The GERDA Experiment Beta Decay GERDA UZH Contribution Outlook The GERDA Experiment Francis Froborg...

12
Double Beta Decay GERDA UZH Contribution Outlook The GERDA Experiment Francis Froborg University of Zurich CHIPP 2008, Lausanne 08. September 2008 Francis Froborg The GERDA Experiment

Transcript of The GERDA Experiment Beta Decay GERDA UZH Contribution Outlook The GERDA Experiment Francis Froborg...

Double Beta Decay GERDA UZH Contribution Outlook

The GERDA Experiment

Francis Froborg

University of Zurich

CHIPP 2008, Lausanne08. September 2008

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

Double Beta Decay

2νββ

(Z ,A)→ (Z + 2,A) + 2e− + 2νe

∆L = 0˛T 2ν

1/2

˛−1= G2ν(Qββ ,Z) |M2ν |2 ∼ 1020y

3

!"

"

n

n p

p

e

e

!

W

W

"#

n

n p

p

e

eW

W

x

FIG. 2 Feynman Diagrams for !!(2") (left) and !!(0")(right).

where G0!(Q"" , Z) is the phase space factor for the emis-sion of the two electrons, M0! is another nuclear matrixelement, and !m""" is the “e!ective” Majorana mass ofthe electron neutrino:

!m""" # |!

k

mkU2ek| . (3)

Here the mk’s are the masses of the three light neutrinosand U is the matrix that transforms states with well-defined mass into states with well-defined flavor (e.g.,electron, mu, tau). Equation 2 gives the !!(0") rateif the exchange of light Majorana neutrinos with lefthanded interactions is responsible. Other mechanismsare possible (see Sections III and IV.D), but they requirethe existence of new particles and/or interactions in ad-dition to requiring that neutrinos be Majorana particles.Light-neutrino exchange is therefore, in some sense, the“minima” mechanism and the most commonly consid-ered.

That neutrinos mix and have mass is now acceptedwisdom. Oscillation experiments constrain U fairly well

— Table I summarizes our current knowledge — but theydetermine only the di!erences between the squares of themasses mk (e.g., m2

2 $m21) rather than the masses them-

selves. It will turn out that !!(0") is among the bestways of getting at the masses (along with cosmology and!-decay measurements), and the only practical way toestablish that neutrinos are Majorana particles.

To extract the e!ective mass from a measurement, itis customary to define a nuclear structure factor FN #G0!(Q"" , Z)|M0! |2m2

e, where me is the electron mass.(The quantity FN is sometimes written as Cmm.) Thee!ective mass !m""" can be written in terms of the cal-culated FN and the measured half life as

!m""" = me[FNT 0!1/2]

!1/2 . (4)

The range of mixing matrix values given below in Ta-ble I, combined with calculated values for FN , allow usto estimate the half-life a given experiment must be ableto measure in order to be sensitive to a particular valueof !m""". Published values of FN are typically between10!13 and 10!14 y!1. To reach a sensitivity of !m"""%0.1 eV, therefore, an experiment must be able to observea half life of 1026 $ 1027 y. As we discuss later, at thislevel of sensitivity an experiment can draw importantconclusions whether or not the decay is observed.

The most sensitive limits thus far are from theHeidelberg-Moscow experiment: T 0!

1/2(76Ge) & 1.9 '

1025 y (Baudis et al., 1999), the IGEX experiment:T 0!

1/2(76Ge) & 1.6 ' 1025 y (Aalseth et al., 2002a, 2004),

and the CUORICINO experiment T 0!1/2(

130Te) & 3.0 '1024 y (Arnaboldi et al., 2005, 2007). These experimentscontained 5 to 10 kg of the parent isotope and ran forseveral years. Hence, increasing the half-life sensitivityby a factor of about 100, the goal of the next generationof experiments, will require hundreds of kg of parent iso-tope and a significant decrease in background beyond thepresent state of the art (roughly 0.1 counts/(keV kg y).

