template ATMOS 2015 Official - ESA SEOMseom.esa.int/atmos2015/files/presentation36.pdf · C. E....

1
C. E. Robert, C. Bingen, F. Vanhellemont, N. Mateshvili, D. Fussen, C. Tétard, E. Dekemper D. Pieroux BIRA-IASB, Brussels This research is supported by a Marie Curie CIG Grant funded by the European Union 7 th Framework Program under grant agreement n°293560. 200 100 0 100 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomace)/(ace) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomace)/(ace) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomace)/(ace) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergompoam3)/(poam3) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergompoam3)/(poam3) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergompoam3)/(poam3) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomsage3)/(sage3) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomsage3)/(sage3) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomsage3)/(sage3) [%] Altitude [km] Rel. Diff. 452 nm Rel. Diff. 525 nm Rel. Diff. 385 nm Rel. Diff. 520 nm Rel. Diff. 755 nm SAGE III Rel. Diff. 525 nm Rel. Diff. 675 nm Rel. Diff. 779 nm SAGE II POAM III Rel. Diff. 354 nm Rel. Diff. 603 nm Rel. Diff. 779 nm ACE Rel. Diff. 350 nm Rel. Diff. 550 nm Rel. Diff. 756 nm OSIRIS bright+cold midbright+cold dim+cold bright+midcold midbright+midcold dim+midcold bright+hot midbright+hot dim+hot Legend 200 100 0 100 200 10 15 20 25 30 35 (aergomsage2)/(sage2) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomsage2)/(sage2) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomace)/(ace) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomace)/(ace) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergomace)/(ace) [%] Altitude [km] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergompoam3)/(poam3) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergompoam3)/(poam3) [%] Altitude [km] 200 100 0 100 200 10 15 20 25 30 35 (aergompoam3)/(poam3) [%] Altitude [km] Rel. Diff. 603 nm Rel. Diff. 779 nm POAM III Rel. Diff. 779 nm Rel. Diff. 603 nm Rel. Diff. 525 nm Rel. Diff. 756 nm ACE OSIRIS Rel. Diff. 550 nm Rel. Diff. 350 nm Rel. Diff. 354 nm Legend sza 110120 sza 120130 sza 130140 sza 140150 sza 150160 sza 160170 sza 170180 0 50 100 150 200 250 300 10 15 20 25 30 35 (aergomgopr)/(gopr) [%] Altitude [km] 0 50 100 150 200 250 300 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] 0 50 100 150 200 250 300 10 15 20 25 30 35 (aergomace)/(ace) [%] Altitude [km] 0 50 100 150 200 250 300 10 15 20 25 30 35 (aergomsage2)/(sage2) [%] Altitude [km] 10 6 10 5 10 4 10 3 10 2 10 15 20 25 30 35 Extinction [km1] Altitude [km] 10 6 10 5 10 4 10 3 10 2 10 15 20 25 30 35 Extinction [km1] Altitude [km] 200 150 100 50 0 50 100 150 200 10 15 20 25 30 35 (aergompoam3)/(poam3) [%] Altitude [km] 354 nm 439 nm 602 nm 778 nm 200 150 100 50 0 50 100 150 200 10 15 20 25 30 35 (aergomsage3)/(sage3) [%] Altitude [km] 200 150 100 50 0 50 100 150 200 10 15 20 25 30 35 (aergomsage2)/(sage2) [%] Altitude [km] 452 nm 525 nm 200 150 100 50 0 50 100 150 200 10 15 20 25 30 35 (aergomace)/(ace) [%] Altitude [km] 525 nm 603 nm 675 nm 779 nm ACE (sage3) 384 nm (aergom) 384 nm (sage3) 448 nm (aergom) 448 nm (sage3) 520 nm (aergom) 520 nm (sage3) 755 nm (aergom) 755 nm SAGE2 384 nm 448 nm 520 nm 755 nm SAGE3 POAM3 Relative Difference (Interquartile Mean) Absolute Extinction (Interquartile Mean) (poam3) 354 nm (aergom) 354 nm (poam3) 439 nm (aergom) 439 nm (poam3) 602 nm (aergom) 602 nm (poam3) 778 nm (aergom) 778 nm 200 150 100 50 0 50 100 150 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] 350 nm 550 nm 756 nm OSIRIS 10 6 10 5 10 4 10 3 10 2 10 15 20 25 30 35 Extinction [km1] Altitude [km] (osiris) 350 nm (aergom) 350 nm (osiris) 550 nm (aergom) 550 nm (osiris) 756 nm (aergom) 756 nm 10 6 10 5 10 4 10 3 10 2 10 15 20 25 30 35 Extinction [km1] Altitude [km] (ace) 525 nm (aergom) 525 nm (ace) 