Terzaghi Unsaturated Soil Mechanics (2007)

78
Unsaturated Soil Mechanics in Engineering Professor Delwyn G. Fredlund University of Saskatchewan Saskatoon, SK, Canada GeoFrontiers 2005, Austin, Texas Geo-Institute, ASCE January 23-26, 2005

Transcript of Terzaghi Unsaturated Soil Mechanics (2007)

Page 1: Terzaghi Unsaturated Soil Mechanics (2007)

Unsaturated Soil Mechanics in Engineering

Professor Delwyn G. FredlundUniversity of Saskatchewan

Saskatoon, SK, Canada

GeoFrontiers 2005, Austin, TexasGeo-Institute, ASCE

January 23-26, 2005

Page 2: Terzaghi Unsaturated Soil Mechanics (2007)

John Wiley & Sons, 1943

• Karl Terzaghi elevated Soil Mechanics from an Art to a Science

• Effective Stress, (σ – uw), for describing mechanical behavior of saturated soils

• Chapter 14 “Capillary Forces”(Also Chapter 15)

• Biot (1941) addressed consolidation of unsaturated soils

• Concepts from Agriculture (Baver, 1940)

Chiu Chung Fai
附注
1.Terzaghi 将土力学提升为一门科学 2.有效应力描述饱和土的力学性状 3."理论土力学"第十四章毛细管作用 4. Biot (1941) 提出非饱和土的固结问题 5.概念来自农学(Baver, 1940)
Page 3: Terzaghi Unsaturated Soil Mechanics (2007)

Unsaturated Soil Mechanics Problems Described in “Theoretical Soil

Mechanics” by K. Terzaghi (1943)

Chiu Chung Fai
附注
Terzaghi的理论土力学提到关于非饱和土力学问题
Page 4: Terzaghi Unsaturated Soil Mechanics (2007)

Unsaturated Soil Mechanics in Engineering

• Introduction• Challenges to Implementation• Description of the Stress State• Fundamental Constitutive Relations• Role of the Soil-Water Characteristic Curve• Use of SWCC in the Constitutive Relations• Solution of a Series of PDEs• Modeling Unsaturated Soils Problems

Chiu Chung Fai
附注
1.引言 2.实际应用引起的挑战 3.应力状态的描述 4.基本的本构关系 5.土水特徵曲线的角色 6.土水特徵曲线在本构关系的使用价值 7.偏微分方程的解答 8.模拟非饱和土问题
Page 5: Terzaghi Unsaturated Soil Mechanics (2007)

Objectives

• To illustrate the progression from theories and formulations to practical engineering protocols for solving a variety of unsaturated soil mechanics problems (e.g., seepage, shear strength and volume change), through use of “direct” and “indirect” characterization of unsaturated soil property functions

• To describe the Challenges Faced and the Solutions Generated in moving towards the Implementation of Unsaturated Soil Mechanics

Chiu Chung Fai
附注
目标 1.非饱和土力学从理论到应用于工程方案的发展史 2.遇到的挑战与解决方案
Page 6: Terzaghi Unsaturated Soil Mechanics (2007)

Gradual Emergence of Unsaturated Soil Mechanics

• 1950s: Independent measurement of pore-air and pore-water pressure through use of high air entry ceramic disks

• 1960s: Laboratory testing of unsaturated soils• 1970s: Constitutive relations proposed and tested

for uniqueness for unsaturated soils• 1980s: Solving formulations for classic Boundary

Value Problems• 1990s: Establishing procedures for determination of

unsaturated soil property functions• 2000+: Implementation into routine engineering

practice

Chiu Chung Fai
附注
非饱和土力学的发展 1950s 独立测量孔隙气压与水压 1960s 室内非饱和土试验 1970s 提出与验证非饱和土本构关系 1980s 解答经典边界值问题 1990s 确立测试非饱和土属性函数的程序 2000+ 应用于常规工程问题
Page 7: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #1:– To discover appropriate Stress State

Variables for describing the physical behavior of unsaturated soils

• Solution #1:

?

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战一:找出合适的应力状态变量来描述非饱和土的物理性状
Page 8: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #2: To develop devices that could measure a wide range of negative pore-water pressures (i.e., high matric suctions)

• Solution #2:

?

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战二:发展仪器可以测量大范围的吸力
Page 9: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #3: – To develop (and test for uniqueness)

constitutive relations suitable for describing unsaturated soil behavior

• Solution #3:

?

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战三:发展适合于非饱和土的本构关系
Page 10: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #4: – To overcome the excessive costs

associated with the determination (i.e., measurement) of unsaturated soil properties (i.e., nonlinear functions)

• Solution #4: ?

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战四:克服测量非饱和土属性的过量成本
Page 11: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #5: – To solve nonlinear partial differential

equations for unsaturated soils without having convergence difficulties during the iterative solution process

• Solution #5:

?

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战五:在迭代计算中设有收敛困难的状况下解答非线性偏微分方程
Page 12: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #6:– To promote and teach unsaturated soil

mechanics at universities and in engineering practice

• Solution #6:

?