It is straightforward to derive an approximate an-alytical expression for the half-life to which an ex-periment with a given level of background is sensi-tive (Avignone et al., 2005):

T 0!1/2(n#) =

4.16 ' 1026y

n#

" #a

W

#

$

Mt

b"(E). (5)

Here n# is the number of standard deviations correspond-ing to a given confidence level (C.L.) — a CL of 99.73%corresponds to n# = 3 — the quantity # is the event-detection and identification e#ciency, a is the isotopicabundance, W is the molecular weight of the source ma-terial, and M is the total mass of the source. The in-strumental spectral-width "(E), defining the signal re-gion, is related to the energy resolution at the energyof the expected !!(0") peak, and b is the specific back-ground rate in counts/(keV kg y), where the mass is that

0νββ

(Z ,A)→ (Z + 2,A) + 2e−

∆L = 2˛T 0ν

1/2

˛−1= G0ν(Qββ ,Z) |M0ν |2 〈m2

ββ〉 ∼ 1025y

3

!"

"

n

n p

p

e

e

!

W

W

"#

n

n p

p

e

eW

W

x

FIG. 2 Feynman Diagrams for !!(2") (left) and !!(0")(right).

where G0!(Q"" , Z) is the phase space factor for the emis-sion of the two electrons, M0! is another nuclear matrixelement, and !m""" is the “e!ective” Majorana mass ofthe electron neutrino:

!m""" # |!

k

mkU2ek| . (3)

Here the mk’s are the masses of the three light neutrinosand U is the matrix that transforms states with well-defined mass into states with well-defined flavor (e.g.,electron, mu, tau). Equation 2 gives the !!(0") rateif the exchange of light Majorana neutrinos with lefthanded interactions is responsible. Other mechanismsare possible (see Sections III and IV.D), but they requirethe existence of new particles and/or interactions in ad-dition to requiring that neutrinos be Majorana particles.Light-neutrino exchange is therefore, in some sense, the“minima” mechanism and the most commonly consid-ered.

That neutrinos mix and have mass is now acceptedwisdom. Oscillation experiments constrain U fairly well

— Table I summarizes our current knowledge — but theydetermine only the di!erences between the squares of themasses mk (e.g., m2

2 $m21) rather than the masses them-

selves. It will turn out that !!(0") is among the bestways of getting at the masses (along with cosmology and!-decay measurements), and the only practical way toestablish that neutrinos are Majorana particles.

To extract the e!ective mass from a measurement, itis customary to define a nuclear structure factor FN #G0!(Q"" , Z)|M0! |2m2

e, where me is the electron mass.(The quantity FN is sometimes written as Cmm.) Thee!ective mass !m""" can be written in terms of the cal-culated FN and the measured half life as

!m""" = me[FNT 0!1/2]

!1/2 . (4)

The range of mixing matrix values given below in Ta-ble I, combined with calculated values for FN , allow usto estimate the half-life a given experiment must be ableto measure in order to be sensitive to a particular valueof !m""". Published values of FN are typically between10!13 and 10!14 y!1. To reach a sensitivity of !m"""%0.1 eV, therefore, an experiment must be able to observea half life of 1026 $ 1027 y. As we discuss later, at thislevel of sensitivity an experiment can draw importantconclusions whether or not the decay is observed.

The most sensitive limits thus far are from theHeidelberg-Moscow experiment: T 0!

1/2(76Ge) & 1.9 '

1025 y (Baudis et al., 1999), the IGEX experiment:T 0!

1/2(76Ge) & 1.6 ' 1025 y (Aalseth et al., 2002a, 2004),

and the CUORICINO experiment T 0!1/2(

130Te) & 3.0 '1024 y (Arnaboldi et al., 2005, 2007). These experimentscontained 5 to 10 kg of the parent isotope and ran forseveral years. Hence, increasing the half-life sensitivityby a factor of about 100, the goal of the next generationof experiments, will require hundreds of kg of parent iso-tope and a significant decrease in background beyond thepresent state of the art (roughly 0.1 counts/(keV kg y).

It is straightforward to derive an approximate an-alytical expression for the half-life to which an ex-periment with a given level of background is sensi-tive (Avignone et al., 2005):

T 0!1/2(n#) =

4.16 ' 1026y

n#

" #a

W

#

$

Mt

b"(E). (5)

Here n# is the number of standard deviations correspond-ing to a given confidence level (C.L.) — a CL of 99.73%corresponds to n# = 3 — the quantity # is the event-detection and identification e#ciency, a is the isotopicabundance, W is the molecular weight of the source ma-terial, and M is the total mass of the source. The in-strumental spectral-width "(E), defining the signal re-gion, is related to the energy resolution at the energyof the expected !!(0") peak, and b is the specific back-ground rate in counts/(keV kg y), where the mass is that

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

Signature

Measuring the energy of both electrons

2νββ: Continuous energy spectrum

0νββ: Sharp peak at Q value of decay

Q = Ee1 + Ee2 − 2me

Background reduction essential because of small half lives

Schechter & Valle (1982): Measuring 0νββ ⇒ ν Majorana particle

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

Heidelberg-Moscow ExperimentThe Claim

5 HPGe crystals with 71.7 kg y

Peak at Q value:

T 0ν1/2 = 1.2× 1025y (4σ)

〈mββ〉 = 0.44 eV

Problem: Confidence depends on backgroundmodel and energy region selectedfor analysis

⇒ New experiments with higher sensitivityneeded

Evidenz für den Neutrinolosen Doppelbetazerfall?