603 nm (aergom) 603 nm (ace) 675 nm (aergom) 675 nm (ace) 779 nm (aergom) 779 nm 10 6 10 5 10 4 10 3 10 2 10 15 20 25 30 35 Extinction [km1] Altitude [km] (sage2) 452 nm (aergom) 452 nm (sage2) 525 nm (aergom) 525 nm 10 6 10 5 10 4 10 3 10 2 10 15 20 25 30 35 Extinction [km1] Altitude [km] (gopr) 350 nm (aergom) 350 nm (gopr) 550 nm (aergom) 550 nm (gopr) 756 nm (aergom) 756 nm 200 150 100 50 0 50 100 150 200 10 15 20 25 30 35 (aergomgopr)/(gopr) [%] Altitude [km] 350 nm 550 nm 756 nm GOPR N=1017 N=3158 N=634 N=1364 N=13625 N=20000 Relative Difference Variability (Semi-Interquartile Range) 0 50 100 150 200 250 300 10 15 20 25 30 35 (aergomsage3)/(sage3) [%] Altitude [km] 0 50 100 150 200 250 300 10 15 20 25 30 35 (aergompoam3)/(poam3) [%] Altitude [km] Altitude [km] What is AerGom? Aergom is an improved stratospheric aerosol extinction retrieval algorithm for the GOMOS mission that uses a measurement technique based on stellar occultation. It’s important! The data derived from this algorithm are used internationally in the framework of the Aerosol Climate Change Initiative and the SPARC Data Initiative. AerGom Contact the author: [email protected] Intercomparisons Methodology In this work, we carried out a systematic comparison of the retrieved stratospheric aerosols coefficients by AerGom at various wavelengths with colocated observations (± 12h, 500 km) from multiple satellite instruments: SAGE II,SAGE III, POAM III,ACEMAESTRO, and OSIRIS. You can see the coverage of these satellite datasets in Fig. 1. We also performed comparisons with the official GOMOS processor (GOPR) v6.01. Why do it? These results are helpful because: they point out discrepancies between various datasets the bias determination can be used for merging multiplatform time series spanning decades it helps improve retrieval algorithms (either AerGom or others) Coverage AerGom SAGE 3 POAM 3 SAGE 2 ACE8MAESTRO OSIRIS Fig. 1 Latitude and temporal coverage for the various instruments used for the comparisons. The number of observations per month is calculated for a 10° latitude bin. Fig. 2 Relative difference interquartile mean (left panel), semiinterquartile range of the relative difference (central panel) and interquartile mean of the absolute aerosol extinction profiles (right panel) for each dataset at various wavelengths compared with colocated AerGom profiles. The dashed curves in the relative difference plots were calculated using GOPR instead of AerGom. Intercomparisons results The results of the intercomparisons are shown in Fig. 2. From these plots, one can make some general assertions: Agreement is typically within ± 50% for extinctions in the 400603 nm spectral range, and between 15 and 30 km tangent altitudes. The variability of the AerGom comparisons with other datasets is usually smaller then those made with GOPR. AerGom aerosol extinction profiles for λ > 700 nm present a strong negative bias above 2530 km with respect to other instruments, increasing towards higher altitudes. To carry out this study, we used the SAGE II, SAGE III, POAM III,ACEMAESTRO and OSIRISdatasets as reference (as they should not be influenced by these parameters), and looked for differences in the comparison results due to specific occultation parameters. For conciseness, we limit ourselves to the examination of two occultation parameterson the AerGom retrievals. Fig. 6 shows the impact of the SZA during the occultation, while Fig. 7 illustrates the effect of the star properties. Recent modifications to the retrieval algorithm gas cross sections, along with a proper convolution with the instrument function, seem to significantly improve the stratospheric aerosol extinction coefficients retrieved at larger wavelengths. Fig. 3 shows the progress made at 756 nm (using OSIRISas a reference) when using high resolution crosssections for O 3 , NO 2 and NO 3 . Note that these are preliminary results. AerGom (original) 200 150 100 50 0 50 100 150 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] 350 nm 550 nm 756 nm GOP R AerGom with high resolution cross-sections 200 150 100 50 0 50 100 150 200 10 15 20 25 30 35 (aergomosiris)/(osiris) [%] Altitude [km] Fig. 3 Comparisons of GOMOS profiles with colocated OSIRIS profiles using different versions of the AerGom retrievals: the original AerGom (left) and the latest version using highresolution gas crosssections (right). RESULTS Improvements ! 