Ternas de Referencia Geodesia y...

28
1 Ternas de Referencia Geodesia y Gravedad Ternas de referencia (ECEF, ECI, LGCV, LGV, Nav, etc) Transformaciones Geometría de la Tierra Modelos de Gravedad y Gravitación Anomalías

Transcript of Ternas de Referencia Geodesia y...

Page 1: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

1

Ternas de Referencia Geodesia y Gravedad

• Ternas de referencia (ECEF, ECI, LGCV, LGV, Nav, etc)• Transformaciones• Geometría de la Tierra• Modelos de Gravedad y Gravitación• Anomalías

Page 2: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

2

Ternas de Referencia y Transformaciones

Ternas Inercial (ECI) (i) y de la Tierra (ECEF) (e)

Ωcos( ) 0 sin( )0 1 0

sin( ) 0 cos( )

ei

t t

t t

Ω − Ω⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥Ω Ω⎣ ⎦

C

xe

yi =ye

Vector velocidad angular de la Tierra

Plano Ecuatorial

Meridiano de Greenwich

Punto Vernal, zi

xi

ze

Page 3: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

3

Ternas de Referencia y Transformaciones

( )

1 0 0 00 0 1 00 0

c ENUe c c

c c

C SC SS C S C

−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= Φ − Φ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Φ Φ⎣ ⎦ ⎣ ⎦

Cλ λ

λ λ

xi

xe

Vector velocidad angular de la TierraΩ

Plano Ecuatorial

λ

cΦTerna LGCV

h

E, xc

N, yc

U, zc

Meridiano de Greenwich

0

c c c

c c c

C SS S C S C

C S S C C

λ λλ λλ λ

−⎡ ⎤⎢ ⎥= − Φ Φ − Φ⎢ ⎥⎢ ⎥Φ Φ Φ⎣ ⎦

z’

E

N

D

U

cΦ : Latitud Geocéntrica

x’

“c”

P

zi

ze

yi =ye

Ternas de la Tierra (ECEF) (e) y Local Geocéntrica (LGCV) (E,N,U) (N,E,D) (c)

N

E

U : Dirección del Radio vector

Page 4: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

4

Ternas de Referencia y Transformaciones

1 0 0 00 0 1 00 0

g ENUe

C SC SS C S C

−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= Φ − Φ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Φ Φ⎣ ⎦ ⎣ ⎦

Cλ λ

λ λ

xi

xe

yi =ye

Vector velocidad angular de la TierraΩ

Plano Ecuatorial

Ternas de la Tierra (ECEF) y Geográfica (g) (LGV) o “Local Geodetic Vertical” (E,N,U); (N,E,D)

λ

Φ

hTerna LGV

E, xg

N, yg

U, zg

Meridiano de Greenwich

0ge

C SS S C S C

C S S C C

−⎡ ⎤⎢ ⎥= − Φ Φ − Φ⎢ ⎥⎢ ⎥Φ Φ Φ⎣ ⎦

Cλ λ

λ λλ λ

z’

E

N

D E

NU

Φ Latitud Geodésica

“g”

zi

U Normal al Elipsoide ze

Page 5: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

5

Ternas de la Tierra (e) (ECEF)→ Geográfica (g-ENU) (LGV) → de Navegación (n))

Ternas de Referencia y Transformaciones

Terna LGV

Latitud GeodésicaU Normal al Elipsoide

zi

ze

xi

xe

yi =ye

Ω

Plano Ecuatorial

λ

Φ

hE, xg

N, ygU, zg, zn

Meridiano de Greenwich

z’

Φ

α

α

xn

yn

E

NU,zn

+xn

yn

α

αα

“n”

Nav. referida al elipsoide

• La terna geográfica induce variaciones no acotadas de λ cerca de los Polos.• Un ángulo de azimut variable α(t) resp. del N evita el problema en terna de navegación.• α : ángulo de ruta (”wander angle”)