• Peak beim Q-Wert des Zerfalls

• Periode 1990-2003: 28.8 ± 6.9 Ereignisse

• Periode 1995-2003: 23.0 ± 5.7 Ereignisse

! 4.1- 4.2 ! Evidenz

• ‘Evidenz’ unklar

! muss mit neuen, empfindlicheren Experimenten getestet werden

T1/2

0!= 1.2 "10

25yr

214Bi2010.7 keV 214Bi

2016.2 keV

2021.8 keV

214Bi2052.9 keV

0nußß decay?

?

H.V.Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198

m!e = 0.44 eV (0.3"1.24) eV

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

The GERmanium Detector Array (GERDA)

Naked high purity 76Ge crystals placed in LAr

Phase I

8 Hd-Mo & IGEX crystals (15 kg y)

Background goal: 10−2 cts/kg/keV/y

⇒ T 0ν1/2

> 2.0× 1025 y

〈mββ〉< 0.33 eV

Phase II

Phase I + 14 new segmented crystals(100 kg y)

Background goal: 10−3 cts/kg/keV/y

⇒ T 0ν1/2

> 14× 1025 y

〈mββ〉< 0.13 eV

Empfindlichkeit von Doppelbetaexperimenten

90

% p

rob

. lo

we

r li

mit

T1/2

[1

025 y

r]Exposure [kg yr]

B = 10-2 Ereignisse/(kg keV yr)

B = 10-3 Ereignisse/(kg keV yr)

Klapdor-Kleingrothaus HM Signal

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

The Collaboration

ITALYINFN LNGS, AssergiUniv. di Milano Biocca eINFNUniv, di Padova e INFN

RUSSIAINR, Moscow

ITEP Physics, MoscowKurchatov Institute,

MoscowJINR Dubna

GERMANYMPI HeidelbergMPI MunchenTU DresdenUniversitat Tubingen

POLANDJagiellonian University,

Cracow

BELGIUMIRMM, Geel

SWITZERLANDUniversity of Zurich

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

Overview

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

The Calibration SystemUZH Contribution

Boundary Conditions

Fixed positions of the sources

Maximum radius ∼ 4cm

Minimum weight ∼ 4kg

Park position in the lock of the detector

Goals

Sort and strength of calibration sources

Collimator material and geometry

Efficiency of energy deposition in eachdetector

Efficiency of pulse shape analysis

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

Progress & Plans

Status of Calibration

Monte Carlo Simulations with MaGe

Simulations with different collimator geometriesand the naked source in parking position running

