T. R. Routray School of Physics Sambalpur …...The total nuclear direct and exchange energy density...

33
T. R. Routray School of Physics Sambalpur University, Jyotivihar, Burla, India 1

Transcript of T. R. Routray School of Physics Sambalpur …...The total nuclear direct and exchange energy density...

T. R. Routray School of Physics

Sambalpur University, Jyotivihar, Burla, India

1

)21(2

),,(),,(u

2/1

lim),(u

n

p

p

p

p

p Y

YkuYk

Yk

2

),,(),,(u

2/1

lim),(u

np

pp

p

YkuYk

Yk

.21

,,,momentum

p

pn

pn

p

ppn

ρ

Yρk

Isovector part of mean field

Isoscalar part of mean field

2 ),()21(),(),,()( kuYkuYku pp

pn

For the purpose,

ρn & ρp densities → respective Fermi-Dirac

distribution functions,

The energy density in ANM at temperature T,

kd)k(f 3p,nTp,n

)(and)(),(),( rvrvrvrv ulex

lex

uld

ld

.|)(|])()()()([2

1

|)(|])()()()([2

1

)()()(2

1

33

33

3322

kdkdkkgkfkfkfkf

kdkdkkgkfkfkfkf

rdrvrdrv

ul

ex

n

T

p

T

p

T

n

T

l

ex

p

T

p

T

n

T

n

T

ul

dpn

l

dpn

3

kdkkfkfm

H p

T

n

TpnT

322

)]()([2

),(

),( pnTV

),( pnTV

][),,(

,

,

pn

T

Tp

pn

Tf

HYk

ent termrearrangem

|)(|)()|(|)(

r(r)dvr(r)dv),ρ(k,u

33

3

d

3

dpn

p

T

kdkkgkfkdkkgkf ul

ex

n

T

l

ex

p

T

ul

n

l

p

ent termrearrangem

|)(|)()|(|)(

r(r)dvr(r)dv),,(

33

3

d

3

d

kdkkgkfkdkkgkf

ku

ul

ex

p

T

l

ex

n

T

ul

p

l

npn

n

T

pniYkum

kYk p

i

Tp

i

T ,),,,(2

),,(22

rdrvekkg ull

ex

rkkiull

ex

3,)(, )(|)(|

4

rd2

vv

)(

)(9

2rd

2

vv

2

rd2

vv),(

),(2

),(

3exex

2

2

13dd

3dd

22

ull

f

full

ull

rk

rkj

ku

kum

kk

5

rd2

vv

)(

)(3

2rd

2

vv

210

3)(

2

3,2/,0

3exex

2

1

23dd

222

3/12

ull

n

n

ullf

fpnpn

rk

rkj

m

kH

kkkTatSNMIn

rd

2

vv

)(

)(3)( 3exex1

0

ull

f

f

rk

rkjkrj

rdrkjrvrvrkjkrjku f

ul

ex

l

exf

ex 3

000 )()]()([)]()([2

),(

6

),(),(3

)(2),(u

22

kukkm

kEk ex

f

f

S

rdrvrvrk

rkjrkjkrjku ul

ex

l

ex

f

f

f

ex 31

00 ])()([)(

)(3])()([

2),(

),(2

)()(

)],(),([),(),(

22

kum

k

d

ede

kukukuku

exf

ff

onentiale

Gaussiane

Yukawar

erf

rb

Pxt

rPxtrV

r

r

r

eff

exp,

,

,/

)(

11

61

/

/

/

33

00

22

3/1

0

2

0

22

1

05

2

0

2

3,]/)([)(,

2

)(

1

00

0

0

11

0

f

f

f

T

kHem

kT

e

mcb

f

7

rfPMPHPBPW

parametersnInteractioofnumberstotalhasSEI 11

andMHBWxtxtb ,,,,,,,,, 3300

Gaussian

dtek

eekk

kI

Yukawakkkk

kk

kk

kk

kk

kk

f

f

ff

kk

kk

t

f

kkkk

f

G

ff

ff

f

f

f

f

/)(

/)(3

322

3

4

2

1

2

1

2

2

2

2

22

22

3

2222

2

4

3

8

3),(

tantan2

3

2

3

)(

)(ln

8

)(3

8

0

ex

3exex1

0 rd2

vv

)(

)(3)(

ull

f

f

rk

rkjkrj

fieldmeanofpartdependentmomentumtheinparameterstwo

Gaussian

Yukawarangeandul

ex

l

ex

/2

,/1,2

ex

),( kI

),( kIY

2

,)(

)],(),([)(

),()(

ex

