The Checklist - 4. Projection - Application: multivariate Markov chains
-
Upload
arpm-advanced-risk-and-portfolio-management -
Category
Economy & Finance
-
view
39 -
download
3
Embed Size (px)
Transcript of The Checklist - 4. Projection - Application: multivariate Markov chains

The “Checklist” > 4. Projection > Application: multivariate Markov chainsUnivariate Markov chain
Univariate Markov chain
• pt→t+∆t = time-inhomogeneous transition matrix (39.50)
• State-dependent partition of the [0, 1] interval
ut→t+∆t(st) = [0, cumsum(δ(st)′pt→t+∆t)] (4.32)
state at time t canonical base vector (22.62)
• Next-step function (4.8)
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(St)) = s (4.33)
shock ∼ Unif ([0, 1]) (4.34)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsUnivariate Markov chain
Univariate Markov chain
• pt→t+∆t = time-inhomogeneous transition matrix (39.50)
• State-dependent partition of the [0, 1] interval
ut→t+∆t(st) = [0, cumsum(δ(st)′pt→t+∆t)] (4.32)
state at time t canonical base vector (22.62)
• Next-step function (4.8)
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(St)) = s (4.33)
shock ∼ Unif ([0, 1]) (4.34)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsUnivariate Markov chain
Univariate Markov chain
• pt→t+∆t = time-inhomogeneous transition matrix (39.50)
• State-dependent partition of the [0, 1] interval
ut→t+∆t(st) = [0, cumsum(δ(st)′pt→t+∆t)] (4.32)
state at time t canonical base vector (22.62)
• Next-step function (4.8)
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(St)) = s (4.33)
shock ∼ Unif ([0, 1]) (4.34)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsUnivariate Markov chain
Univariate Markov chain
• pt→t+∆t = time-inhomogeneous transition matrix (39.50)
• State-dependent partition of the [0, 1] interval
ut→t+∆t(st) = [0, cumsum(δ(st)′pt→t+∆t)] (4.32)
state at time t canonical base vector (22.62)
• Next-step function (4.8)
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(St)) = s (4.33)
shock ∼ Unif ([0, 1]) (4.34)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsUnivariate Markov chain
Univariate Markov chain
• pt→t+∆t = time-inhomogeneous transition matrix (39.50)
• State-dependent partition of the [0, 1] interval
ut→t+∆t(st) = [0, cumsum(δ(st)′pt→t+∆t)] (4.32)
state at time t canonical base vector (22.62)
• Next-step function (4.8)
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(St)) = s (4.33)
shock ∼ Unif ([0, 1]) (4.34)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsUnivariate Markov chain
Rating migrations over different time horizons
• Starting rating “BBB” (st0 = 4)• Time-homogeneous matrix p∆t, with ∆t = 1 year• 50 simulated paths with monitoring times{t0, t1 ≡ t0 + ∆t, . . . , t20 ≡ t0 + 20 years}
Projected pdf= δ(st0 )′p20y
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Connection with the Merton model
Next-step function for the Merton model (mirrors Section 2.3.5):
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(lt→t+∆t)) = s (4.35)
F losst→t+∆t(C
losst→t+∆t) ∼ Unif ([0, 1]) (4.36)
partition of [0, 1]: [0, . . . , ut→t+∆t(lt→t+∆t, s), . . . , 1]