0 1 0 0 00 0 0 1 0

0 0 1 0 0

ne

C S C SS C C S

S C S C

α α λ λα α

λ λ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − Φ − Φ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Φ Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C

C C S S S S C C S S S CS C C S S C C S S C S C

C S S C C

α λ α λ α α λ α λα λ α λ α α λ α λ

λ λ

− Φ Φ − − Φ⎡ ⎤⎢ ⎥= − − Φ Φ − Φ⎢ ⎥⎢ ⎥Φ Φ Φ⎣ ⎦

Page 6: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

6

Ternas de Referencia y TransformacionesTerna de los Instrumentos (m) → terna del Cuerpo (b) → terna de Navegación (n).

xb

yb

zb

φ (roll)

ψ (yaw)θ (pitch)

yl

zn

yn

xn

0 1 01 0 00 0 -1

nl

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

C

Instrumentos (m) (cluster) Cuerpo (b)

Navegación (n) g-ENU Nivel (l) g-NED

xm

zmym

x-acel

z-ac

ely-ac

el

x-giro

z-gi

ro

y-giro

bmC

-ψ -θ -φlb ≡C

xl

zl

Page 7: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

7

xbxl

yl

E

N

ψ

gψα

Rumbo de navegación ("heading")ψ

Angulo de ruta ("wander angle")α

g Rumbo geográfico ("yaw")≡ψ ψ -α

De la Terna del Cuerpo (b) → Terna Geográfica (g-ENU)

Ternas de Referencia y Transformaciones

α

-1 ( )

( )-1

( )

( )g -1

( )

θ sen ( (3,1))

(3,2)φ tan(3,3)

(1,1)ψ tan(1,2)

g NEDbg NEDbg NEDb

g NEDbg NEDb

C

CC

CC

=

=

=

g g

g gg(ENU)b

0 1 0 C S 0 C 0 S 1 0 01 0 0 S C 0 0 1 0 0 Cφ Sφ0 0 1 0 0 1 S 0 C 0 Sφ Cφ

⎡ ⎤ψ − ψ θ θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ψ ψ −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − θ θ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

C

( )( )

g ENUg NEDC

g g g g g

g g g g gg(ENU)b

C S S SφS CφC CφS S SφCC C S SφC CφS CφS C SφS

S SφC CφC

⎡ ⎤θ ψ θ ψ + ψ θ ψ − ψ⎢ ⎥= θ ψ θ ψ − ψ θ ψ + ψ⎢ ⎥⎢ ⎥θ − θ − θ⎣ ⎦

C

( ) gψ θ φg NEDb = − − −C

Page 8: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

8

Ternas de Referencia y Transformaciones

Composición de cuaterniones elementales: Ejemplo de cuaternión de “b” a “g-NED”

( ) gψ ( )@ θ( )@ φ( )@g NEDb rumbo cabeceo rolido= − − −C k j i

( )

g g

g g

g g

( ) ( ) ( )

ψ ψ θ θ φ φ(cos( ) + sin( ))(cos( ) + sin( ))(cos( ) + sin( ))2 2 2 2 2 2θ ψ φ φ θ ψ(cos( ) cos( )sin( ) cos( )sin( )sin( ) )2 2 2 2 2 2φ θ ψ θ ψ φ(cos( )sin( ) cos( )+cos( )sin( )sin( ) )2 2 2 2 2 2

g NEDb k j i

gb

k j i

= −ψ −θ −ϕ =

= =

= − + →

+ + →

q q q q

i

j

1q

q

g g

g g

θ ψ φ φ θ ψ(cos( )sin( )cos( ) +sin( )sin( ) cos( ))2 2 2 2 2 2

φ θ ψ θ ψ φ(cos( )cos( )cos( ) sin( )sin( )sin( ) )2 2 2 2 2 2

gb

gb

gb

+ + →

+ + + →

k

2

3q

4q

Page 9: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

9

Geometría de la Tierra y Gravitación

Geoide: “ Forma de la superficie equipotencial que mejor aproxima el nivel del mar sobre la Tierra.”Superficie Equipotencial: “superficie sobre la cual se mantendría una indicación invariante del nivel de un teodolito.”Elipsoide de referencia (esferoide) global: “Elipsoide de revolución que mejor aproxima al Geoide en forma global. El estándar es el WGS84.”

