Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed...

24
R1 Σ L i ) B l /L Cl l ing Antenna: Synthetic Aperture Radar (SAR) Consider fixed array v B θ Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01 v (t Angular reso ution θ λ aim Equiva ent to Mov Basic Concept of SAR:

Transcript of Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed...

Page 1: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

R1

Σ

L

i )

B

l/ L

Cl l ing Antenna:

Synthetic Aperture Radar (SAR)

Consider fixed array

v

Assumes phase coherence in oscillator during each image

Lec20.4-1 2/26/01

v (t

Angular reso ution θ ≅ λ

aim Equiva ent to Mov

Basic Concept of SAR:

Page 2: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

R2

v x= t

i

− φjE e

x

si f(aziσ =

Synthetic Aperture Radar (SAR) Ideal point reflector

Maintain coherence

If scat f( ):≠

0

) f(

φ = λ

(t)φ

sf(= σ

B oRθ •

E

0

Lec20.4-2 2/26/01

Process a "w ndow" of data, e.g.

We seek 2-D source character zation: muth, range)

Typical CW pulse signal and echo,

angle

x, t

Phase (t, point source range)

Received phase:

Magnitude E point source , range)

x, t Received magnitude:

Page 3: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

R3

SARθ L λ

0 xψ ψ ∗ ψ = ψx ˆW( ) E( ) E( )

Resolution of “Unfocused” SAR

)

0x L

x

W(x) E(x)•

Reconstruction of image: first select R, xo of interest

SAR angular resolution: θ ≅ λ θ =SAR SAR BL R

≅ λ D

Lec20.4-3 2/26/01

W(x observed

≥ λ D R

Page 4: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

R4

SAR

B

l l R D ( l l , l

l / 2

= θ • ≅ θ

BSAR SARl / L / R D / Rθ ≅ λ θ =

≅ λ / D

Resolution of “Unfocused” SAR

0l

R

R

Yi iR∆

∆ ≅ cTR 2

x x D∆ >

0

R

L, the lateral resolution can be < D.

Lec20.4-4 2/26/01

Lateral spatia reso ution want smal D, arge arge L)

Range reso ution cT

SAR angular reso ution: ≥ λ

Then repeat for al R, x

max

min

elds mage:

Note: If antenna is steered toward the target, increasing

Page 5: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

S1

( )< λ =

> λ

λ

δ

2 2 2 SAR

i/ / D / D .

, R /

Phase-Focused SAR

B /D (x)ψ

/ 2Dλ∼

x 0xD

L

R

and focusing is unnecessary

⎧ ⎛ ⎞+ = ≅⎪ ⎜ ⎟⎝ ⎠⎪

⎪λ λδ < ⇒ ≤⎨

⎪ ⎪ ≥⎪ λ⎩

2 2 2 2

2

2

LR (R ) R 2

L 16 16

2L i

Lec20.4-5 2/26/01

λ = = λ θ

Phase focusing is required if 16, so the target s in the S i.e., if R 2L 2 R where L

AR near fi eld

θ ≅ λ

+ δ + δ

δ ≅

2 R

8R

therefore R "farf eld"

Page 6: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

Phase-Focused SAR →W(x) (x) wi i

(t) l

φ ↑

(t)φ Pulse

xo

spatial resolution in x ca be less than D, using beamsteering (e.g. a phased array)

Also: point sources exist in scene.

S2 Lec20.4-6

2/26/01

Solution: W ' th phase correct on

PRF must be higher; to reconstruct we need at least 2 samp es per phase wrap.

x, t

Note: With phase focusing, L increases and

L.O. phase drift can be corrected if bright

Page 7: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

S3

′= = ′ ′∆ψ = λ

>> x

v / L ( ) / L / L

v/D

L′

L

(x) )Ι

( )

• Ι •

ψ ∗ ψ = ψx x x x

ˆW(x) (x) E(x)

ˆW( ) ( ) E( ) E

( ) ( )Ι xx

/ Lλ ′ 0

x∆ψ

Required Pulse-Repetition Frequency (PRF)

Lec20.4-7 2/26/01

>> λ >>

PRF e.g., v aircraft velocityWant D, or D Therefore want PRF

W(x

∗ Ι ψ

Observed

↔ Ι ψ

Page 8: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

S4

l i

x

Di iv

and yi l l

x

R

R

y

yBθ xv

( )min x x

1 DR / c L / v v

⎛ ⎞ ′− < =⎜ ⎟⎝ ⎠

PRF Impacts SAR Swath Width

Lec20.4-8 2/26/01

Don't want echoes to over ap for success ve pulses.

Impl es that large swath w dths require large

eld poorer spatia reso ution.

Swath being imaged max

min

max Therefore let 2 R PRF

<<

Page 9: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

S5

0R

B 0Rθ xv

Envelope Delay Focusing

[ ] B 0

i l li l R (l∆ θ

0x (

xo2R c

Envelope delay

Envelope-delay focusing required when R R 3δ > ∆

∆R δR

θB 2

Lec20.4-9 2/26/01

Range Box

Compensation for both envelope delay and phase delay s needed for very high spatia reso ution .e., for smal arge B) and large R .

