Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing...

34
S1 Supporting Information Bioactive Dibenzo-α-Pyrone Derivatives from the Endophytic Fungus Rhizopycnis vagum Nitaf22 Daowan Lai, †,‡ Ali Wang, †,‡ Yuheng Cao, Kaiyi Zhou, Ziling Mao, Xuejiao Dong, Jin Tian, †, § Dan Xu, Jungui Dai, Yu Peng, Ligang Zhou,* , † and Yang Liu * , Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China § National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China Technical Centre of Hunan Tobacco Industry Co. Ltd., Changsha 410014, China Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing 100193, China These authors contributed equally. * Corresponding Authors Tel.: +86 10 62731199 (L.Z.), +86 10 62815874 (Y.L.). E-mail: [email protected] (L.Z), [email protected] (Y.L.).

Transcript of Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing...

Page 1: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S1

Supporting Information

Bioactive Dibenzo-α-Pyrone Derivatives from the Endophytic Fungus

Rhizopycnis vagum Nitaf22

Daowan Lai,†,‡

Ali Wang,†,‡

Yuheng Cao,† Kaiyi Zhou,

† Ziling Mao,

† Xuejiao Dong,

Jin Tian,†, §

Dan Xu,† Jungui Dai,

Yu Peng,

║ Ligang Zhou,*

, † and Yang Liu *

,

† Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant

Pathology, College of Plant Protection, China Agricultural University, Beijing 100193,

China

§ National Centre for Plant Gene Research (Beijing), Institute of Genetics and

Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

State Key Laboratory of Bioactive Substance and Function of Natural Medicines,

Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union

Medical College, Beijing 100050, China

║ Technical Centre of Hunan Tobacco Industry Co. Ltd., Changsha 410014, China

Institute of Food Science and Technology, Chinese Academy of Agricultural

Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture,

Beijing 100193, China

‡ These authors contributed equally.

* Corresponding Authors

Tel.: +86 10 62731199 (L.Z.), +86 10 62815874 (Y.L.).

E-mail: [email protected] (L.Z), [email protected] (Y.L.).

Page 2: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S2

Table of Contents

1. Colony and Mycelia of Rhizopycnis vagum Nitaf22 ................................................................ S4

2. X-ray Crystallographic Data for Rhizopycnolide A (1) ......................................................... S4

Table S1. Crystal data and structure refinement for rhizopycnolide A (1) ............................. S4

Table S2. Fractional atomic coordinates (×104) and equivalent isotropic displacement

parameters (Å2×10

3) for rhizopycnolide A (1). ....................................................................... S5

Table S3. Anisotropic displacement parameters (Å2×10

3) for rhizopycnolide A (1). The

anisotropic displacement factor exponent takes the form: -2π2[h

2a*

2U11+...+2hka×b×U12] ... S6

Table S4. Bond lengths for rhizopycnolide A (1) ................................................................... S7

Table S5. Bond angles for rhizopycnolide A (1) ..................................................................... S7

Table S6. Torsion angles for rhizopycnolide A (1) ................................................................. S8

Table S7. Hydrogen atom coordinates (Å×104) and isotropic displacement parameters

(Å2×10

3) for rhizopycnolide A (1) ......................................................................................... S10

3. Computation Data for 1-3 ...................................................................................................... S11

Figure S1. The stable conformers of rhizopycnolide A (1) with populations greater than 1%

calculated from their relative free energies (ΔG). ................................................................. S11

Figure S2. The stable conformers of rhizopycnolide B (2) with populations greater than 1%

calculated from their relative free energies (ΔG). ................................................................. S11

Figure S3. The stable conformers of (1R, 4R)-3 and (1R, 4S)-3 with populations greater than

1% calculated from their relative free energies (ΔG). ........................................................... S12

Figure S4. The experimental ECD spectrum of 3 and the calculated ECD spectra of (1R,

4S)-3 and (1S, 4R)-3. ............................................................................................................. S12