Elipsoide de referencia

GeoideSuperficies Equipotenciales

Línea de plomada

Océano

Superficie

de la Tierr

a

Nivel medio del mar

Page 10: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

10

Geometría de la Tierra y Gravitación

Altura Ortométrica: dist. P-Po sobre la línea de plomada.Altura del Geoide: distancia “N” sobre la normal al Elipsoide (Q-Po).Altura sobre el elipsoide: distancia “ h” normal al Elipsoide

Elipsoide de referencia

Geoide

Línea de plomada

Océano

Superficie

de la Tierr

a

Nivel medio del mar

Superficies Equipotenciales

Page 11: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

11

Geometría de la Tierra y Gravitación

Geometría del Elipsoide de Referencia

γ

aa

b

2 2 2

2 2 2 1a b a

+ + =α β γ

αa

br

h

S(αs,βs)

ΦΦc

R n

r oPlano Meridiano

2 2

2 20 : 1a bα βγ = + =

f=achatamiento=(a-b)/a ≈ 1/300

ε2= excentricidad=(a2-b2)/a2=

=1-(1-f)2 ≈ 6,6 10-3

β

β

α P

Φ= Lat. Geodésica

Φc=Lat. Geocéntrica

Page 12: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

12

Page 13: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

13

Geometría de la Tierra y Gravitación

Plano Meridiano

β

a

b

r

P

h S(αs,βs)

ΦΦc

R n

r s

2 2

2 20 : 1a bα βγ = + =

s 2 2 1/ 2

2 1/ 2

s 2 2 1/ 2

s2 2 1/ 2

2s

s

cos( ) ;(1 sin ( ))(1 ) sin( ) ;

(1 sin ( ))

cos( ) (1 sin ( ))( , " ") ( ) cos( )

Relación entre Lat. Geodésica y Lat. Geocéntrica

tan( ( )) (1 ) tan( ( )

n

n

c

a

b

aR

dist P eje R h

S S

Φα =

− ε Φ

− ε Φβ =

− ε Φ

= = ⇒Φ − ε Φ

⇒ β = + Φ

β⇒ Φ = = − ε Φ

α

α

)

Geometría del Elipsoide de Referencia

Parametrización de la elipse en función de la Latitud Geodésica

α

Page 14: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

14

Geometría de la Tierra y Gravitación

Geometría del Elipsoide - Radios de curvatura: Meridiano, Paralelo y “Normal”

S

P: posición del VehículoPlano Tangente

local

h

α=xe

γ=ze

α

Φ

2

2

2 3/ 2 2

2 2 3/ 2

2 2 1/ 2

2 2

2

2

(1 ( ) ) (1 )( )(1 sin ( ))

( ) ;

( )cos( ) (1 sin ( ))

(1 sin ( ))( ) ( ) ( )(1 )

( ) ( )(1 ( ))

dd

m dd

p

n

n m m

n m

aR S

R S

aR S

R S R S R S

R S R S O

βαβ

α

+ − ε= =

− ε Φ

= α

α= =

Φ − ε Φ

− ε Φ= ≥

− ε

≈ + ε

2

( )sin( ) cos( )( (1 ) )sin( )( ) cos( )cos( )

en

e en

en

x R hy R hz R h

⎡ ⎤ + λ Φ⎡ ⎤⎢ ⎥ ⎢ ⎥= = − ε + Φ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ λ Φ⎣ ⎦⎣ ⎦

P

λ

β=ye

Page 15: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

15

Geometría de la Tierra y Gravitación

Gravedad y Gravitación

• Gravitación gg :aceleración debida a la atracción entre dos cuerpos descrita por la ley de Newton. Esta referida al sistema inercial:

• M = Masa de la Tierra; • F = fuerza ejercida por la Tierra sobre el centro de gravedad de un

cuerpo de masa m situado en:• R = distancia al centro de masa de la Tierra.• G = Constante Universal Gravitacional ~ 66.7x10-9 cm3g-1seg-2

• GM = 3.98600434x1014m3s-2

2 2: :gMm F GMF G Aceleracion gravitacional gR m R

= ⇒ = =

Page 16: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

16

Geometría de la Tierra y Gravitación

Gravedad o Gravedad aparente (cerca de la Tierra)

• Vector Gravedad g es la aceleración sobre la Tierra en rotación (= gravitación + aceleración centrífuga debida a Ωe).

• Corresponde a la indicación de la plomada en un punto. Es localmente perpendicular a las superficies equipotenciales (de “nivel”). En particular al Geoide.

• Se obtiene calculando el gradiente de:• El Potencial total W en un punto que es:

W= V(Potencial Gravitacional) + ½ v2(rs) (Potencial Rotatorio) • W: expansión en serie de inf. términos armónicos esféricos.• v(rs) = |Ωex rs|=Ωerscos(Φc)• W = V+ ½ Ωe

2 rs2 cos2 (Φc)

• g (rs)= ∇V - Ωex (Ωex rs) = gg(rs) + gc(rs)

Page 17: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

17

Geometría de la Tierra y Gravitación

• g (Gravedad) = γ (Gravedad Normal) + “perturbaciones”• γ≡∇ U con U “Potencial Normal” determinado en base al:

• Elipsoide (WGS84) considerado homogéneo. • La masa total M del Tierra.• La velocidad nominal de rotación Ωe

• Por definición γ es normal al Elipsoide de referencia.

• γ(r,Φ) = γe(gravitación del Elipsoide) - Ωex (Ωex r) Aceleración rotacional

Page 18: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

18

Geometría de la Tierra y Gravitación

• Modelo de la Gravedad Normal:

( )*2

2

2 2 2

2 2

00 ;

( , )

( , ) ( ) 1 2 1 2 sin ( ) 3

1 sin( ) ; 1;1 sin

Eg

N

U

s

ps o

o

h

h hh f m fa a

bk a bk ma GM

γ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= γ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥γ −γ Φ⎣ ⎦ ⎣ ⎦

⎛ ⎞⎛ ⎞γ Φ = γ Φ − + + − Φ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠γ+ Φ Ω

γ Φ = γ = − =γ− ε Φ

γ

xg (E)

yg (N)zg(U)

γ

γo = Gravedad Normal ecuatorial = 9.7803253359 m/s2

γp= Gravedad Normal polar = 9.8321849378 m/s2

Ω = Vel. ang. de la Tierra m=0.00344978650684h = Altura sobre el elipsoide G = Cte. de GravitaciónΦ = Latitud Geodésica ε = excentricidadM = Masa de la Tierra f = achatamiento del elipsoide.

* National Imagery and Mapping Agency (NIMA) Technical Report on WGS84; mar/2001

Page 19: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

19

Geometría de la Tierra y GravitaciónDesviación del Modelo Elipsoidal : Perturbación de La Gravedad

Centro del elipsoide

Ejes del elipsoide

Sup. terrestre

Geoide

Elipsoide de ref.

Sup. equipotencial

Gravedad

Gravedad Normal(Normal al Elipsoide)

Posición del vehículo

Latitud astronómica

Latitud geodésica

Anomalía de la gravedad

Page 20: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

20

Page 21: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

21

Geometría de la Tierra y GravitaciónGravedad y Gravedad Normal

Perturbación de la gravedad

Page 22: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

22

Mapa de Anomalías

Page 23: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

23

Relación entre Deflexión de la Vertical y Anomalías

N

O η

ξ

Geoide

Elipsoide

γ

Qe

Pg

g Igual potencial en Gals

Page 24: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

24

Geometría de la Tierra y GravitaciónAnomalía de la gravedad y deflexión de la vertical

• Def.: Anomalía de la gravedad∆g := |g(Pg)| – |γ(Qe)| : Corrección del módulo de γ

• Def.: Deflexión de la vertical: Corrección angular de γ– Deflexión meridiana (N-S) = ξ.– Deflexión paralela (E-O) = η

• Para vuelos atmosféricos y suborbitales es posible utilizar la formula:

.