Single detector analysis

Most promising: 228Th or 56Co as source and Cuor W as collimator material

Future Plans

Comparison of Monte Carlo results withmeasurements at a test facility in Zurich

Installing and testing system at LNGS

228-Th, W, new geometry

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 0 sc_0

Entries 103618Mean 434.7RMS 581.9

228-Th, Tungsten, Det 0

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 1 sc_1

Entries 79053Mean 509.2RMS 634.4

228-Th, Tungsten, Det 1

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 2 sc_2

Entries 104411Mean 433.2RMS 580.6

228-Th, Tungsten, Det 2

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 3 sc_3

Entries 63566Mean 396.9RMS 542.9

228-Th, Tungsten, Det 3

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 4 sc_4

Entries 51260Mean 451.3RMS 584

228-Th, Tungsten, Det 4

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 5 sc_5

Entries 108484Mean 437.5RMS 587.2

228-Th, Tungsten, Det 5

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 6 sc_6

Entries 104310Mean 433.1RMS 581.8

228-Th, Tungsten, Det 6

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 7 sc_7

Entries 78721Mean 507.6RMS 632.2

228-Th, Tungsten, Det 7

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 8 sc_8

Entries 104771Mean 434.7RMS 581.8

228-Th, Tungsten, Det 8

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 9 sc_9

Entries 119297Mean 455.6RMS 594.3

228-Th, Tungsten, Det 9

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 10 sc_10

Entries 119726Mean 453.4RMS 594.5

228-Th, Tungsten, Det 10

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 11 sc_11

Entries 70937Mean 421.8RMS 564

228-Th, Tungsten, Det 11

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 12 sc_12

Entries 123875Mean 451.1RMS 594

228-Th, Tungsten, Det 12

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 13 sc_13

Entries 121634Mean 460.4RMS 600.5

228-Th, Tungsten, Det 13

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 14 sc_14

Entries 120207Mean 460RMS 601.5

228-Th, Tungsten, Det 14

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 15 sc_15

Entries 112122Mean 503.3RMS 630.2

228-Th, Tungsten, Det 15

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 16 sc_16

Entries 342692Mean 468.2RMS 618.2

228-Th, Tungsten, Det 16

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 17 sc_17

Entries 114955Mean 556.8RMS 675.5

228-Th, Tungsten, Det 17

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 18 sc_18

Entries 343498Mean 468.2RMS 618.9

228-Th, Tungsten, Det 18

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 19 sc_19

Entries 236973Mean 435.5RMS 583.3

228-Th, Tungsten, Det 19

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 20 sc_20

Entries 86900Mean 487.9RMS 619.6

228-Th, Tungsten, Det 20

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 21 sc_21

Entries 350194Mean 471.7RMS 622.7

228-Th, Tungsten, Det 21

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 22 sc_22

Entries 343568Mean 467.3RMS 617.8

228-Th, Tungsten, Det 22

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 23 sc_23

Entries 115072Mean 558.6RMS 675.5

228-Th, Tungsten, Det 23

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 24 sc_24

Entries 342786Mean 467.4RMS 618.5

228-Th, Tungsten, Det 24

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 25 sc_25

Entries 359354Mean 476.5RMS 623.4

228-Th, Tungsten, Det 25

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 26 sc_26

Entries 360533Mean 474.8RMS 621.6

228-Th, Tungsten, Det 26

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 27 sc_27

Entries 218285Mean 439.8RMS 584.4

228-Th, Tungsten, Det 27

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 28 sc_28

Entries 366861Mean 473.2RMS 620

228-Th, Tungsten, Det 28

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 29 sc_29

Entries 362261Mean 478.4RMS 624.9

228-Th, Tungsten, Det 29

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

410

228-Th, Tungsten, Det 30 sc_30

Entries 359938Mean 476.8RMS 623.9

228-Th, Tungsten, Det 30

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

310

228-Th, Tungsten, Det 31 sc_31

Entries 176260Mean 554.9RMS 671.8

228-Th, Tungsten, Det 31

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 32 sc_32

Entries 16435Mean 301.7RMS 416.8

228-Th, Tungsten, Det 32

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 33 sc_33

Entries 14829Mean 365.2RMS 480.2

228-Th, Tungsten, Det 33

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 34 sc_34

Entries 16767Mean 309.3RMS 435.9

228-Th, Tungsten, Det 34

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 35 sc_35

Entries 10285Mean 280RMS 396.8

228-Th, Tungsten, Det 35

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 36 sc_36

Entries 10190Mean 321.4RMS 435.6

228-Th, Tungsten, Det 36

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 37 sc_37

Entries 17773Mean 297.7RMS 410

228-Th, Tungsten, Det 37

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 38 sc_38

Entries 16633Mean 302.4RMS 418.7

228-Th, Tungsten, Det 38

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 39 sc_39

Entries 15000Mean 357.5RMS 472.4

228-Th, Tungsten, Det 39

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 40 sc_40

Entries 16422Mean 301.9RMS 415.2

228-Th, Tungsten, Det 40

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 41 sc_41

Entries 18543Mean 334.4RMS 443.4

228-Th, Tungsten, Det 41

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 42 sc_42

Entries 19254Mean 328.1RMS 440.3

228-Th, Tungsten, Det 42

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 43 sc_43

Entries 11814Mean 300.5RMS 411.1

228-Th, Tungsten, Det 43

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 44 sc_44

Entries 19944Mean 323RMS 435

228-Th, Tungsten, Det 44

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 45 sc_45

Entries 19157Mean 335.9RMS 444.1

228-Th, Tungsten, Det 45

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 46 sc_46

Entries 18634Mean 338.6RMS 456.2

228-Th, Tungsten, Det 46

E[keV]0 500 1000 1500 2000 2500

cts

/kg

/d/k

eV

1

10

210

228-Th, Tungsten, Det 47 sc_47

Entries 20416Mean 351.4RMS 458.2

228-Th, Tungsten, Det 47

1

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

Phase II detectorsThe Zurich Test Facility

18 fold segmentation: 6(φ)× 3(z)