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战六:在大学与工程界中促进与教授非饱和土力学
Page 13: Terzaghi Unsaturated Soil Mechanics (2007)

Regional distribution of unsaturated soils

Local vertical zones of

unsaturated soils

GROUNDWATER TABLE- Water filling the voids- Air in a dissolved state

SATU

RA

TED

SO

IL

Page 14: Terzaghi Unsaturated Soil Mechanics (2007)

Zones of Unsaturation Defined by a Soil-Water Characteristic Curve, SWCC

0

5

10

15

20

25

30

35

0.1 1.0 10. 100. 1000. 10,000 100,000 1000,000

Gra

vim

etric

wat

er c

onte

nt,w

(%)

Soil suction (kPa)

Air entry value

Boundary effect zone

Transition zone

Residual zone

Residualcondition

Inflection point

Chiu Chung Fai
附注
土水特徵曲线(SWCC)的不同非饱和区
Page 15: Terzaghi Unsaturated Soil Mechanics (2007)

Unsaturated Soil REV as a Four Phase System

-Two Phases that deform and come to rest under a stress gradient (SOLIDS)

-Soil structure

-Contractile skin

-Two phases that continuously flowunder a stress gradient (FLUIDS)

-Water

-Air

Soil particlesAir

Contractile skin

Water

REV = Representative Elemental Volume

Chiu Chung Fai
附注
非饱和土的四相系统 土粒(固)、水(液)、气与收缩膜
Page 16: Terzaghi Unsaturated Soil Mechanics (2007)

Structure and Stresses in the Contractile Skin

Hyperbolic Tangent Function

Thickness:1.5 to 2 water molecules or about 5°A (Israelachvili, 1991; Townsend and Rice, 1991)

thickness of thecontractile skin

Liquid water density

Water vapor density

Air Watert90/10

PBN

Surface tension = 75 mN/m; Equivalent stress = 140,000 kPa

Water-molecule distribution across the air-water interface(modified from Kyklema, 2000)

Chiu Chung Fai
附注
收缩膜的结构与应力 横过气-水介面水分子的分布(Kykelma, 2000)
Page 17: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #1:– To discover appropriate Stress State

Variables for describing the physical behavior of unsaturated soils

• Solution #1:– Designation of independent Stress State Variables based on multiphase continuum mechanics principles

(σx - ua)

(σz - ua)

(σy - ua)(ua - uw)

(ua - uw)

τzx

τzy

τxz

τxy

τyzτyx

(ua - uw)

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战一:找出合适的应力状态变量来描述非饱和土的物理性状 方案一:基于多相连续力学原理找出独立的应力状态变量
Page 18: Terzaghi Unsaturated Soil Mechanics (2007)

Definition of stress state at a point in an unsaturated soil

(σz - ua)

(σy - ua)(ua - uw)

(ua - uw)

τzx

τzy

τxz

τxy

τyzτyx

(ua - uw)

(σx - ua)

• Defines the stress state at a point in a continuum

• State variables are independent of soil properties

Derivation of the Stress State is based on the superposition of equilibrium stress fields for a multiphase continuum

Page 19: Terzaghi Unsaturated Soil Mechanics (2007)

State Variable Stage (Unsaturated Soils)

Net Total Stress Tensor

( )( )

( )

σ τ ττ σ ττ τ σ

x a yx zx

xy y a zy

xz yz z a

uu

u

−−

⎢⎢⎢

⎥⎥⎥

( )( )

( )

u uu u

u u

a w

a w

a w

−−

⎢⎢⎢

⎥⎥⎥

0 00 00 0

Matric Suction Stress Tensor

X - direction

Y - direction

Z - direction

• Stress Tensors form the basis for a Sciencebecause we live in a 3-D Cartesian coordinate world

Chiu Chung Fai
附注
非饱和土的状态变量 净应力张量 基质吸力张量
Page 20: Terzaghi Unsaturated Soil Mechanics (2007)

Variations in Stress State Description

σ’ = (σ – ua) + χ (ua – uw)σ’ = effective stressχ = parameter related to saturation

σ *ij = σij – [S uw + (1 – S) ua ] δ ij

σij = total stress tensor, δij = Kroneker delta or substitution tensor,

σ *ij = Bishop’s soil skeleton stress (Jommi2000)

S = degree of saturation

Above proposed equations are constitutive relations

Chiu Chung Fai
附注
其他应力状态的表达式 以上建议公式是本构关系
Page 21: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #2:- To develop devices that can measure a wide range of negative pore-water pressures (i.e., high matric suctions)

• Solution #2:- New instrumentation such as the high suction tensiometersand indirect thermal conductivity suction sensors provide viable techniques for the laboratory and the field

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战二:发展可以测量大量程吸力的仪器 方案二:高吸力张力计与热导吸力传感器
Page 22: Terzaghi Unsaturated Soil Mechanics (2007)

Monitoring for Verification Purposes

• Measurements of movement: same as for saturated soils

• Measurement of water content: TDR Technology• Measurement of matric suction:

– Direct measurement techniques• Low range tensiometers (< 90 kPa)• High range direct tensiometers (< 1200 kPa)

– Presently primarily for laboratory use– Indirect measurement techniques

• Thermal conductivity sensors

Chiu Chung Fai
附注
查证用途的监测 1.位侈的测量:与测试饱和土一样 2.含水率的测量:时域反射计(TDR) 3.基质吸力的测量:直接方法 - 小量程张力计 (< 90 kPa) 与 大量程张力计 (< 1200 kPa) 非直接方法 - 热导传感器
Page 23: Terzaghi Unsaturated Soil Mechanics (2007)

Monitoring of Water Content

Measures the dielectric constant for the soil around the rods. Dielectric constant varies with the water content of the soil

TDR ThetaProbe, ML2x manufactured by AT Delta Devices, U.K.