2 1 0 1 x 10 11 10 20 30 40 50 AERGOM NO 2 Number density [cm 3 ] Altitude [km] Good Bad Climatology 2 1 0 1 2 3 x 10 9 10 20 30 40 50 Number density [cm 3 ] Altitude [km] AERGOM NO 3 2 0 2 4 6 x 10 12 10 20 30 40 50 Number density [cm 3 ] Altitude [km] AERGOM O 3 4 2 0 2 x 10 3 10 20 30 40 50 Extinction [km 1 ] Altitude [km] AERGOM extinction @ 550nm AerGom is an improvement over GOMOS official processor, but it does have issues when performing retrievals with transmission data obtained using dim/cold stars (cf. Fig. 4), which getsthe gasand aerosols species completely wrong in some cases (socalled bad profiles). Fig. 5 shows the mean bad profiles compared with good and climatological profiles. These bad profiles can be easily flagged, but do limit the coverage of the AerGom datasets. Why show this? Because this finding prompted the consideration that some of the retrievals might be affected by occultation parameterssuch as star properties (temperature and magnitude), solar zenith angle (SZA) that could lead to straylight, and occultation obliquity which is an important factor in the imperfect correction of atmospheric scintillation. Do these occultation parameterssystematically affect the AerGom retrievals and if so, to what extent? The case of the Fig. 5 Median gas and aerosol extinction profiles for ‘good’ and ‘bad’ Aergom retrievals Fig. 4 Proportion of bad profiles vs star temperature and magnitude. outlandish profiles Effect of Occultation Parameters Star Properties Fig. 7 Relative differences between AerGom and various datasets for varying star categories. Again, the thick grey curve shows the median of the comparison using all data. See Table 1 for the definition of the various classes of stars in terms of temperature and magnitude. Star Temperature [ 10 3 K] Star Magnitude cold 0–6 bright 1.5 – 1.5 midcold 6 – 26 midbright 1.5 – 2.3 hot 26 – 40 dim 2.3 – 3 Solar Zenith Angles Fig. 6 Relative differences between AerGom and various datasets for different SZA during the occultation. The thick grey curve shows the median of the comparison using all data, the basis for comparison to see if all results are consistent. This work is important to understand the properties of the AerGom retrieval algorithm and even more crucial for data users, who should be aware of possible biases within the data. This detailed analysis leads to the following conclusions: The quality of the retrieval is mainly influenced by the star parametersthat directly impact the SNR of the measurement. The dominant parameter is the magnitude quantifying the strength of the star signal. The comparisons show that a threshold of M < 2.5 is suitable for high quality retrievals. For λ > 750 nm, Hot stars perform worse than cold stars and the recommended threshold is T < 26 x 10 3 K The second most important influence is the SZA. Using a threshold of 110° gives good quality results for extinction at λ < 750 nm, but one should use a threshold value of 130° for extinction at λ > 750 nm. The obliquity influences also the quality of the retrieval but to a lesser extent. Overall, a decrease of quality of the retrieval is only expected for a value of the obliquity above 40°, especially for λ > 750 nm. Results summary Table 1 Classes of star properties (as defined in this work) Assessment of GOMOS stratospheric aerosol extinction coefficients retrieved from the AerGom algorithm using contemporaneous satellite experiments