ex

0

00300

ex0

0

0

00

ul

ex

l

ex

f

f

ff

eTkIkIS

kSTe

PARAMETER

YUKAWA GAUSSIAN

-129.247 -96.2443

α (fm) 0.42316 0.75766

9

)161.0(37,16)( 3

00 0

fmMeVTMeVe f

J.Phys. G: Nucl. Part. 24 (1998) 2073

0),( 0300 ku

and Ʌ - determined simultaneously using an optimisation procedure

rdrvrvrk

rkjrkjkrjku ul

ex

l

ex

f

f

f

ex 31

00 ])()([)(

)(3])()([

2),(

)1988(296738. PRCWiringaR

10

rdrvrk

rkj

rk

rkjrkju

ue

em

ku

kIkITeku

rdrrvrk

rkj

kr

krjm

k

k

k

mk

m

m

ex

f

f

f

f

f

ex

R

ex

R

f

R

fexf

ex

f

f

311

0

22

0000

1

3211

2

1

2

*

)()(3)(3

)()(

)()(

)(10

)(

)],(),([)(),(

)()(3)(

1

),(,

00

Properties Yukawa Gaussian

𝑚∗

𝑚(k=𝑘𝑓0

,ρ0) 0.686 0.709

𝑚∗

𝑚(k=0,ρ0) 0.609 0.660

𝑢 (k=∞,ρ0)MeV 35.89 12.68 𝑢 (k=0,ρ0) MeV -73.11 -70.05 𝑢𝑅(ρ0) MeV

15.93 16.91

11

l

l0

rdrfMHBWx

t 3

0

0

0 )()2/2/()1(2

ul0

rdrfBWx

t 3

00

0 )()2/()2(2

l )1(

123

1

03 x

t

)2(12

3

1

0

3 xt

lex rdrfBHWM 3

0 )()2/2/(

ulex rdrfHM 3

0 )()2/(

=

=

=

=

=

=

)(

)(4)(

32/3

33

Gaussian

Yukawardrf

12

ANMof

parametersb ul

ex

l

ex

ullull 09and,,,,,,, 00

SNMofparametersandb ex 06,,,, 0

1

05

2 11

0 )(

e

mcb

fT

EOSofstiffnesstheeser

propertiesSaturationand

mindet

0

kdkdkkgkfkf

bkdkkf

mH

exTTex

TT

33

0

2

1

00

2

0322

|)(|)()([2

)1(22)(

2)(

2

)( ull

2

)( 000

ull

2

)( ul

ex

l

exex

13

Danielewicz P et al., Science 298 (2002) 1592

into two specific channels for interactions between like (l) and

unlike (ul) nucleons.

The sign of (εex

l – ε

ex

ul) splitting of n and p effective masses.

)( ulex

lex )( 00

ull )( ull

conditionthistosubject

arbitrarybecansplittingTheex

ul

ex

l

ex ,2)(

rdrfrkjrkjkrjrdrf

ku ff

ul

ex

l

exex 3

0003

0

)()()]()([)(

)(),(

),(),(

3)(2),(

1*22

kum

km

m

kEku ex

kk

f

s

f

1

p

pn,

2

, k

)Yρ,(k,u

k

m1),(k,

m

*m

pn

pY

)(0 **

pn

l

exex mm

)(2 **

npex

l

exex mm 14

15

Hodgson P E, 1994 The Nucleon Optical Model (Singapore: World Scientific, p613

Entropy Density

Behera et al. JPG 38 (2011) 115104

,)(1ln)(1)(ln)()2(

),( 3,0,0,0,0

3

,0 kdknknknknTS n

T

n

T

n

T

n

T

n

16 3/2 ex

l

ex

pn

pn

pn

,),(k,

m

*m),(k,

m

*m00

F. Sammurraca, Int. J. Mod. Phys. E 19 (2010) 1259

17

0

)0,()0,( 0

d

TdETE s

s

)0,( 0 TES ull

ull00

)()()( YYY ep

),(),(),(),(

),(),(),(),(

YPYPYPYP

YHYHYHYH

e

e

p

N

p

NSM

e

e

p

N

p

NSM

),(),(),(),(

)(

YYYY

NSMmatterepnstablebeta

eepppn

18

NSMSp

pp

N

p

NSM

EY

YHYHYS

)()(21

)2/1,(),(),(

2

19

Behera et al., JPG 36 (2009) 125105

Same density dependence of the EOS in ANM for widely varying momentum dependence of the mean field and vice versa; Therefore, the simple effective interaction can be used in the transport model analysis of the flow data.