( ) 1E

g gN

U Corr

gcorregida−⎡ ⎤ ⎡ ⎤

⎛ ⎞∆⎢ ⎥ ⎢ ⎥= = +⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

g γγ γ ηγ γ ξ

γγ γ

Page 25: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

25

Geometría de la Tierra y GravitaciónTransformación de coordenadas LGV (g) (geográficas) a LAV (a)

(astronómicas)

xe

Ω

λ

Φ

hTerna LGV

E, xg

N, ygU, zg

z’

Φ

∆λ

cos( )η λ= ∆ Φ sin( )∆ Φλ

ξ

1 tan( )tan( ) 1

1

ag

η ηη ξ

η ξ

Φ −⎡ ⎤⎢ ⎥= − Φ⎢ ⎥⎢ ⎥−⎣ ⎦

C

Cga en función de la Deflexión Vertical

ξ = Φα−Φ

∆λ=λa-λ=η/cos(Φ)

Usando:

yi =ye

ze

Page 26: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

26

Geometría de la Tierra y GravitaciónExpansión Armónica Esférica del Potencial Gravitacional Terrestre

• Válido para todo r = (x2 + y2 + z2)1/2 ≥ a • x, y, z coordenadas ECEF.• n y m respectivamente grado y orden de la expansión

( )max

2 0( , , ) 1 (sin ) cos sin

( )

;( / 84)

nn n

c nm c nm nmn m

nm

nm nm

GM aV r P C m S mr r

P x PolinomiodeLegendreNormalizado

C S Coeficientesdela expansión harmónica esféricaSHC WGS normalizados

Longitud Geocéntr

= =

⎡ ⎤⎛ ⎞Φ = + Φ +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

=

=

=

∑∑λ λ λ

λ

c

icaLatitud Geocéntricaradiovector geocéntrico

Φ =

=r

Page 27: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

27

Geometría de la Tierra y GravitaciónExpansión Esférica del Vector Gravitación

• Vector Gravitación en Coordenadas Locales Geocéntricas (“c-ENU”)

( )1/ 22 2 2

22 0

12

1 1; ; ; ( ) ( ) ( )cos

1 .( sin cos ) (sin )cos

( cos sin ).( (sin ) ta

c c c e e e e egE gN gUe

cc

nncgE nm nm nm ce e

n mc

ncgN nm nm nm ce e

V V Vg g g r x y zr rr

GM ag m C m S m Pr r

GM ag C m S m P mr r

= =

+

∂ ∂ ∂= = = = = + +

∂ ∂Φ ∂Φ

⎡ ⎤⎛ ⎞= − − Φ⎢ ⎥⎜ ⎟Φ ⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞= + Φ −⎜ ⎟⎝ ⎠

∑∑

λ λ

λ λ

[ ]

2 0

22 0

n (sin )

1 ( 1) ( cos sin ) (sin )

;

n

c nm cn m

nncgU nm nm nm ce e

n m

c

P

GM ag n C m S m Pr r

Longitud Geocéntrica Latitud Geocéntrica

= =

= =

⎡ ⎤Φ Φ⎢ ⎥

⎢ ⎥⎣ ⎦⎡ ⎤⎛ ⎞= − + + + Φ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

= Φ =

∑∑

∑∑ λ λ

λ

Page 28: Ternas de Referencia Geodesia y Gravedadlaboratorios.fi.uba.ar/lscm/espana/apuntes/CLASE2_Ternas_Geo... · 1 Ternas de Referencia Geodesia y Gravedad • Ternas de referencia (ECEF,

28Zonales ---- Teserales ---------------------Sectoriales

Términos de la expansión esférica