Transcript of template ATMOS 2015 Official - ESA SEOMseom.esa.int/atmos2015/files/presentation36.pdf · C. E....

Page 1: template ATMOS 2015 Official - ESA SEOMseom.esa.int/atmos2015/files/presentation36.pdf · C. E. Robert, C. Bingen, F. Vanhellemont, N. Mateshvili, D. Fussen, C. Tétard, E. Dekemper

C. E. Robert, C. Bingen, F. Vanhellemont, N. Mateshvili, D. Fussen, C. Tétard, E. Dekemper D. PierouxBIRA-IASB, Brussels

This research is supported by a Marie Curie CIG Grant funded by theEuropean Union 7th Framework Program under grant agreement n°293560.

0 1000 2000 3000 4000 500010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−osiris, λ=350nm

0 1000 2000 3000 4000 500010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−osiris, λ=550nm

0 1000 2000 3000 400010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−osiris, λ=756nm

bright+coldmid−bright+colddim+coldbright+mid−coldmid−bright+mid−colddim+mid−coldbright+hotmid−bright+hotdim+hot

−200 −100 0 100 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* , λ=350nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* , λ=550nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* , λ=756nm

0 100 200 300 400 50010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−ace, λ=525nm

0 100 200 300 40010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−ace, λ=603nm

0 100 200 300 40010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−ace, λ=675nm

0 100 200 30010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−ace, λ=779nm

bright+coldmid−bright+colddim+coldbright+mid−coldmid−bright+mid−colddim+mid−coldbright+hotmid−bright+hotdim+hot

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=525nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=675nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=525nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=675nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=525nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=675nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

0 50 100 150 20010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−poam3, λ=354nm

0 50 100 150 20010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−poam3, λ=440nm

0 50 100 150 20010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−poam3, λ=603nm

0 50 100 150 20010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−poam3, λ=779nm

bright+coldmid−bright+colddim+coldbright+mid−colddim+mid−coldmid−bright+hotdim+hot

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=354nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=440nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=354nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=440nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=354nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=440nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

0 200 400 600 80010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−sage3, λ=384.2687nm

0 200 400 600 80010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−sage3, λ=448.5182nm

0 200 400 600 80010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−sage3, λ=520.312nm

0 200 400 60010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−sage3, λ=755.3782nm

bright+coldmid−bright+colddim+coldbright+mid−coldmid−bright+mid−colddim+mid−coldbright+hotmid−bright+hotdim+hot

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=384.2687nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=448.5182nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=520.312nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=755.3782nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=384.2687nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=448.5182nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=520.312nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=755.3782nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=384.2687nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=448.5182nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=520.312nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* , λ=755.3782nm

0 50 100 150 200 25010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−sage2, λ=452nm

0 50 100 150 200 25010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−sage2, λ=525nm

bright+coldmid−bright+colddim+coldbright+mid−coldmid−bright+mid−colddim+mid−coldbright+hotmid−bright+hotdim+hot

Star)properties NEWRel.)Diff.) )452$nm Rel.)Diff.) )525$nm #)observations)[452)nm]

#)observations)[520)nm]Rel.)Diff.) )385$nm Rel.)Diff.) )520$nm Rel.)Diff.) )755$nm

SAGE)III

poam3

#)observations)[525)nm]Rel.)Diff.) )525$nm Rel.)Diff.) )675$nm Rel.)Diff.) )779$nm

#)observations)[440)nm]

SAGE)II

POAM)III

Rel.)Diff.) )354$nm Rel.)Diff.) )603$nm Rel.)Diff.) )779$nm

ACE

#)observations)[525)nm]Rel.)Diff.) )350$nm Rel.)Diff.) )550$nm Rel.)Diff.) )756$nm

OSIRIS

0 200 400 600 8005

10

15

20

25

30

35

Number of data points available

Alti

tude

[km

]

Data available: aergom−sage3, λ=384.2687nm

0 200 400 600 8005

10

15

20

25

30

35

Number of data points available

Alti

tude

[km

]

Data available: aergom−sage3, λ=448.5182nm

0 200 400 600 8005

10

15

20

25

30

35

Number of data points available

Alti

tude

[km

]

Data available: aergom−sage3, λ=520.312nm

0 200 400 6005

10

15

20

25

30

35

Number of data points available

Alti

tude

[km

]

Data available: aergom−sage3, λ=755.3782nm

bright+coldmid−bright+colddim+coldbright+mid−coldmid−bright+mid−colddim+mid−coldbright+hotmid−bright+hotdim+hot

Legend

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage2)/(sage2) [%]

Altit

ude

[km

]

*mean2575* , λ=452nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−sage2)/(sage2) [%]

Altit

ude

[km

]

*mean2575* , λ=525nm

0 1000 2000 3000 4000 500010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−osiris, λ=350nm