Possibility to distinguish betweensingle site events (signal) and multisite events (background)

First spectra taken with core and all18 segments

Test facility in Zurich underconstruction

GERDA PHASE II

• 14 76Ge, 18-fach segmentierte Detektoren + 8 Phase-I Detektoren, 40 kg

• Messzeit = 150 kg yr, Untergrund: B =10-3 Ereignisse/(kg keV yr)

!Erreichbare Empfindlichkeit:

T1/2

0!> 15 "10

25yr

m!e < 0.11eV

!! - Ereignis Gamma-Untegrund

MSE, " ~ cmSSE, " ~ mm

Segmentierung: 6 (#) x 3 (z)

durch Segmentierung:

Unterscheidung von Einzeln- (SSE) und

Mehrfach- (MSE) Wechselwirkungen

$

SSE

GERDA PHASE II

• 14 76Ge, 18-fach segmentierte Detektoren + 8 Phase-I Detektoren, 40 kg

• Messzeit = 150 kg yr, Untergrund: B =10-3 Ereignisse/(kg keV yr)

!Erreichbare Empfindlichkeit:

T1/2

0!> 15 "10

25yr

m!e < 0.11eV

!! - Ereignis Gamma-Untegrund

MSE, " ~ cmSSE, " ~ mm

Segmentierung: 6 (#) x 3 (z)

durch Segmentierung:

Unterscheidung von Einzeln- (SSE) und

Mehrfach- (MSE) Wechselwirkungen

$

MSE

GERDA PHASE II

• 14 76Ge, 18-fach segmentierte Detektoren + 8 Phase-I Detektoren, 40 kg

• Messzeit = 150 kg yr, Untergrund: B =10-3 Ereignisse/(kg keV yr)

!Erreichbare Empfindlichkeit:

T1/2

0!> 15 "10

25yr

m!e < 0.11eV

!! - Ereignis Gamma-Untegrund

MSE, " ~ cmSSE, " ~ mm

Segmentierung: 6 (#) x 3 (z)

durch Segmentierung:

Unterscheidung von Einzeln- (SSE) und

Mehrfach- (MSE) Wechselwirkungen

$

GERDA PHASE II

• 14 76Ge, 18-fach segmentierte Detektoren + 8 Phase-I Detektoren, 40 kg

• Messzeit = 150 kg yr, Untergrund: B =10-3 Ereignisse/(kg keV yr)

!Erreichbare Empfindlichkeit:

T1/2

0!> 15 "10

25yr

m!e < 0.11eV

!! - Ereignis Gamma-Untegrund

MSE, " ~ cmSSE, " ~ mm

Segmentierung: 6 (#) x 3 (z)

durch Segmentierung:

Unterscheidung von Einzeln- (SSE) und

Mehrfach- (MSE) Wechselwirkungen

$Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

Status of the Experiment!"#$ %$&'(')*+, -+$+.,/'0/+12/34567/4892(*:2;+/

<6%/=>>?@/-+'AB1'#:@/=>>?C/7.DC/=E

<;,+$##$+*';/'0/-.92(,+(.A+.(2/';D'*;D

• F#2$;/5''://

*;,+$##$+*';/G*##/,+$(+/

2;H/'0/+1*,/I2$(C

• J'AB/,I,+2:K/

%2A1$;*A$#/

*;0($,+(.A+.(2/0'(/

H29#'I:2;+/'0/

H2+2A+'(,/*;+'/+12/

A(I',+$+/,A12H.#2H/

0'(/2$(#I/;28+/I2$(C

Francis Froborg The GERDA Experiment

Double Beta Decay GERDA UZH Contribution Outlook

Timetable

Phase I Phase II

September 2008 Purification of enriched GeJanuary 2009 Myon veto Tests for crystal growing

(IKZ, Berlin)April 2009 Clean room and lockJuli 2009 Start data taking Natural Ge test detectors

December 2009 Crystal growing of enriched GeMarch 2010 76Ge detectors (Canberra, France)

Juli 2010 Start data taking

Francis Froborg The GERDA Experiment