SUSY can affect scattering - Brookhaven National · PDF fileSUSY can affect scattering...

44
SUSY can affect scattering Parity-Violating electron scattering A LR = G F Q 2 42 π α Q W + F( Q 2 , θ ) [ ] r e e e , p e , p Z 0 r e e e , p e , p γ “Weak Charge” ~ 1 - 4 sin 2 θ W ~ 0.1

Transcript of SUSY can affect scattering - Brookhaven National · PDF fileSUSY can affect scattering...

SUSY can affect scatteringParity-Violating electron scattering

ALR =GFQ2

4 2παQW + F(Q2,θ)[ ]

r e −

e−

e−, p

e−, pZ 0

r e −

e−

e−, p

e−, pγ

“Weak Charge” ~ 1 - 4 sin2 θW ~ 0.1

SUSY can affect scattering

Neutrino-nucleus deep inelastic scattering

ν µ

ν µ

N

XZ 0

ν µ

µ−

N

XW +

R−

= 1− 2sin2

θW( ) 2Cross section ratios

Neutral currents mix

JµZ = Jµ

0 + 4 Q sin2θWJµ

EM

sin2 θW =g(µ)Y

2

g(µ)2 + g(µ)Y2

SU(2)LU(1)Y

Weak mixing depends on scale

Weak Mixing Angle: Scale Dependence

sin2θW

µ (GeV)

SLAC E158 (ee) JLab Q-Weak (ep)

e+e- LEP, SLD

Atomic PV νN deep inelastic

Czarnecki, Marciano Erler, Kurylov, MR-M

PV Electron Scattering

SLAC

Jefferson Lab

Vernon W. Hughes1921-2003

PV Electron Scattering

SLAC

Jefferson Lab

Interpretation of precision measurementsHow well do we now the SM predictions? Some QCD issues

Proton Weak Charge

ALR =GFQ

2

4 2παQW

p + Fp(Q2,θ)[ ]

Weak charge

Q2=0.03 (GeV/c)2

Form factors: MIT, JLab, Mainz

Q2>0.1 (GeV/c)2

Interpretation of precision measurementsHow well do we now the SM predictions? Some QCD issues

Proton Weak Charge

FP(Q2, θ -> 0) ~ Q2

Use χPT to extrapolate in small Q2

domain and current PV experiments to determine LEC’s

ALR =GFQ

2

4 2παQW

p + Fp(Q2,θ)[ ]

QW and SUSY Radiative Corrections

Tree Level

QWf = gV

f

Radiative Corrections

QWf = ρPV (2I3

f − 4Qfκ PV ) + λ fsin2 θW

Flavor-independent

Normalization Scale-dependence of weak mixing

Flavor-dependent

Universal corrections

δρPV = ˆ α T − ˆ δ VBµ

δκPVSUSY=−ˆ α

ˆ c 2

ˆ c 2 −ˆ s 2⎛ ⎝ ⎜ ⎞

⎠ T+ ˆ α

1

4ˆ s 2(ˆ c 2 −ˆ s 2)

⎛ ⎝ ⎜ ⎞

⎠ S

+ˆ c ˆ s

ˆ Π Zγ (q2)

q2 −ˆ Π Zγ (MZ

2)

MZ2

⎣ ⎢

⎦ ⎥ +

ˆ c 2

ˆ c 2 − ˆ s 2⎛ ⎝ ⎜ ⎞

⎠ ∆ˆ α ˆ α

−ˆ Π γγ(MZ

2)

MZ2

⎣ ⎢

⎦ ⎥ +

ˆ δ VBµ

muon decay

S,T , ˆ Π VV ' gauge boson propagators

Oblique Parameters SM fit only

No SUSY effects

Parameter Space Scan

Comparing Qwe and QW

p

SUSY loops

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

SUSY loops

3000 randomly chosen SUSY parameters but effects are correlatedEffects in sin2θW dominate Negligible SUSY

loop impact on cesium weak charge

Z 0 γ

˜ χ +

˜ χ −105 parameters: random scan

Kurylov, Su, MR-M

Correlated Radiative Corrections

total

QWf = ρ PV (2 I 3

f − 4 Q f κ PV sin 2 θ W ) + λ f

RPV Corrections to Weak Charges

∆QWp

QWp ≈

2

1 − 4 ˆ s 2⎛ ⎝

⎞ ⎠ −2λ ˆ s ∆12k (˜ e R

k) + 2∆11k/ ( ˜ d R

k ) − ∆1 j1/ ( ˜ q L

j )[ ]

∆QWe

QWe ≈ −

4

1− 4 ˆ s 2⎛ ⎝

⎞ ⎠ λ ˆ s ∆12 k (˜ e R

k )sin2θWshift in

λˆ s ≈ˆ s 2(1− ˆ s 2)

1−2ˆ s 2

Other constraints, cont’d.