0 1000 2000 3000 4000 500010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−osiris, λ=550nm

0 1000 2000 3000 4000 500010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−osiris, λ=756nm

sza 110−120sza 120−130sza 130−140sza 140−150sza 150−160sza 160−170sza 170−180

−200 −100 0 100 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* , λ=350nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* , λ=550nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* , λ=756nm

0 100 200 300 400 50010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−ace, λ=525nm

0 100 200 300 400 50010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−ace, λ=603nm

0 100 200 300 400 50010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−ace, λ=675nm

0 100 200 300 40010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−ace, λ=779nm

sza 110−120sza 120−130sza 130−140sza 140−150sza 150−160sza 160−170

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=525nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=675nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=525nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=675nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

0 100 200 300 40010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−poam3, λ=354nm

0 100 200 300 40010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−poam3, λ=440nm

0 100 200 300 40010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−poam3, λ=603nm

0 100 200 300 40010

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

aergom−poam3, λ=779nm

sza 110−120sza 120−130sza 130−140

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=354nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=440nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=354nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=440nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=354nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=440nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=603nm

−200 −100 0 100 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* , λ=779nm

SZA#)observations)[603)nm]Rel.)Diff.) )603$nm Rel.)Diff.) )779$nm

POAM)III

#)observations)[525)nm]Rel.)Diff.) )779$nmRel.)Diff.) )603$nmRel.)Diff.) )525$nm

Rel.)Diff.)756$nm #)observations)[550)nm]

ACE

OSIRIS

Rel.)Diff.)550$nmRel.)Diff.)350$nm

Rel.)Diff.) )354$nm

Legend

0 1000 2000 3000 4000 50005

10

15

20

25

30

35

Number of data points available

Altit

ude

[km

]

Data available: aergom−osiris, λ=350nm

sza 110−120sza 120−130sza 130−140sza 140−150sza 150−160sza 160−170sza 170−180

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−gopr)/(gopr) [%]

Altit

ude

[km

]

*siqr* aergom−gopr, good_aergom_data

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−gopr)/(gopr) [%]

Altit

ude

[km

]

*siqr* aergom−gopr, good_aergom_data

350 nm550 nm756 nm

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*siqr* aergom−osiris, good_aergom_data

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*siqr* aergom−osiris, good_aergom_data

350 nm550 nm756 nm

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*siqr* aergom−ace, good_aergom_data

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

*siqr* aergom−ace, good_aergom_data

525 nm603 nm675 nm779 nm

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−sage2)/(sage2) [%]

Altit

ude

[km

]

*siqr* aergom−sage2, good_aergom_data

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−sage2)/(sage2) [%]

Altit

ude

[km

]

*siqr* aergom−sage2, good_aergom_data

452 nm525 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

*mean2575* aergom−sage3, good_aergom_data

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

*mean2575* aergom−sage3, good_aergom_data

(sage3) 384 nm(aergom) 384 nm(sage3) 448 nm(aergom) 448 nm(sage3) 520 nm(aergom) 520 nm(sage3) 755 nm(aergom) 755 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

*mean2575* aergom−poam3, good_aergom_data

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

*mean2575* aergom−poam3, good_aergom_data

(poam3) 354 nm(aergom) 354 nm(poam3) 439 nm(aergom) 439 nm(poam3) 602 nm(aergom) 602 nm(poam3) 778 nm(aergom) 778 nm

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* aergom−poam3, good_aergom_data

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*mean2575* aergom−poam3, good_aergom_data

354 nm439 nm602 nm778 nm

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* aergom−sage3, good_aergom_data

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*mean2575* aergom−sage3, good_aergom_data

384 nm448 nm520 nm755 nm

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−sage2)/(sage2) [%]

Altit

ude

[km

]

*mean2575* aergom−sage2, good_aergom_data

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−sage2)/(sage2) [%]

Altit

ude

[km

]

*mean2575* aergom−sage2, good_aergom_data

452 nm525 nm

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]Al

titud

e [k

m]

aergom−ace comparison

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−ace)/(ace) [%]

Altit

ude

[km

]

aergom−ace comparison

525 nm603 nm675 nm779 nm

ACE

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−sage3 comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−sage3 comparison