Chiu Chung Fai
附注
含水率的监测 TDR测量介电常数 介电常数与土的含水率有关
Page 24: Terzaghi Unsaturated Soil Mechanics (2007)

Monitoring of Matric Suction

Measures the thermal conductivity of a standard ceramic that varies in water content with the applied matric suction

Chiu Chung Fai
附注
基质吸力的监测 测量土的导热性 土的导热性与土的基质吸力有关
Page 25: Terzaghi Unsaturated Soil Mechanics (2007)

Matric Suction Versus Time - 1.0 m to 1.3 m Depth Range

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

200.0

15-Sep-00 5-Oct-00 25-Oct-00 14-Nov-00 4-Dec-00 24-Dec-00

Time (Days)

Mat

ric

Suct

ion

(kPa

)

T 1-3

T 2-8

T 3-11

T 4-14

T 5-16

T 4-14

T 1-3

T 2-8

T 3-11

T 5-16

In Situ Matric Suction measurements using Thermal Conductivity sensors at 1.0 to 1.3 m below roadway

Equalization

Frost

Time (Days)

Mat

ricsu

ctio

n (k

Pa)

Chiu Chung Fai
附注
利用热导传感器现埸监测路面以下1 - 1.3 m的基质吸力
Page 26: Terzaghi Unsaturated Soil Mechanics (2007)

Silicone rubber grommet

Rubber membrane

Latex rubber, to seal the rubbermembrane and grommet

Mini suction probe

O - ring5 – bar high air-entry ceramic disk

Direct, high suction sensor used to measure suctions greater than one atmosphere on the side of a triaxial specimen (Meilani, 2004)

Pore air pressure control

O - ringCoarse corundum disk

Filter paper

Specimen

Top cap

Water in the compartment is pre-pressurized to destroy cavitation nuclei

Chiu Chung Fai
附注
利用大量程吸力传感器测量三轴试验样本超过100 kPa的吸力(Meilani, 2004)
Page 27: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #3:– To develop (and test for uniqueness)

constitutive relations suitable for describing unsaturated soil behavior

• Solution #3:

Matric suction(ua - uw)

Voidratio

e

Net normal stress

(σ - ua)

amat- Constitutive relations for

saturated soils needed to be extended to embrace the effect of changing degrees of saturation

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战三:发展适合于非饱和土的本构关系 方案三:从考虑饱和度的影响,扩展饱和土的本构关系
Page 28: Terzaghi Unsaturated Soil Mechanics (2007)

Fundamental Constitutive Relations for Unsaturated Soils

• Constitutive Behaviors in Classic Soil Mechanics:– Seepage– Shear strength– Volume-mass changes: Void ratio, water content

changes

• Other topics in soil mechanics:– Heat flow (Freeze-Thaw and Evaporation)– Air flow– Contaminant transport

Each constitutive relationship requires a nonlinear soil property function; therefore, Unsaturated Soil Mechanics might be referred to as NONLINEAR SOIL MECHANICS!

Chiu Chung Fai
附注
基本的非饱和土本构关系 1.渗流 2.剪切强度 3.体积-质量的变化(孔隙比、含水率的变化) 4.热流 (冷冻-解冻,蒸发) 5.气流 6.污染物迁移 每个本构关系需要一个非线性的土属性函数
Page 29: Terzaghi Unsaturated Soil Mechanics (2007)

Water Seepage Constitutive Relations

Yg

uh

w

w +=ρ

Driving potential for water flow is hydraulic head, h

x wxdhv kdx

= −

dydhkv wyy −=

z wzdhv kdz

= −

Darcy’s law (1856) for flow in the x-, y-, and z-direction

Coefficient of permeability, kw is a function of matric suction; therefore, the flow law is nonlinear and subject to hysteresis

Chiu Chung Fai
附注
水渗流的本构关系 1.总水头操纵水的流动 2.Darcy定律 3.渗透系数(kw)与基质吸力有关 4.流动定律是非线性 5.滞后作用
Page 30: Terzaghi Unsaturated Soil Mechanics (2007)

Shape of the water permeability function for glass beads tested by Mualem (1976 )

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.1 1 10 Soil suction (kPa)

Drying

Wetting

Coe

ffici

ent o

f per

mea

bilit

y (m

/s)

Wetting

Drying

DryingWetting

Soil suction (kPa)

Chiu Chung Fai
附注
玻璃丸的渗透系数(kw)与基质吸力的关系,Mualem (1976)
Page 31: Terzaghi Unsaturated Soil Mechanics (2007)

The SWCC for the glass beads showing hysteresis during drying and wetting

0

20

40

60

80

100

0.1 1 10 Soil suction (kPa)

Deg

ree

of s

atur

atio

n, %

DryingWetting

Wetting

Drying

Soil suction (kPa)Hysteresis in the SWCC produces hysteresis in the Permeability function

Chiu Chung Fai
附注
干湿对玻璃丸的SWCC产生滞后作用
Page 32: Terzaghi Unsaturated Soil Mechanics (2007)

Water Storage in an Unsaturated Soil

0.1 1.0 10 100 1000 10000 100000 1E+6Soil suction, kPa

Wat

er c

onte

nt, %

0

10

20

30

40Soil-Water Characteristic Curve, SWCC

Also has a hysteretic effect

Soil suction, kPa

Wat

er s

tora

ge

mod

ulus

, kPa

-1

0

2

4

8

0.1 1.0 10 100 1000 10000 100000 1E+6

Water storage function is the slope of the SWCC; Required for transient seepage analyses

Chiu Chung Fai
附注
非饱和土的储水 1.储水函数是SWCC的坡度 2.用于瞬时渗流分折
Page 33: Terzaghi Unsaturated Soil Mechanics (2007)