MWCKM Unitarity

APV

πl2

Comparing Qwe and QW

p

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

SUSY loops

χ0 ->eµ+νe

Νο SUSY dark matter

ν is Majorana

RPV 95% CL fit to weak decays, MW, etc.

Kurylov, Su, MR-M

Comparing Qwe and QW

p

Can be a diagnostic tool to determine whether or not

• the early Universe was supersymmetric

• there is supersymmetric dark matter

The weak charges can serve a similar diagnostic purpose for other models for high energy symmetries, such as left-right symmetry, grand unified theories with extra U(1) groups, etc.

Comparing Qwe and QW

p

Erler, Kurylov, R-M

QWP = 0.0716 QW

e = 0.0449

Experiment

SUSY Loops

E6 Z/ boson

RPV SUSY

Leptoquarks

SM SM

± 0.0029 ± 0.0040

sin2θW

µ (GeV)

SLAC E158 (ee) JLab Q-Weak (ep)

e+e- LEP, SLD

Atomic PV νN deep inelastic

Additional PV electron scattering ideas

DIS-Parity, JLab

Moller, JLab

DIS-Parity, SLAC

Czarnecki, Marciano Erler et al. Linear

Collider e-e-

sin2θW

µ (GeV)

SLAC E158 (ee) JLab Q-Weak (ep)

e+e- LEP, SLD

Atomic PV νN deep inelastic

Additional PV electron scattering ideas

DIS-Parity, JLab

Moller, JLab

DIS-Parity, SLAC

Czarnecki, Marciano Erler et al. Linear

Collider e-e-

Neutrino-nucleus deep inelastic scattering conflicts with SUSY

Cross section ratios

Rν =σνNNCσνN

CC

Rν =σν NNCσν N

CC

Exp’t vs. SM Theory: NuTeV

Rνexp−Rν

SM=−0.0033±0.000

Rν exp−Rν

SM=−0.0019±0.001

r = σνNCC σν N

CC

R− =

Rν −rRν

1−r=(1−2sin2θW)/2+L

ν-Nucleus DIS, Cont’d.

Cross section ratios

Rν=σνNNCσνN

CC=gL2+rgR

2

Rν =σν NNCσν N

CC=gL2 +r−1gR

2

gL,R2 =

ρνNNC

ρνNCC

⎝ ⎜ ⎞

⎠ ⎟

2

(εL ,Rq

q∑ )2

r = σνNCC σν N

CC

Radiative corrections

ε Lq = IL

3 − Qqκ ν sin2θW + λ Lq

ε Lq = −Qqκ ν sin2θW + λ R

q

δρNC,CC

δκνλL,R

ν−Nucleus DIS: NuTeV

K. McFarland, Rochester

NuTeV-SM Discrepancy

Paschos-Wolfenstein Relation

Rνexp−Rν

SM=−0.0033±0.000

Rν exp−Rν

SM=−0.0019±0.001

R− =

Rν −rRν

1−r=(1−2sin2θW)/2+L

ν-Nucleus DIS: SUSY Loop Corrections

wrong sign

NuTeV

Kurylov, SU, MR-M

RPV Effects

δρνNNC = ∆12k(˜ e R

k)

δρνNCC =∆12k(˜ e R

k)+∆21k/ (˜ d R

k)

δεLd =

1

3λˆ s ∆12k(˜ e R

k) −∆21k/ (˜ d R

k)

δεRd =

1

3λˆ s ∆12k(˜ e R

k) −∆2k1/ (˜ d L

k)

δεLu =δεR

u =−2

3λˆ s ∆12k(˜ e R

k)

unconstrained elsewhere

ν-Nucleus DIS: RPV Effects

wrong sign

NuTeV

Kurylov, SU, MR-M

νN scattering conflicts with SUSY

sin2θW

µ (GeV)

SLAC E158 (ee) JLab Q-Weak (ep)

e+e- LEP, SLD

Atomic PV νN deep inelastic

Czarnecki, Marciano Erler, Kurylov, MR-M

Increase Vus for CKM unitarity (BNL E865, Ke3)

NuTeV Anomaly: An explanation?