(sage3) 384 nm(aergom) 384 nm(sage3) 448 nm(aergom) 448 nm(sage3) 520 nm(aergom) 520 nm(sage3) 755 nm(aergom) 755 nm

SAGE2

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

aergom−sage3 comparison

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

aergom−sage3 comparison

384 nm448 nm520 nm755 nm

SAGE3

POAM3

Relative Difference(Interquartile Mean)

Absolute Extinction(Interquartile Mean)

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−poam3 comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−poam3 comparison

(poam3) 354 nm(aergom) 354 nm(poam3) 439 nm(aergom) 439 nm(poam3) 602 nm(aergom) 602 nm(poam3) 778 nm(aergom) 778 nm

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

aergom−osiris comparison

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

aergom−osiris comparison

350 nm550 nm756 nm

OSIRIS

WITH%GOPR!!

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−osiris comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−osiris comparison

(osiris) 350 nm(aergom) 350 nm(osiris) 550 nm(aergom) 550 nm(osiris) 756 nm(aergom) 756 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−osiris comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−osiris comparison

(osiris) 350 nm(aergom) 350 nm(osiris) 550 nm(aergom) 550 nm(osiris) 756 nm(aergom) 756 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−ace comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−ace comparison

(ace) 525 nm(aergom) 525 nm(ace) 603 nm(aergom) 603 nm(ace) 675 nm(aergom) 675 nm(ace) 779 nm(aergom) 779 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Alti

tude

[km

]

aergom−ace comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Alti

tude

[km

]

aergom−ace comparison

(ace) 525 nm(aergom) 525 nm(ace) 603 nm(aergom) 603 nm(ace) 675 nm(aergom) 675 nm(ace) 779 nm(aergom) 779 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−sage2 comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−sage2 comparison

(sage2) 452 nm(aergom) 452 nm(sage2) 525 nm(aergom) 525 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−sage2 comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−sage2 comparison

(sage2) 452 nm(aergom) 452 nm(sage2) 525 nm(aergom) 525 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−gopr comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−gopr comparison

(gopr) 350 nm(aergom) 350 nm(gopr) 550 nm(aergom) 550 nm(gopr) 756 nm(aergom) 756 nm

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−gopr comparison

10−6 10−5 10−4 10−3 10−210

15

20

25

30

35

Extinction [km−1]

Altit

ude

[km

]

aergom−gopr comparison

(gopr) 350 nm(aergom) 350 nm(gopr) 550 nm(aergom) 550 nm(gopr) 756 nm(aergom) 756 nm

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−gopr)/(gopr) [%]

Altit

ude

[km

]

aergom−gopr comparison

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−gopr)/(gopr) [%]

Altit

ude

[km

]

aergom−gopr comparison

350 nm550 nm756 nm

GOPR

N=1017

N=3158

N=634

N=1364

N=13625

N=20000

Relative Difference Variability(Semi-Interquartile Range)

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*siqr* aergom−sage3, good_aergom_data

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−sage3)/(sage3) [%]

Altit

ude

[km

]

*siqr* aergom−sage3, good_aergom_data

384 nm448 nm520 nm755 nm

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*siqr* aergom−poam3, good_aergom_data

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−poam3)/(poam3) [%]

Altit

ude

[km

]

*siqr* aergom−poam3, good_aergom_data

354 nm439 nm602 nm778 nm

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−gopr)/(gopr) [%]

Alti

tude

[km

]

*siqr* aergom−gopr, good_aergom_data

0 50 100 150 200 250 30010

15

20

25

30

35

(aergom−gopr)/(gopr) [%]

Alti

tude

[km

]

*siqr* aergom−gopr, good_aergom_data

350 nm550 nm756 nm

What is AerGom?Aergom is  an  improved   stratospheric  aerosol  extinction  retrieval  algorithm  for  the  GOMOS  mission   that  uses  a  measurement  technique  based  on  stellar  occultation.  

It’s important!The  data  derived  from  this  algorithm  are  used  internationally  in  the  framework  of  the  Aerosol  Climate  Change  Initiative  and  the  SPARC  Data  Initiative.

Everything  must  be  half  the  final  size  !!!  I  will  scale  it  up!!!