F losst→t+∆t(−qlosst+∆t→t+2∆t(1− u(s))− ln(vliabt+2∆t/v
liabt+∆t)− lt→t+∆t) (4.37)
The shock in (4.36) can be expressed as
εt→t+∆t ≡ gt(−Cequityt→t+∆t) (4.38)
cdf of −Cequityt→t+∆t (⇒ increasing)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Connection with the Merton model
Next-step function for the Merton model (mirrors Section 2.3.5):
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(lt→t+∆t)) = s (4.35)
F losst→t+∆t(C
losst→t+∆t) ∼ Unif ([0, 1]) (4.36)
partition of [0, 1]: [0, . . . , ut→t+∆t(lt→t+∆t, s), . . . , 1]
F losst→t+∆t(−qlosst+∆t→t+2∆t(1− u(s))− ln(vliabt+2∆t/v
liabt+∆t)− lt→t+∆t) (4.37)
The shock in (4.36) can be expressed as
εt→t+∆t ≡ gt(−Cequityt→t+∆t) (4.38)
cdf of −Cequityt→t+∆t (⇒ increasing)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Connection with the Merton model
Next-step function for the Merton model (mirrors Section 2.3.5):
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(lt→t+∆t)) = s (4.35)
F losst→t+∆t(C
losst→t+∆t) ∼ Unif ([0, 1]) (4.36)
partition of [0, 1]: [0, . . . , ut→t+∆t(lt→t+∆t, s), . . . , 1]
F losst→t+∆t(−qlosst+∆t→t+2∆t(1− u(s))− ln(vliabt+2∆t/v
liabt+∆t)− lt→t+∆t) (4.37)
The shock in (4.36) can be expressed as
εt→t+∆t ≡ gt(−Cequityt→t+∆t) (4.38)
cdf of −Cequityt→t+∆t (⇒ increasing)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Connection with the Merton model
Next-step function for the Merton model (mirrors Section 2.3.5):
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(lt→t+∆t)) = s (4.35)
F losst→t+∆t(C
losst→t+∆t) ∼ Unif ([0, 1]) (4.36)
partition of [0, 1]: [0, . . . , ut→t+∆t(lt→t+∆t, s), . . . , 1]
F losst→t+∆t(−qlosst+∆t→t+2∆t(1− u(s))− ln(vliabt+2∆t/v
liabt+∆t)− lt→t+∆t) (4.37)
The shock in (4.36) can be expressed as
εt→t+∆t ≡ gt(−Cequityt→t+∆t) (4.38)
cdf of −Cequityt→t+∆t (⇒ increasing)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Connection with the Merton model
Next-step function for the Merton model (mirrors Section 2.3.5):
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(lt→t+∆t)) = s (4.35)
F losst→t+∆t(C
losst→t+∆t) ∼ Unif ([0, 1]) (4.36)
partition of [0, 1]: [0, . . . , ut→t+∆t(lt→t+∆t, s), . . . , 1]
F losst→t+∆t(−qlosst+∆t→t+2∆t(1− u(s))− ln(vliabt+2∆t/v
liabt+∆t)− lt→t+∆t) (4.37)
The shock in (4.36) can be expressed as
εt→t+∆t ≡ gt(−Cequityt→t+∆t) (4.38)
cdf of −Cequityt→t+∆t (⇒ increasing)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Connection with the Merton model
Next-step function for the Merton model (mirrors Section 2.3.5):
St+∆t = s|it ⇔ bucket(εt→t+∆t,ut→t+∆t(lt→t+∆t)) = s (4.35)
F losst→t+∆t(C
losst→t+∆t) ∼ Unif ([0, 1]) (4.36)
partition of [0, 1]: [0, . . . , ut→t+∆t(lt→t+∆t, s), . . . , 1]
F losst→t+∆t(−qlosst+∆t→t+2∆t(1− u(s))− ln(vliabt+2∆t/v
liabt+∆t)− lt→t+∆t) (4.37)
The shock in (4.36) can be expressed as
εt→t+∆t ≡ gt(−Cequityt→t+∆t) (4.38)
cdf of −Cequityt→t+∆t (⇒ increasing)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Next-step function with Merton dynamics
With dynamics for V assetst and V liab
t as in Example 2.20, variables be-come
C losst→t+∆t = C loss
∆t ∼ N ((σ2