Air Flow Constitutive Relations

Driving potential for air flow is Pore-air pressure, uadx

dukv a

axax −=

dydu

kv aayay −=

dzdu

kv aazaz −=

Fick’s law for flow in the x-, y-, and z-direction

Coefficient of permeability, ka is a function of matric suction; therefore, the flow law is nonlinear and subject to hysteresis

Observation: Soil properties for unsaturated soils become nonlinear functions and are hysteretic in character

Chiu Chung Fai
附注
气流的本构关系 1.孔隙气压操纵气的流动 2.Fick定律 3.气的渗透系数(ka)与基质吸力有关 4.流动定律是非线性 5.滞后作用
Page 34: Terzaghi Unsaturated Soil Mechanics (2007)

Shear Strength Constitutive Relations

' '( ) tan ( ) tan bn a a wc u u uτ σ φ φ= + − + −

Linear form of the extended Mohr-Coulomb shear strength equation

Fredlund, Morgenstern and Widger, 1978

' '1( ) tan ( )n a a wc u u u fτ σ φ= + − + −

f1 = function showing the rate of increase in shear strength with matric suction

Chiu Chung Fai
附注
剪切强度的本构关系 引伸的Mohr-Coulomb强度公式
Page 35: Terzaghi Unsaturated Soil Mechanics (2007)

Extended Mohr-Coulomb failure surface (Fredlund, Morgenstern and Widger, 1978)

φ’

(ua-uw)

Shea

r str

engt

h,τ

Net normal stress, (σ - ua)

Shear strength versus suction is nonlinear and affected by hysteresis

Air entry value

c’

Chiu Chung Fai
附注
引伸的 Mohr-Coulomb 破坏包面 (Fredlund, Morgenstern & Widger, 1978) 1.剪切强度与吸力是非线性关系 2.受滞后作用影响
Page 36: Terzaghi Unsaturated Soil Mechanics (2007)

Multistage direct shear test results

on compacted glacial till (Gan et

al., 1988)

Soil-Water Characteristic Curve

for glacial till

0102030405060708090

100

1 10 100 1000 10000 100000 1000000Suction, (kPa)

Deg

ree

of S

atur

atio

n, S

(%)

0 kPa, e = 0.517

25 kPa, e =0.514

OPTIMUM INITIAL WATER CONTENT

SPECIMEN

AEV = 60 kPa

AEV = 60 kPa

Shea

r str

engt

h, τ

(kPa

)

200

250

150

100

50

00 100 200 300 400 500

c’ = 10 kPa(σf - ua)f tan φ’= 34.6 kPa

(σf - ua)f = 72.6 kPa φ’ = 25.5

Matric suction, (ua-uw) (kPa)

Chiu Chung Fai
附注
1.冰碛物的SWCC 2.压实冰碛物的多级直剪试验(Gan et al., 1988)
Page 37: Terzaghi Unsaturated Soil Mechanics (2007)
Chiu Chung Fai
附注
饱和土的压缩曲线
Page 38: Terzaghi Unsaturated Soil Mechanics (2007)

10000

1000100

101 0.1

0.01

Log net mean stress (kPa)1e+0610000010000100010010

10.10.01Log soil suction (kPa)

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

Voi

d ra

tio

Void

ratio

Volume–Mass Constitutive Surfaces for Regina Clay Preconsolidated at 200 kPa (Pham, 2004)

Void ratio, e

Residual value

YieldYield

Soil suctionNet total stress

Page 39: Terzaghi Unsaturated Soil Mechanics (2007)

Volume–Mass Constitutive Surfaces for Regina Clay Preconsolidated at 200 kPa (Pham, 2004)

Residual value

10000

1000100

101 0.1

0.01

Log net mean stress (kPa)1e+0610000010000100010010

10.10.01Log soil suction (kPa)

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

Gra

vim

etric

wat

er c

onte

nt

Gra

vim

etric

wat

er c

onte

nt

Residual value

Air entry value

YieldYield

Water content, w

Soil suction Net total stress

SWCC

Page 40: Terzaghi Unsaturated Soil Mechanics (2007)

10000

1000100

101 0.1

0.01

Log net mean stress (kPa)1e+0610000010000100010010

10.10.01Log soil suction (kPa)

0

0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

1.25

1.25

Deg

ree

of s

atur

atio

n (S

)

Deg

ree

of s

atur

atio

n (S

)

Air entry value

Residual value

Volume–Mass Constitutive Surfaces for Regina Clay Preconsolidated at 200 kPa (Pham, 2004)

Degree of saturation, S

Soil suction Net total stress

Page 41: Terzaghi Unsaturated Soil Mechanics (2007)

Volume–Mass Constitutive Surfaces for

Beaver Creek Sand (Pham, 2004)

10000

1000100

101 0.1

0.01

Log net mean stress (kPa)1e+0610000010000100010010

10.10.01Log soil suction (kPa)

0.3

0.3

0.34625

0.34625

0.3925

0.3925

0.43875

0.43875

0.485

0.485

0.53125

0.53125

0.5775

0.5775

0.62375

0.62375

0.67

0.67

Voi

d ra

tio (e

)

Void

ratio

(e)

10000

1000

10010

1 0.10.01

Log net mean stress (kPa)

1e+061000001000010001001010.10.01Log soil suction (kPa)

0

0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

1.25

1.25

Deg

ree

of s

atur

ation

Deg

ree

of s

atur

ation

10000

1000100

101 0.1

0.01

Log net mean stress (kPa)

1e+061000001000010001001010.10.01Log soil suction (kPa)