AerGom

Contact the author: [email protected]

IntercomparisonsMethodologyIn  this  work,  we  carried  out  a  systematic  comparison  of  the  retrieved  stratospheric  aerosols   coefficients  by  AerGom at  various  wavelengths  with  colocatedobservations   (± 12h,  500 km)  from  multiple  satellite  instruments:  SAGE II,  SAGE III,  POAM III,  ACE-­‐MAESTRO,  and  OSIRIS.  You  can  see  the  coverage  of  these  satellite  datasets  in  Fig.  1.  We  also  performed  comparisons  with  the  official  GOMOS  processor   (GOPR)  v6.01.

Why do it?These  results  are  helpful   because:  

›❯ they  point  out  discrepancies   between  various  datasets

›❯ the  bias  determination  can  be  used  for  merging  multi-­‐platform  time  series  spanning   decades

›❯ it  helps   improve  retrieval  algorithms  (either  AerGomor  others)

CoverageAerGom

SAGE$3

POAM$3

SAGE$2

ACE8MAESTRO

OSIRIS

Fig.  1      Latitude  and  temporal  coverage  for  the  various  instruments   used  for  the  comparisons.  The  number  of  observations   per  month  is  calculated   for  a  10° latitude   bin.

Fig.  2        Relative   difference  interquartile   mean  (left  panel),  semi-­‐interquartile  range  of  the  relative  difference  (central  panel)  and  interquartile   mean  of  the  absolute  aerosol  extinction   profiles  (right   panel)  for  each  dataset  at  various  wavelengths  compared  with  colocated AerGom profiles.  The  dashed  curves  in  the  relative  difference  plots  were  calculated   using  GOPR  instead  of  AerGom.  

Intercomparisons results

The  results   of  the  intercomparisons are  shown   in  Fig.  2.  From  these  plots,   one  can  make  some  general  assertions:

›❯ Agreement  is  typically  within  ± 50%  for  extinctions  in  the  400-­‐603 nm  spectral  range,  and  between  15  and  30 km  tangent  altitudes.

›❯ The  variability   of  the  AerGom comparisons  with  other  datasets  is  usually   smaller  then  those  made  with  GOPR.

›❯ AerGom aerosol  extinction  profiles  for  λ >  700 nm  present  a  strong  negative  bias  above  25-­‐30 km  with  respect  to  other  instruments,   increasing  towards  higher    altitudes.  

To  carry  out  this  study,  we  used   the  SAGE II,  SAGE III,  POAM III,  ACE-­‐MAESTRO  and  OSIRIS  datasets  as  reference  (as  they  should   not  be  influenced  by  these  parameters),  and  looked  for  differences  in  the  comparison   results  due  to  specific   occultation  parameters.  

For  conciseness,   we  limit  ourselves   to  the  examination  of  two  occultation  parameters  on  the  AerGom retrievals.  Fig.  6  shows   the  impact  of  the  SZA  during  the  occultation,  while  Fig.  7  illustrates  the  effect  of  the  star  properties.  

Recent  modifications   to  the  retrieval  algorithm  gas  cross-­‐sections,   along  with  a  proper  convolution  with  the  instrument  function,   seem  to  significantly   improve  the  stratospheric  aerosol  extinction  coefficients  retrieved  at  larger  wavelengths.  Fig.  3  shows   the  progress  made  at  756 nm  (using  OSIRIS  as  a  reference)  when  using   high  resolution   cross-­‐sections   for  O3,  NO2 and  NO3.  Note  that  these  are  preliminary   results.

AerGom (original)

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* aergom−osiris, good_aergom_data

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* aergom−osiris, good_aergom_data

350 nm550 nm756 nm

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* aergom−osiris, good_aergom_data

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* aergom−osiris, good_aergom_data

350 nm550 nm756 nm

GOPR

AerGom with high resolution cross-sections

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* aergom−osiris, good_aergom_data

−200 −150 −100 −50 0 50 100 150 20010

15

20

25

30

35

(aergom−osiris)/(osiris) [%]

Altit

ude

[km

]

*mean2575* aergom−osiris, good_aergom_data

350 nm550 nm756 nm

Fig.  3      Comparisons  of  GOMOS  profiles  with  colocated OSIRIS  profiles  using  different  versions  of  the  AerGom retrievals:   the  original   AerGom (left)  and  the  latest  version  using  high-­‐resolution   gas  cross-­‐sections  (right).

RESULTS

Improvements !