20

• 09-parameters of ANM three standard

values e(ρ0), ρ0 and 𝐸𝑠(ρ0) for a given γ.

• Out of 11-interaction parameters, two parameters open. We have taken

𝑡0 and 𝑥0

as the open parameters.

• We further constrain one more parameter, namely, 𝑥0

from spin polarization property in NM.

Spin polarized Neutron Matter

21 ,

2

)( ,, ull

ex

ll

exl

ex

,

2

)( ,, ullll

l

2

)( ,

0

,

00

ulllll

pdnu

ndnu

ndnu

ndnu

ndnu

ndnu

,),(k,m

*m),(k,

m

*m

k

),(k,u

k

m1),(k,

m

*m1

ndnu,

2

,

Only one parameter 𝒕𝟎 kept open which shall be determined from finite nucleus.

22

ll

ex

l

ex

l

tx ,

0

00

02

321

rdrfV TOll

ex

3

00

, )(

)034315200775( PRCKrastevGPandSammarrucaF

predictionDBHFwithagreement

l

ex

ull

ex

ll

ex 2)( ,,

l

ex

ll

ex 3

1,

FINITE NUCLEI

The many-body Hamiltonian with an effective interaction

Kinetic Energy Finite range + spin-orbit

Coulomb Interaction

Again,

Simple effective Interaction

Spin-orbit Interaction

23

The total nuclear direct and exchange energy density coming from SEI. The non-local exchange part is made local by using semi-classical ħ-expansion of density matrix upto 2nd order. (X.Viñas et. al. PRC 67 (2003) 014324)

The Spin-orbit interaction taken similar to Skyrme and Gogny interaction.

𝒕𝟎 𝑪𝒂40 𝑾𝟎(strength parameter of Spin-orbit interaction)

𝑃𝑏 208 BEs of 161 - and Radii of 86- spherical nuclei: A=16 to A=224 24

25

𝛿𝐸 𝑟𝑚𝑠=1.70 MeV

𝛿𝐸 𝑟𝑚𝑠=1.68 MeV

𝛿𝐸 𝑟𝑚𝑠=1.85 MeV

𝛿𝐸 𝑟𝑚𝑠=1.83 MeV

2

exp

2 )(1

)( tcalcrms EEN

E)( exptcalc EEE

6/1

3/1

2/1

3/2

26

𝛿𝑟 𝑟𝑚𝑠=0.0189

𝛿𝑟 𝑟𝑚𝑠=0.0170

𝛿𝑟 𝑟𝑚𝑠=0.0155

𝛿𝑟 𝑟𝑚𝑠=0.0152

2

exp

2 )(1

)( tcalcrms rrN

r)( exptcalcch rrr

6/1

3/1

2/1

3/2

27

28 Behera et. al., J.Phys G (2013) 095105; (2015) 045103

𝛾=1/3 𝑡0=201, 𝑊0=115 ∆𝐸𝑟𝑚𝑠=1.873(HFB) 𝑡0=214, 𝑊0=115 ∆𝐸𝑟𝑚𝑠=1.788 (EROT)

𝛾 =1/2 𝑡0=438, 𝑊0=112 ∆𝐸𝑟𝑚𝑠=1.958 (HFB) 𝑡0=450, 𝑊0=115 ∆𝐸𝑟𝑚𝑠=1.843 (EROT)

29

HFB results with SEI for 579 even-even nuclei, deformed and spherical, over the nuclear chart

30

CONCLUSION:

• By adjusting the parameters of SEI from considerations of momentum dependence of the mean fields in NM, the interaction could predict the finite nuclei properties similar in quality as that of any other conventional interaction.

• The procedure of parameter fixation provide the flexibility of

systematically varying the momentum dependent properties, where the EOSs remains the same and vice-versa.

• The preliminary results of HFB with SEI shows that it is also

competent to account for the deformation properties in finite nuclei similar in quality as any other successful effective interaction.

31

• Collaborators

B.Behera, Sambalpur University, India

X.Viñas, University of Barcelona, Spain

M. Centelles, University of Barcelona, Spain

L. Robledo, University of Madrid, Spain

32

THANK YOU

33