Target location)

Page 10: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

U1

SAR Intensity Estimates: Speckle

( )σ = ∑ 2

iji i, j

l

ˆ K w x EK = range-dependent constant i = pulse number j = subscattering index

Many subscatters j per pixel

( )

= =

σ = ε = =∑ ∑ k

2 2N N j t 2

kk k 1 k 1

ˆ a e rSimplifying:

random variable uniformly over 2π typically

lP

j j 1+

ε =

Ι ε =

∑ k

k

Re

m

mΙ ε

Re ε

v

Scattering centers

Lec20.4-10 2/26/01

For each SAR pixe , the estimated cross-section is:

where

ω +φ

pixe g.r.v.z.m.

g.r.v.z.m.

Page 11: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

U2

r0 σ

⎡ ⎤ = σ ∝ ε⎣ ⎦ 22 2

] / 2

E r (2 / 2)

2

l

E r r 2 / 3 f(N)!⎡ ⎤− ≠⎣ ⎦

σ≅ = ⇒ σ π

i l l li 2 / 3Q i

i / 2

− σε = σ

∑ 2 2

k 2 r p e

SAR Intensity Estimates: Speckle

mΙ ε

Re ε

r

( )− σ> = 2

or / / 2 op r r e

Lec20.4-11 2/26/01

pr

= σ π

− π

E[r

Because we are adding (averaging) phasors, not sca ars

≅ σ

Thus raw SAR mages, ful spatia reso ution, STD dev ation have 0.53 very grainy mages mean intens ty

r / 2

"r "

Page 12: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

U3

Al l l i iti2 ls Q / M

( si i l an be r

smoo d) e

the ⇒ =

τ

Reduction of SAR Speckle

i l i

L Q

N =

N l

i

=

x

Lec20.4-12 2/26/01

ternate ways to reduce "speck e" by averaging pixe ntens es: by averaging M pixe 0.53

using large B gnals y elds high reso ution, c 1) Blu imag

2) Average us ng spatia divers ty

0.53

3 or more ooks possible. Trade against potential resolut on in x.

Page 13: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

U4

f

Q N

=

Reduction of SAR Speckle

, where each band yields an independent image. Note that the same total bandwidth could alternatively yield more range resolution and pixels for averaging.

Lec20.4-13 2/26/01

0.53

N Bands

Image 1 Image 3 Image 2

3) Average using frequency diversity

Alternate ways to reduce “speckle” by average pixel intensities:

Page 14: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

Reduction of SAR Speckle

U5

works only if source varies. For example a narrow swath permits high PRF and an increase in N, but unless the antenna translates more than ~λR/D between pulses [R = range, D = pixel width (m)], then adjacent pulse returns are correlated.

j

D p Dθ ≅ λ

R

~ Q¢ = S.D./M ≅ (1/3)/4 levels = 1/12, versus Q ≅ 1/2. To reduce standard deviation by 6, need N > 62 = 36 looks.

Lec20.4-14 2/26/01

4) Time averaging

In general, reasonably smooth images need > 8 levels, so

Page 15: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

U6

Antenna

v

( )

v

Alternative SAR Geometries and Applications

Velocity dispersion within inverse SAR (ISAR) source (e.g., a moving car) can displace its apparent position laterally.

Antenna

spacecraft)

Antenna

Lec20.4-15 2/26/01

Moves

Source Stationary Case A.

e.g., geology

Case C.

Stationary

(e.g. moon or

Source rotates

Stationary

Case B. Source Moves

(e.g. satellite)

Page 16: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

ESTIMATION

Professor David H. Staelin Massachusetts Institute of Technology

Examples taken from Remote Sensing Principles are Nonetheless Widely Applicable

Linear and Non-Linear Problems Gaussian and Non-Gaussian Statistics

A1 Lec20.4-16

2/26/01

Page 17: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

A2

Linear Estimation: Smoothing and Sharpening

( ) ( ) ( )A B sA A s s4

1T G T d4 π

ψ = ψ Ωπ ∫

Consider antenna response example; we observe:

Smoothing reduces image speckle and other noise; sharpening or “deconvolution” increases it.

Sharpening can “de-blur” images, compensating for diffraction or motion induced blurring. Audio smoothing and sharpening are similar.

Lec20.4-17 2/26/01

ψ − ψ

Page 18: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

A3

i

( ) ( ) ( )A B sA A s s4

1T G T d4 π

ψ = ψ Ωπ ∫

( ) ( ) ( )A BA 1T G T ( ll li )

4ψ ≅ ψ

π

( ) ( ) ( )A B 1T f T f

4ψ ψ ψ = • π

l↑

A↑

( ) ( ) ( )x yx yj2 f f

x y x yx y i G , e d dψ ψ+ψ

ψ ψ

⎡ ⎤ = ψ ψ⎢ ⎥⎣ ⎦∫∫

Linear Estimation: Smoothing and Sharpening

Lec20.4-18 2/26/01

Cons der antenna response example; we observe:

ψ − ψ

sma so d anglesψ ∗

G f

Cyc es/Radian ntenna Spectral Response

.e., G f , f − π ψ

ψ ψ

Page 19: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

A4

( ) ( ) ( )A B 1T f T f

4ψ ψ ψ = • π

l↓

A↓

( ) ( ) ( )A BA 1T G T ( ll li )

4 ψ

π

Example: Square Uniformly-Illuminated Aperture

Dλ λ ψτx x

, f0

D

( ) ( )λ ψτER ( )G ψ ψy

ψx

/ D iλ↔y y, f

λ ψτ D

Aperture

e.g.