−2 −1 0 1x 1011

10

20

30

40

50AERGOM − NO2

Number density [cm−3]

Altit

ude

[km

]

GoodBadClimatology

−2 −1 0 1 2 3x 109

10

20

30

40

50

Number density [cm−3]

Altit

ude

[km

]

AERGOM − NO3

−2 0 2 4 6x 1012

10

20

30

40

50

Number density [cm−3]

Altit

ude

[km

]

AERGOM − O3

−4 −2 0 2x 10−3

10

20

30

40

50

Extinction [km−1]

Altit

ude

[km

]

AERGOM − extinction @ 550nm

AerGom is  an  improvement  over  GOMOS  official  processor,   but  it  does  have  issues   when  performing  retrievals  with  transmission  data  obtained  using  dim/cold   stars  (cf.  Fig.  4),  which  gets  the  gas  and  aerosols  species   completely  wrong  in  some  cases  (so-­‐called  bad  profiles).   Fig.  5  shows  the  mean  bad profiles   compared  with  good and  climatological profiles.  These  bad profiles  can  be  easily  flagged,  but  do  limit  the  coverage  of  the  AerGom datasets.

Why show this?Because  this  finding   prompted  the  consideration   that  some  of  the  retrievals  might  be  affected  by  occultation  parameters  such   as  star  properties  (temperature  and  magnitude),   solar  zenith  angle  (SZA)  that  could  lead  to  straylight,  and  occultation  obliquity  which  is  an  important  factor  in  the  imperfect  correction  of  atmospheric  scintillation.  Do  these  occultation  parameters  systematically  affect  the  AerGom retrievals  and  if  so,   to  what  extent?  

The case of the

Fig.  5    Median  gas  and  aerosol  extinction   profiles  for  ‘good’   and  ‘bad’    Aergomretrievals

!Fig.  4      Proportion   of  bad  profiles  vs  star  temperature  and  magnitude.

outlandish profiles

Effect of Occultation Parameters Star Properties

Fig.  7      Relative  differences  between  AerGom and  various   datasets  for  varying   star  categories.  Again,  the  thick  grey  curve  shows  the  median  of  the  comparison  using  all  data.  See  Table  1  for  the  definition  of  the  various   classes  of  stars  in  terms  of  temperature  and  magnitude.

Star  Temperature  [  103  K  ] Star  Magnitude

cold 0  – 6 bright -­‐1.5  – 1.5

mid-­‐cold 6  – 26 mid-­‐bright 1.5  – 2.3  

hot 26  – 40 dim 2.3  – 3

Solar Zenith Angles

Fig.  6     Relative  differences  between  AerGom and  various   datasets  for  different  SZA  during  the  occultation.   The  thick  grey  curve  shows  the  median  of  the  comparison  using  all  data,  the  basis  for  comparison  to  see  if  all  results  are  consistent.

This  work  is  important  to  understand   the  properties  of  the  AerGom retrieval  algorithm  and  even  more  crucial  for  data  users,  who  should   be  aware  of  possible   biases  within  the  data.  This  detailed  analysis   leads  to  the  following   conclusions:

›❯ The  quality   of  the  retrieval  is  mainly   influenced  by  the  star  parameters  that  directly  impact  the  SNR  of  the  measurement.  The  dominant  parameter  is  the  magnitude  quantifying   the  strength  of  the  star  signal.  The  comparisons   show  that  a  threshold  of  M  <  2.5  is  suitable  for  high  quality   retrievals.  For  λ >  750 nm,  Hot  stars  perform  worse  than  cold  stars  and  the  recommended  threshold   is  T  <  26  x  103 K

›❯ The  second  most  important  influence   is  the  SZA.  Using  a  threshold   of  110° gives  good  quality  results  for  extinction  at  λ <  750 nm,  but  one  should   use  a  threshold   value  of  130° for  extinction  at  λ >  750 nm.

›❯ The  obliquity   influences   also  the  quality   of  the  retrieval  but  to  a  lesser   extent.  Overall,  a  decrease  of  quality  of  the  retrieval  is  only  expected  for  a  value  of  the  obliquity   above  40°,  especially   for  λ >  750 nm.

➍ ➎

➏ Results summary➐

Table  1      Classes  of  star  properties  (as  defined  in  this  work)

Assessment of GOMOS stratospheric aerosol extinction coefficients retrieved from the AerGom algorithm using contemporaneous satellite experiments