxima independently

• Unified model for diffuse maxima at different positions in reciprocal space• Superspace symmetry allows direct access to extinction rules

Outlook• Application to different disordered systems• Expansion to (3+ d)D• Possible peak shape tuning by introducing size-effect like relaxations?• Possibility of curved diffuse features?

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 18

Page 36: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Summary

• Disordered superspace models allow to characterize width and position ofdiffuse maxima independently

• Unified model for diffuse maxima at different positions in reciprocal space• Superspace symmetry allows direct access to extinction rules

Outlook• Application to different disordered systems• Expansion to (3+ d)D

• Possible peak shape tuning by introducing size-effect like relaxations?• Possibility of curved diffuse features?

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 18

Page 37: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Summary

• Disordered superspace models allow to characterize width and position ofdiffuse maxima independently

• Unified model for diffuse maxima at different positions in reciprocal space• Superspace symmetry allows direct access to extinction rules

Outlook• Application to different disordered systems• Expansion to (3+ d)D• Possible peak shape tuning by introducing size-effect like relaxations?• Possibility of curved diffuse features?

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 18

Page 38: The interpretation of broad diffuse maxima using ...€¦ · Introduction to superspace crystallography. a. s1. a. s2. q a. 1. A. Modulation function: u + (a)= A. cos(2. p. qa) q.

Acknowledgments

FAU ErlangenReinhard NederMarvin BerlinghofJohannes DallmannStefan DiezMatthias Weißer

FZU Prague/EHU BilbaoPaul B. Klar

FundingFAU Office for Gender and DiversityBavarian Equal OpportunitiesSponsorship

Ella Schmidt | FAU Erlangen | Disorder in Superspace March 20, 2019 19