0

0

0.05

0.05

0.1

0.1

0.15

0.15

0.2

0.2

0.25

0.25

0.3

0.3

Gra

vim

etric

wat

er c

onte

nt

Gra

vim

etric

wat

er c

onte

nt

Void ratio, e

Water content, w

Degree of saturation, S

SWCC

AEV

Basic volume-mass equation S e = w Gs

Chiu Chung Fai
附注
Beaver Creek 砂土的体积本构面与质量本构面 (Pham, 2004)
Page 42: Terzaghi Unsaturated Soil Mechanics (2007)

10000

1000100

101 0.1

0.01

Log net mean stress (kPa)

1e+061000001000010001001010.10.01Log soil suction (kPa)

0

0

0.05

0.05

0.1

0.1

0.15

0.15

0.2

0.2

0.25

0.25

0.3

0.3

Gra

vim

etric

wat

er c

onte

nt

Gra

vim

etric

wat

er c

onte

nt

Residual value

Air entry value

Volume–Mass Constitutive Surfaces for Beaver Creek Sand (Pham, 2004)

Water content, w

Soil suctionNet total stress

SWCC

Page 43: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #4:– To overcome the excessive costs associated with the

determination (i.e., measurement) of unsaturated soil properties (i.e., nonlinear functions)

• Solution #4:

0.0

10

20

30

40

1E-1 1E+0 1E+1 1E+2 1E+3 1E+4Suction (kPa)

Predicted from grain-sizeExperimental

Wat

er c

onte

nt

1E+5 1E+6

- Indirect, estimation procedures have been developed to obtain unsaturated soil property functions based on Soil-Water Characteristic Curves

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战四:克服测量非饱和土属性函数的过量成本 方案四:利用SWCC非直接地估计非饱和土属性函数
Page 44: Terzaghi Unsaturated Soil Mechanics (2007)

Role and Measurement of the Soil-Water Characteristic Curve, SWCC

-Soil-Water Characteristic Curves, SWCC define the relationship between the amount of water in a soil and soil suction (i.e., matric suction and total suction)

- SWCC has been successfully used to estimate all unsaturated soil property functions

* ASTM Standard D6836-02 (2003)

0

4

8

12

16

20

0.1 1 10 100 1000Soil suction (kPa)

Gra

vim

etric

wat

er c

onte

nt (%

)Specimen 1Specimen 2Specimen 3

Air Entry Value

Residual ValueSand

- Water permeability - Air permeability - Shear strength - Thermal flow - Incremental

elasticity

Chiu Chung Fai
附注
土水特徵曲线(SWCC)的角式与测量 1.SWCC定义为含水率与吸力的关系 2.SWCC能够成功的估计以下非饱和土属性函数 - 水与气的渗透性 - 剪切强度 - 热流 - 增量弹性
Page 45: Terzaghi Unsaturated Soil Mechanics (2007)

Measured drying and wetting curves on processed silt (Pham, 2002)

0

5

10

15

20

25

0.1 1 10 100 1000Soil suction (kPa)

Gra

vim

etric

wat

er c

onte

nt (%

)

Specimen 1Specimen 2Specimen 3

AEV = 10 kPa

WEV = 4.5 kPa

Residual = 120 kPa

Residual = 62 kPa

Chiu Chung Fai
附注
干与湿状况下粉土的SWCC (Pham, 2002)
Page 46: Terzaghi Unsaturated Soil Mechanics (2007)

Pressure Plate Apparatus to Measure Void Ratio and Water Content While Applying Total Stress and Matric Suction

Manufactured by GCTS, Tempe, AZ

Air supply

High air entry disk

Chiu Chung Fai
附注
压力板 在总压力与吸力下,测量孔隙比与含水率
Page 47: Terzaghi Unsaturated Soil Mechanics (2007)

Fifteen bar Pressure Plate equipment manufactured by

GCTS, U.S.A.

• Wide range of applied suctions• Applies total stresses• Measures water and total

volume change• Measure diffused air• Test individual specimens• Null-type initial suction• Drying and wetting modes

Chiu Chung Fai
附注
15 bar 压力板 1.应用大量程吸力 2.加载总应力 3.测量水与总体积的变化 4.测量扩散的气泡 5.测试独立样本 6.零位式初始吸力 7.干与湿模式
Page 48: Terzaghi Unsaturated Soil Mechanics (2007)

Equations to Best-Fit SWCC Data

Fredlund and Xing (1994)

Correction FactorAir entry value

Rate of desaturation

Asymmetry Variable

ψ = Soil suction

fm

fn

f

s

ae

wCw

]})({ln[)()(

ψψψ

+×=

)1000000(1ln[

)1ln(1)(

r

rCψ

ψψ

ψ+

+−=

Numerous equations have been proposed:-Brooks & Corey (1964)- van Guenuchten (1980)

0

4

8

12

16

20

0.1 1 10 100 1000Soil suction (kPa)

Gra

vim

etric

wat

er c

onte

nt (%

)

Specimen 1Specimen 2Specimen 3

Wetting

Drying

Chiu Chung Fai
附注
SWCC的表达式
Page 49: Terzaghi Unsaturated Soil Mechanics (2007)

Hysteresis in the Soil-Water Characteristic Curve

• Hysteretic SWCC Models will eventually be available for geotechnical usage

• Presently, the Geotechnical Engineer must decide which curve to use:– Select wetting curve or drying curve based on

process being simulated• Hysteresis loop shift at point of inflection:

– Sands: 0.15 to 0.35 Log cycle• Average: 0.25 Log cycle

– Loam soils: 0.35 to 0.60 Log cycle• Average: 0.50 Log cycle

Estimation Values

Chiu Chung Fai
附注
SWCC的滞后作用 1.将来会出现考虑了滞后作用的SWCC摸型 2.现在岩土工程师要从湿曲线和干曲线中选择较适合要模拟的状况
Page 50: Terzaghi Unsaturated Soil Mechanics (2007)

Model measurements of water content and matric suction showing the SWCC relationship from water contents and

matric suctions during wetting and drying simulations (Tami et al, 2004)

Section MSection B Section T

1 100.0

0.1

0.2

0.3

0.4

I&II-D

III-WIV&V-D

IV&V-W

III-D

1 10

I&II-D

III-WIV&V-D

IV&V-W

III-D

1 10

I&II-D

III-WIV&V-D

IV&V-W

III-D

Soil suction (kPa)

Volu

met

ric w

ater

con

tent

, θw

Suctions with Tensiometers Water content with TDR

Chiu Chung Fai
附注
从干与湿模拟模型中测量含水率与基质吸力而得的SWCC (Tami et al., 2004)
Page 51: Terzaghi Unsaturated Soil Mechanics (2007)

Approaches that can be used to obtain the Soil–Water Characteristic curves

Determination of Soil-Water Characteristic Curves, SWCC

Laboratory measurement of

water content versus suction

SWCC predictions from grain

size distribution

SWCC predictions

from grain size & Atterberg

limits

Dataset “mining” for

typical SWCC

Pressure plate <

1500 kPa

Vacuum desiccators > 1500 kPa

Numerous models

Parameters for

numerous models

Soils with similar grain size or soil

classification

Decreasing accuracy

Chiu Chung Fai
附注
SWCC的测定方法 1.室内测试 2.从粒径分布曲线预测 3.从粒径分布曲线与Atterberg界限预测 4.资料库
Page 52: Terzaghi Unsaturated Soil Mechanics (2007)

Soil-Water Characteristic Curve computed from a Grain Size Distribution Curve

0.0

10

20

30

40

0.1 1 10 100 1000 10000Suction (kPa)

Predicted from grain-sizeExperimental

Wat

er c

onte

nt

1E+5 1E+6

020

40

60

80

100

0.0001 0.001 0.01 0.1 1 10 100Perc

ent p

assi

ng (%

)

Particle size (mm)

ExperimentalFit - curve

Fredlund et al,1997

Chiu Chung Fai
附注
从粒径分布曲线计算得的SWCC
Page 53: Terzaghi Unsaturated Soil Mechanics (2007)

Incorporation of SWCC into the Constitutive Relations for Unsaturated Soils

• Unsaturated soil property functions rely on the saturated soil properties PLUS the soil-water characteristic curve, SWCC

• Therefore, MUST have an indication of the SWCC

• Unsaturated soil property functionsrender the solution of a problem nonlinear

Chiu Chung Fai
附注
将SWCC结合到非饱和土的本构关系 1.非饱和土属性函数依靠饱和土属性与SWCC 2.所以SWCC可以指出非饱和土属性函数 3.非饱和土属性函数使问题有非线性解答
Page 54: Terzaghi Unsaturated Soil Mechanics (2007)

Seepage Constitutive Relations in Terms of SWCC

References for the Soil-Water Characteristic CurvePermeability Models

van Genuchten (1980) Brooks & Cory (1964)

Mualem (1976)

Burdine (1953) nn

mnn

rk 2

2

])(1[])(1[)(1)(

αψαψαψψ

++−

=−−

5.0

21

])(1[}])(1[)(1{)( n

mnn

rkαψ

αψαψψ+

+−=

−−

λαψψ 32)()( −−=rk

nm 21 −=

nm 11 −=

kr = kw/ksat

Chiu Chung Fai
附注
根据SWCC而得的渗流本构关系
Page 55: Terzaghi Unsaturated Soil Mechanics (2007)

Seepage Constitutive Relations in Terms of SWCC

References for the Soil-Water Characteristic CurvePermeability Models

Fedlund and Xing (1994) Campbell (1974)

Child and Collis –George (1950) ∫

∫−

= b

aev

yy

sy

by

y

y

r

dyee

e

dyee

e

k

)ln(

'

)ln(

'

)()(

)()()(

ψ

ψ

θθθ

θψθθ

b

aevrk

22

)(−−

ψ

b = Ln (1000000) θ (ψ) = Soil water content

y = Dummy variable of integration representing the logarithm of integration

kr = kw/ksat

Page 56: Terzaghi Unsaturated Soil Mechanics (2007)

Usage of several functions to predict permeability functions from the SWCC for a particular soil and a suggested lower limit for the permeability function

1.E-171.E-161.E-151.E-141.E-131.E-121.E-111.E-101.E-091.E-081.E-071.E-061.E-051.E-04

0.1 1 10 100 1000 10000 100000 1E+06

Experimental data

Overall Kw + Kv

Fredlund and Xing

VaporKv

Campbell

Brooks and Corey

Van Genuchten - Mualem

Van Genuchten- Burdine

Soil suction (kPa)

Coe

ffici

ent o

f per

mea

bilit

y (m

/s)

Chiu Chung Fai
附注
根据SWCC预测渗透函数
Page 57: Terzaghi Unsaturated Soil Mechanics (2007)

Shear Strength Constitutive Equation Written in Terms of SWCC

Vanapalli et al. (1996)rs

rn θθ

θθ−−

'tan'tan)(' φψφστ nan uc Θ+−+=

Shear strength

Net normal stress on the failure plane

Angle of internal frictionIntercept of the Mohr-

Coulomb failure envelope on the shear stress axis

Matric suction

SWCC

Chiu Chung Fai
附注
根据SWCC而得的剪切强度本构关系
Page 58: Terzaghi Unsaturated Soil Mechanics (2007)