( ) ( ) ( )

ψ ψ

ψ

π =

A B

4 T fT f

G f

i

ψ← > λ x

f D / !

Try:

Lec20.4-19 2/26/01

G f

Cyc es/Radian ntenna Spectral Response

sma so d anglesψ ≅ ψ ∗

, G f

Blurr ng Function

Th s restores high-frequency components, but

goes to zero for

Page 20: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

A5

( )ψi i i

"princi l

.

n"

( ) ( ) ( ) ( )ψ

ψ ψ ψ

π =

A B

4 T fˆ f W f

G f

( )ψW f

λψ τxxf ,

ψy f

0 D λ

Example: Square Uniformly-Illuminated Aperture

cycles/radian

( ) ( ) ( )

ψ ψ

ψ

π =

A B

4 T fT f

G f

i

ψ← > λ x

f D / !

Lec20.4-20 2/26/01

The w ndow function W f avoids the s ngular ty

pal so utio The uses a boxcar W (s).

Try: T

Th s restores high-frequency components, but

goes to zero for

Page 21: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

A6

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ψ ψ ψψ ψ ψ

ψ ψ ψ

ψ

= =

= π

ψ =

B

B B A

A B

B

i i :

ˆf f f W f W f ,

f T f 4

T i i ly illumi

( )B T ψ = xψ

( )B ψ <

Example: Square Uniformly-Illuminated Aperture

( )B T ψ ↔ ( )B T fψ

x fψ00

Can set to zero (apriori information)

Can clip, transform, iterate

Lec20.4-21 2/26/01

= δ ψ

= π

Cons der the restored (sharpened) mage of a point source, T

Then T 1, so T 4 T G f

since T G f

2-D s nc funct on for a uniform nated rectangular

antenna aperture.

Zero at 2D Predicts T 0!

Page 22: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

A7

( ) ( ) ( )A A T f T fψ ψ ψ = + ↑

T ↑

( ) ( ) ( ) ( )B A ˆ ˆT f f /ψ ψ ψ ψ

⎡ ⎤= π⎣ ⎦

( )i ψ

l→ ↓

( ) ( ) ifi i

llψ ψ

( )B T fψ

D /− λ D / λ x

fψ 0

Sharpening Noisy Images

0 fψ

( )AT fψ

( )N fψ

e.g.

D/λ

Lec20.4-22 2/26/01

N f

Truth rms

4 T G f W f

Therefore optim ze W f

0! Amp ifier Noise

Ampl es wh te noise N f for sma G f

for point source

Page 23: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

A8

( ) ( ) ( ) ( ) ( )( )0

2

B A

4 W f Minimi T f T f Q

G f

∆ψ ψ ψ ψ

ψ

π − + =

⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦

( )i f :ψ

iel∂ ∂ =

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

2

o o o

o

1 1 * E T f T f T fA A A2 2W f E T fA

∗ ψ ψ ψψ ψ

ψ

ψ ψ

+ +

=

+

⎡ ⎤ ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎢ ⎥⎣ ⎦

( ) ( )

( )o

2

2 A

1 1W f

N1

S1 E T f

ψ

ψ

ψ

= ≅

+ +

⎛ ⎞ ⎜ ⎟⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

⎡ ⎤ ⎢ ⎥⎣ ⎦

[ ]A N =

Sharpening Noisy Images

Lec20.4-23 2/26/01

ze E N f

Therefore optim ze W

Q / W 0 y ds:

optimum

N f N f

N f

optimum E N f

If E T 0, then

Page 24: Synthetic Aperture Radar (SAR) - MIT OpenCourseWare...Synthetic Aperture Radar (SAR) Consider fixed array v θ B Assumes phase coherence in oscillator during each image Lec20.4-1 2/26/01

A9

1(1 N / S) i i

−+

( ) ( )

( )o

2

2 A

1 1W f

N1

S1 E T f

ψ

ψ

ψ

= ≅

+ +

⎛ ⎞ ⎜ ⎟⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

⎡ ⎤ ⎢ ⎥⎣ ⎦

[ ]A =

( )AA

l i lψ

= fψ0 D / λ 0

N 0≠

( )optW f wi (l l lψ ⇒

( )optW fψ

Sharpening Noisy Images

( )optW f ψ

Lec20.4-24 2/26/01

The weighting s w dely used

optimum E N f

If E T N 0, then

Can be used for restoration of blurred images of al types: photographs TV, T maps, SAR mages, fi tered speech, etc.

for N 0 :

der beam ower spatia resolution), ower sidelobes.