2− µ)∆t, σ2∆t) i.i.d. (4.39)
ut→t+∆t(lt→t+∆t, s) = F loss∆t (−qloss∆t (1− u(s))− r∆t− lt→t+∆t) (4.40)
Projection of shocks
From the projected log-value of a stock {x(j)tm−1→tm ≡ ln v
stock ;(j)tm−1→tm}
jj=1
compute the projected shocks {ε(j)tm−1→tm ≡ gt(−cequity;(j)tm−1→tm)}jj=1
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsMultivariate Markov Chains
Multivariate Markov Chains
• Risk drivers Xt ≡ (X1,t, . . . , Xd,t)′ with values
Xd,t ∈ {x(1), . . . , x(s), . . . , x(s)}, d = 1, . . . , d (4.41)
• Xd,t determined by state Sd,t ⇒ Xd,t = x(Sd,t)
• Next-step function for each d-th entry
Sd,tm = s|itm−1 ⇔ Sd,tm = bucket(εi,tm−1→tm ,utm−1→tm(Stm−1))
(4.42)• each entry Xd driven by one single shock εi ∼ Unif ([0, 1]) =⇒ ı = d
• {εd,tm−1→tm}dd=1 not independent as simultaneous variables
⇒ εtm−1→tm ≡
ε1,tm−1→tm
·εd,tm−1→tm
·εd,tm−1→tm
∼ Copε;m (4.44)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsMultivariate Markov Chains
Multivariate Markov Chains
• Risk drivers Xt ≡ (X1,t, . . . , Xd,t)′ with values
Xd,t ∈ {x(1), . . . , x(s), . . . , x(s)}, d = 1, . . . , d (4.41)
• Xd,t determined by state Sd,t ⇒ Xd,t = x(Sd,t)
• Next-step function for each d-th entry
Sd,tm = s|itm−1 ⇔ Sd,tm = bucket(εi,tm−1→tm ,utm−1→tm(Stm−1))
(4.42)• each entry Xd driven by one single shock εi ∼ Unif ([0, 1]) =⇒ ı = d
• {εd,tm−1→tm}dd=1 not independent as simultaneous variables
⇒ εtm−1→tm ≡
ε1,tm−1→tm
·εd,tm−1→tm
·εd,tm−1→tm
∼ Copε;m (4.44)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsMultivariate Markov Chains
Multivariate Markov Chains
• Risk drivers Xt ≡ (X1,t, . . . , Xd,t)′ with values
Xd,t ∈ {x(1), . . . , x(s), . . . , x(s)}, d = 1, . . . , d (4.41)
• Xd,t determined by state Sd,t ⇒ Xd,t = x(Sd,t)
• Next-step function for each d-th entry
Sd,tm = s|itm−1 ⇔ Sd,tm = bucket(εi,tm−1→tm ,utm−1→tm(Stm−1))
(4.42)
• each entry Xd driven by one single shock εi ∼ Unif ([0, 1]) =⇒ ı = d
• {εd,tm−1→tm}dd=1 not independent as simultaneous variables
⇒ εtm−1→tm ≡
ε1,tm−1→tm
·εd,tm−1→tm
·εd,tm−1→tm
∼ Copε;m (4.44)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsMultivariate Markov Chains
Multivariate Markov Chains
• Risk drivers Xt ≡ (X1,t, . . . , Xd,t)′ with values
Xd,t ∈ {x(1), . . . , x(s), . . . , x(s)}, d = 1, . . . , d (4.41)
• Xd,t determined by state Sd,t ⇒ Xd,t = x(Sd,t)
• Next-step function for each d-th entry
Sd,tm = s|itm−1 ⇔ Sd,tm = bucket(εi,tm−1→tm ,utm−1→tm(Stm−1))
(4.42)• each entry Xd driven by one single shock εi ∼ Unif ([0, 1]) =⇒ ı = d
• {εd,tm−1→tm}dd=1 not independent as simultaneous variables
⇒ εtm−1→tm ≡
ε1,tm−1→tm
·εd,tm−1→tm
·εd,tm−1→tm
∼ Copε;m (4.44)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsMultivariate Markov Chains
Multivariate Markov Chains
• Risk drivers Xt ≡ (X1,t, . . . , Xd,t)′ with values
Xd,t ∈ {x(1), . . . , x(s), . . . , x(s)}, d = 1, . . . , d (4.41)
• Xd,t determined by state Sd,t ⇒ Xd,t = x(Sd,t)
• Next-step function for each d-th entry
Sd,tm = s|itm−1 ⇔ Sd,tm = bucket(εi,tm−1→tm ,utm−1→tm(Stm−1))
(4.42)• each entry Xd driven by one single shock εi ∼ Unif ([0, 1]) =⇒ ı = d
• {εd,tm−1→tm}dd=1 not independent as simultaneous variables