Stress Analysis (for Shear Strength Problems) Constitutive Relations in Terms of SWCC

sd θ

θ=Θ

Shear strength

net normal stress on the failure plane

Angle of internal frictionIntercept of the Mohr-

Coulomb failure envelope on the shear stress axis

'tan)('tan)(' φψφστ κdan uc Θ+−+=

Fitting parameter used for obtaining a best-fit between the measured and predicted value

Fredlund et al. (1996)

Matric suction

SWCC

Page 59: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #5:– To solve nonlinear partial differential equations for

unsaturated soils without having convergence difficulties during the iterative solution process

• Solution #5:– Adaptive mesh (grid) generation techniques in

computer technology facilitates convergence

0 10 20 30 40 50 60 70 80 90 100 110 120 130 14001020304050

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战五:在迭代计算中设有收敛困难的状况下解答非线性偏微分方程 方案五:自调谐网格产生方法促进收敛
Page 60: Terzaghi Unsaturated Soil Mechanics (2007)

Solving a Boundary Value Problem

Element for which a PartialDifferential Equation, PDE, must be derived

Boundary Value Must be Supplied

Boundary

Boundary

Boundary

Typical Boundary Conditions

Flux Head - for seepageForce Displacement - for stress

Boundary

Utilize general purpose PDE Solvers to solve partial differential equations for saturated-unsaturated soil system

Chiu Chung Fai
附注
解答边界值问题 利用通用的PDE分析工具找出饱和-非饱和土系统中偏微分方程的解答
Page 61: Terzaghi Unsaturated Soil Mechanics (2007)

Problem Solving Environments, PSEs, for Soil Mechanics Partial Differential Equations, PDEs

• All classic areas of soil mechanics can be viewed in terms of the solution of a Partial Differential Equation

• Water flow through porous soils (Saturated or Unsaturated)

• Air flow through unsaturated soils• Stress analysis for slope stability, bearing capacity

and earth pressure• Stress-Deformation volume change and distortion

– Incremental elasticity– Elasto-plastic models

Chiu Chung Fai
附注
土力学偏微分方程的解题环境 1.偏微分方程的解答可以模拟很多经典土力学问题 2.多孔隙土的水流动(饱和或非饱和) 3.非饱和土的气流动 4.应力分析:边坡稳定,承载力与土压力的 5.应力-变形:增量弹性,弹塑性模型
Page 62: Terzaghi Unsaturated Soil Mechanics (2007)

Partial Differential Equation for Saturated-Unsaturated Water Flow Analysis

thm

yh

yk

yhk

xh

xk

xhk w

wwyw

y

wxw

x ∂∂

γ−=∂∂

∂+

∂∂

+∂∂

∂∂

+∂∂

22

2

2

2

Head variable to be solved

Water coefficient of permeability (function of soil suction)

Time Water storage (function of soil suction)

Chiu Chung Fai
附注
饱和-非饱和水流动分折的偏微分方程 水的渗透与储水系数是土吸力的函数
Page 63: Terzaghi Unsaturated Soil Mechanics (2007)

Partial Differential Equation for Unsaturated Air Flow Analysis

Pore-air pressure(primary variable to be solved)

Air coefficient of permeability (function of soil suction)

Time Air storage and compressibility

(function of soil suction)

tu

RTgmuS

ee

yu

yk

xu

xk

yuk

xuk aaw

aaaaaaa

aa

a ∂∂

⎟⎠⎞

⎜⎝⎛ −

+−=⎟⎟

⎞⎜⎜⎝

⎛∂

∂∂∂

+⎟⎠⎞

⎜⎝⎛

∂∂

∂∂

+∂∂

+∂∂ ω

22

2

2

2

1

Chiu Chung Fai
附注
非饱和气流动分折的偏微分方程 气的渗透与储气系数,压缩性是土吸力的函数
Page 64: Terzaghi Unsaturated Soil Mechanics (2007)

Partial Differential Equation for Saturated-Unsaturated Stress-Deformation Analysis

0441211 =⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

∂∂

+⎥⎦

⎤⎢⎣

⎡∂∂

+∂∂

∂∂

xv

yuD

yyvD

xuD

xX –

44 12 11 0tu v u vD D D

x y x y x yγ

⎡ ⎤⎛ ⎞ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂+ + + + =⎢ ⎥⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎣ ⎦

Y –

D11, D12, D44 = Combination of E and µ which are function of soil suction and net total stresses

Stress-deformation analyses have a degrees of freedom in each of the Cartesian coordinate directions

Chiu Chung Fai
附注
饱和-非饱和应力变形分折的偏微分方程 D11, D12与D44是土吸力与净应力的函数
Page 65: Terzaghi Unsaturated Soil Mechanics (2007)

Convergence of Nonlinear Partial Differential Equations

• Convergence is the single most pressing problem facing modelers

• Most successful solutions have involved Adaptive Grid Refinement methods, AGR (Oden, 1989; Yeh, 2000)

• Mesh is dynamically upgraded during the solution based on error estimates

• AGR becomes extremely important when solving the nonlinear PDEs associated with Unsaturated Soil Mechanics

Chiu Chung Fai
附注
非线性偏微分方程的收敛 1.收敛是一个困难问题 2.成功的解答通常包括自调谐加细网格方法, AGR(Oden,1989;Yen,2000) 3.基于误差估计网格在解答中会动态地升级 4.在非饱和土力学解答非线性PDEs过程中,AGR是一个重要部份
Page 66: Terzaghi Unsaturated Soil Mechanics (2007)

Two-dimensional seepage analysis through an earthfill dam with a clay core.