Electric dipole moment (EDM) searches may test SUSY CP-violation

r E

r d = d

r S

ν EDM = −

dr S ⋅

r E

hT-odd , CP-odd by CPT theorem

C: e- $ e+ P: E $-E, S $ S

Electric dipole moment (EDM) searches may test SUSY CP-violation

r E

r d = d

r S

ν EDM = −

dr S ⋅

r E

hT-odd , CP-odd by CPT theorem

C: e- $ e+ P: E $-E, S $ S

u c t( )Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

d

s

b

⎜ ⎜ ⎜

⎟ ⎟ ⎟

SM: CKM

θ1, θ2, θ3, eiδ

Electric dipole moment (EDM) searches may test SUSY CP-violation

r E

r d = d

r S

ν EDM = −

dr S ⋅

r E

hT-odd , CP-odd by CPT theorem

C: e- $ e+ P: E $-E, S $ S

SM: Strong CP

LStrongCP =θQCD

αs

8πGµν ˜ G µν

Gluons: systems with quarks

Electric dipole moment (EDM) searches may test SUSY CP-violation

f dSM dexp dfuture

e−

n199Hg

µ

< 10−40

< 10−30

< 10−33

< 10−28

< 1.6 ×10−27

< 6.3×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

If SUSY CP violation is responsible for abundance of matter, will these experiments see an EDM?

CKM

Electric dipole moment (EDM) searches may test new CP-violation

f dSM dexp dfuture

e−

n199Hg

µ

< 10−40

< 10−30

< 10−25

< 10−28

< 1.6 ×10−27

< 6.3×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

CKM

Superfluid He UCN converter

with high E-field Eint

Pb+

O–

Eext Yale

DeMille, Romalis

Electric dipole moment (EDM) searches may test new CP-violation

f dSM dexp dfuture

e−

n199Hg

µ

< 10−40

< 10−30

< 10−25

< 10−28

< 1.6 ×10−27

< 6.3×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

CKM

1: B from E

Sample magnetization M ∝ deE/T

E

2: E from B

BV

Sample voltageV ∝ de

LANL

Amherst

Electric dipole moment (EDM) searches may test new CP-violation

f dSM dexp dfuture

e−

n199Hg

µ

< 10−40

< 10−30

< 10−25

< 10−28

< 1.6 ×10−27

< 6.3×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

CKM

LANSCE!SNS

Superfluid He UCN converter

with high E-field

Electric dipole moment (EDM) searches may test new CP-violation

f dSM dexp dfuture

e−

n199Hg

µ

< 10−40

< 10−30

< 10−25

< 10−28

< 1.6 ×10−27

< 6.3×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

CKM

Washington

Princeton

Argonne…

Electric dipole moment (EDM) searches may test new CP-violation

f dSM dexp dfuture

e−

n199Hg

µ

< 10−40

< 10−30

< 10−25

< 10−28

< 1.6 ×10−27

< 6.3×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

CKM

Storage ring:

BNL

JPARC…Also deuteron

Present n-EDM limit

Proposed n-EDM limit

“n-EDM has killed more theories than any other single experiment”B. Filippone

Matter-AntimatterAsymmetry in the Universe

Better theory

Electric dipole moment (EDM) searches may test SUSY CP-violation

Weak Scale Baryogenesis

• B violation

• C & CP violation

• Nonequilibrium dynamics

Sakharov, 1967

Present universe Early universe

Weak scale Planck scale

log10 (µ / µ0 )

αS−1

αL−1

αY−1

Electric dipole moment (EDM) searches may test SUSY CP-violation

Weak Scale Baryogenesis

• B violation

• C & CP violation

• Nonequilibrium dynamics

Sakharov, 1967

˜ t H

Unbroken phase

Broken phaseCP Violation

Topological transitions

1st order phase transition

γ˜ e

e−

˜ e

χ 0

EDM: Standard SUSY - breaking

Cohen, Kaplan, NelsonHuet & NelsonRiotto…..

Electric dipole moment (EDM) searches may test SUSY CP-violation

Weak Scale Baryogenesis

• B violation

• C & CP violation

• Nonequilibrium dynamics

Sakharov, 1967

˜ t H

Unbroken phase

Broken phaseCP Violation

Topological transitions

1st order phase transition

γ˜ e

e−

˜ e

χ 0• How model-dependent ?

• Theoretical uncertainties?

Present n-EDM limit

Proposed n-EDM limit

“n-EDM has killed more theories than any other single experiment”B. Filippone

Matter-AntimatterAsymmetry in the Universe

Better theory

?