⇒ εtm−1→tm ≡
ε1,tm−1→tm
·εd,tm−1→tm
·εd,tm−1→tm
∼ Copε;m (4.44)
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsMultivariate Markov Chains
Joint rating migrations over different time horizons
• Two obligors with initial ratings “B” (s = 6) and “BBB” (s = 4)• Copε = tCop(ν,%2) (4.44)-(30.32), ν ≡ 10 and % = 0.7
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Merton model application
• Marginal d shocks in univariate case (4.35)
εd,tm−1→tm ≡ Flossd,tm−1→tm(C loss
d,tm−1→tm) ∼ Unif ([0, 1]) i.i.d. (4.45)
The shock in (4.36) can be expressed as
εd,tm−1→tm ≡ gd,m(−Cequityd,tm−1→tm) (4.46)
cdf of −Cequityd,tm−1→tm (⇒ increasing)
Copulas of εtm−1→tm and −Cequitytm−1→tm coincide
Copε;m
(30.4)≡ Cop−Cequity ;m
⇒ Correlation %2m can be estimated from the scenarios of −Cequity
Joint rating migrations with Merton model
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Merton model application
• Marginal d shocks in univariate case (4.35)
εd,tm−1→tm ≡ Flossd,tm−1→tm(C loss
d,tm−1→tm) ∼ Unif ([0, 1]) i.i.d. (4.45)
The shock in (4.36) can be expressed as
εd,tm−1→tm ≡ gd,m(−Cequityd,tm−1→tm) (4.46)
cdf of −Cequityd,tm−1→tm (⇒ increasing)
Copulas of εtm−1→tm and −Cequitytm−1→tm coincide
Copε;m
(30.4)≡ Cop−Cequity ;m
⇒ Correlation %2m can be estimated from the scenarios of −Cequity
Joint rating migrations with Merton model
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Merton model application
• Marginal d shocks in univariate case (4.35)
εd,tm−1→tm ≡ Flossd,tm−1→tm(C loss
d,tm−1→tm) ∼ Unif ([0, 1]) i.i.d. (4.45)
The shock in (4.36) can be expressed as
εd,tm−1→tm ≡ gd,m(−Cequityd,tm−1→tm) (4.46)
cdf of −Cequityd,tm−1→tm (⇒ increasing)
Copulas of εtm−1→tm and −Cequitytm−1→tm coincide
Copε;m
(30.4)≡ Cop−Cequity ;m
⇒ Correlation %2m can be estimated from the scenarios of −Cequity
Joint rating migrations with Merton model
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Merton model application
• Marginal d shocks in univariate case (4.35)
εd,tm−1→tm ≡ Flossd,tm−1→tm(C loss
d,tm−1→tm) ∼ Unif ([0, 1]) i.i.d. (4.45)
The shock in (4.36) can be expressed as
εd,tm−1→tm ≡ gd,m(−Cequityd,tm−1→tm) (4.46)
cdf of −Cequityd,tm−1→tm (⇒ increasing)
Copulas of εtm−1→tm and −Cequitytm−1→tm coincide
Copε;m
(30.4)≡ Cop−Cequity ;m
⇒ Correlation %2m can be estimated from the scenarios of −Cequity
Joint rating migrations with Merton model
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update

The “Checklist” > 4. Projection > Application: multivariate Markov chainsConnection with structural credit model
Merton model application
• Marginal d shocks in univariate case (4.35)
εd,tm−1→tm ≡ Flossd,tm−1→tm(C loss
d,tm−1→tm) ∼ Unif ([0, 1]) i.i.d. (4.45)
The shock in (4.36) can be expressed as
εd,tm−1→tm ≡ gd,m(−Cequityd,tm−1→tm) (4.46)
cdf of −Cequityd,tm−1→tm (⇒ increasing)
Copulas of εtm−1→tm and −Cequitytm−1→tm coincide
Copε;m
(30.4)≡ Cop−Cequity ;m
⇒ Correlation %2m can be estimated from the scenarios of −Cequity
Joint rating migrations with Merton model
ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Mar-27-2017 - Last update