Equipotential lines

Optimized mesh for saturated-unsaturated seepage analysis

Chiu Chung Fai
附注
土坝的两维渗流分折
Page 67: Terzaghi Unsaturated Soil Mechanics (2007)

Problem illustrating the solution of a 3-dimensional, saturated-unsaturated seepage PDEOptimized, automatically generated finite element mesh

Modeling of a waste tailings pond

Chiu Chung Fai
附注
三维饱和-非饱和渗流偏微分方程的解答 桂模似某尾矿池
Page 68: Terzaghi Unsaturated Soil Mechanics (2007)

Stress analysis PDE combined with the Dynamic Programming procedure to compute the factor of safety

Distance0 20 40 60 80

0

5

10

15

20

25

30

DP Search Bounda ry

Finite Element S hea r Stre ss

DP Ge ne ra te dCritica l S lip SurfaceFOS = 1.3 Shape and location of the slip

surface are a part of the solution

Chiu Chung Fai
附注
应力分析:PDE结合动态规划算法计算安全系数 滑动面的形状与位置是部分的解答
Page 69: Terzaghi Unsaturated Soil Mechanics (2007)

Prediction of Heave or Collapse of a Soil

• Requires the solution of a saturated-unsaturated seepage model and a stress-deformation model

Saturated-Unsaturated Seepage Model

Saturated-Unsaturated Stress-Deformation

Model

Coupled Uncoupled

Pseudo-coupled

Computes changes in matric suction Computes deformations

Chiu Chung Fai
附注
预测土的隆胀与湿陷 1.需要饱和-非饱和渗流与应力-变形模型的解答 2.耦合,非耦合,假耦合
Page 70: Terzaghi Unsaturated Soil Mechanics (2007)

Scenario of Edge Lift for a Flexible Impervious Cover

Flexible cover 0

1

2

3

0 3 6 9 12

Distance from centre of cover or slab, m

CL

Constant suction = 400 kPa

Flux = 0

Dep

th, m Flux = 0

Infiltration, q SVFlux

Boundary conditions and initial conditions must be specified both seepage and stress-deformation

Chiu Chung Fai
附注
某柔性与不透水覆盖的边缘升高 渗流与应力-变形的边界与初始条件
Page 71: Terzaghi Unsaturated Soil Mechanics (2007)

Concrete slab0

1

2

3

0 3 6 9 12

CL

Dep

th, m

Distance from center, m

SVFluxand

SVSolid

Can have one optimized Adaptive Mesh generated for seepage model and another for the stress-deformation model

Chiu Chung Fai
附注
渗流模型与应力-变形模型可拥有不同的自调谐网格
Page 72: Terzaghi Unsaturated Soil Mechanics (2007)

Matric Suction at Ground Surface after One Day of Infiltration for Various Infiltration Rates

SVFlux

0

100

200

400

0 2 4 6 8 10 12

Distance from centre of cover, m

Mat

ricsu

ctio

n, k

Pa

300

500

CL

Initial

q = 10 mm/day

q = 20q = 30

q = 40q = 50q = 60

Specifiedzero suction

Distance under slab

Chiu Chung Fai
附注
经过一天入渗后地表面的基质吸力
Page 73: Terzaghi Unsaturated Soil Mechanics (2007)

Vertical Displacements at Ground Surface after One Day of Infiltration

Distance under slab

0

10

20

25

0 2 4 6 8 10 12

Distance from centre of cover, m

Hea

ve,(m

m)

5

15

specified zero suction

q = 10q = 20

q = 30q = 40

q = 50

q = 60 mm/day

CL

SVSolid

Chiu Chung Fai
附注
经过一天入渗后地表面的竖向位移
Page 74: Terzaghi Unsaturated Soil Mechanics (2007)

Challenges to the Implementation of Unsaturated Soil Mechanics

• Challenge #6:– To promote implementation of unsaturated soil

mechanics into engineering practice• Solution #6:

- Educational materials and visualization tools have been produced to better teach and understand unsaturated soil mechanics

Chiu Chung Fai
附注
应用非饱和土力学的挑战 挑战六:在大学与工程界中促进与教授非饱和土力学 方案六:已创作非饱和土力学的教材与视觉教具
Page 75: Terzaghi Unsaturated Soil Mechanics (2007)

Concluding Remarks

• Unsaturated Soil Mechanics needs to be first understood from the standpoint of the Constitutive equations describing soil behavior

• Constitutive Equations can be written in terms of the SWCC for the soil which are then known as Unsaturated Soil Property Functions, USPF

• Direct and Indirect procedures are available for the assessment of the SWCC

• It is always possible to obtain an estimate of the required Unsaturated Soil Property Functions for geotechnical engineering applications

Chiu Chung Fai
附注
总结 1.从土的本构关系开始了解非饱和土力学 2.根据SWCC,建立不同的本构关系,即非饱和土属性函数(USPF) 3.SWCC的直接与非直接测定方法 4.对于岩土工程问题总是能够估计必需的非饱和土性质函数(USPF)
Page 76: Terzaghi Unsaturated Soil Mechanics (2007)

Karl Terzaghi deserves credit not only for the

fundamentals of saturated soil behavior but also for

the fundamentals of unsaturated soil behavior

Geo-Institute, Austin, TexasJanuary 23-26, 2005 Thank You