4. (1D, 2D) NMR, IR, and HRESIMS Spectra of 1-6 ............................................................... S13

Figure S5. 1H NMR spectrum of 1 (DMSO-d6, 400 MHz) .................................................. S13

Figure S6. 13

C NMR spectrum of 1 (DMSO-d6, 100 MHz) ................................................. S13

Figure S7. HMQC spectrum of 1 (DMSO-d6)...................................................................... S14

Figure S8. HMBC spectrum of 1 (DMSO-d6) ...................................................................... S14

Figure S9. NOESY spectrum of 1 (DMSO-d6) .................................................................... S15

Figure S10. IR spectrum of 1 ............................................................................................... S15

Figure S11. HRESIMS spectrum of 1 .................................................................................. S16

Figure S12. 1H NMR spectrum of 2 (DMSO-d6, 400 MHz) ................................................ S16

Figure S13. 13

C NMR spectrum of 2 (DMSO-d6, 100 MHz) ............................................... S17

Figure S14. HMBC spectrum of 2 (DMSO-d6) .................................................................... S17

Figure S15. NOESY spectrum of 2 (DMSO-d6) .................................................................. S18

Figure S16. 1H NMR spectrum of 2 (CDCl3, 400MHz) ....................................................... S18

Figure S17. 13

C NMR spectrum of 2 (CDCl3, 100 MHz) .................................................... S19

Figure S18. HMBC spectrum of 2 (CDCl3) ......................................................................... S19

Figure S19. NOESY spectrum of 2 (CDCl3) ........................................................................ S20

Figure S20. IR spectrum of 2 ............................................................................................... S20

Figure S21. HRESIMS spectrum of 2 .................................................................................. S21

Figure S22. 1H NMR spectrum of 3 (DMSO-d6, 400 MHz) ................................................ S21

Figure S23. 13

C NMR spectrum of 3 (DMSO-d6, 100 MHz) ............................................... S22

Page 3: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S3

Figure S24. HMQC spectrum of 3 (DMSO-d6).................................................................... S22

Figure S25. HMBC spectrum of 3 (DMSO-d6) .................................................................... S23

Figure S26. NOESY spectrum of 3 (DMSO-d6) .................................................................. S23

Figure S27. IR spectrum of 3 ............................................................................................... S24

Figure S28. HRESIMS spectrum of 3 .................................................................................. S24

Figure S29. 1H NMR spectrum of 4 (DMSO-d6, 400 MHz) ................................................ S25

Figure S30. 13

C NMR spectrum of 4 (DMSO-d6, 100 MHz) ............................................... S25

Figure S31. HMBC spectrum of 4 (DMSO-d6) .................................................................... S26

Figure S32. NOESY spectrum of 4 (DMSO-d6) .................................................................. S26

Figure S33. 1H NMR spectrum of 4 (CD3OD, 400MHz) ..................................................... S27

Figure S34. 13

C NMR spectrum of 4 (CD3OD, 100 MHz)................................................... S27

Figure S35. HMBC spectrum of 4 (CD3OD) ....................................................................... S28

Figure S36. IR spectrum of 4 ............................................................................................... S28

Figure S37. HRESIMS spectrum of 4 .................................................................................. S29

Figure S38. 1H NMR spectrum of 5 (DMSO-d6, 400 MHz) ................................................ S29

Figure S39. 13

C NMR spectrum of 5 (DMSO-d6, 100 MHz) ............................................... S30

Figure S40. HMBC spectrum of 5 (DMSO-d6) .................................................................... S30

Figure S41. NOESY spectrum of 5 (DMSO-d6) .................................................................. S31

Figure S42. IR spectrum of 5 ............................................................................................... S31

Figure S43. HRESIMS spectrum of 5 .................................................................................. S32

Figure S44. 1H NMR spectrum of 6 (DMSO-d6, 400 MHz) ................................................ S32

Figure S45. 13

C NMR spectrum of 6 (DMSO-d6, 100 MHz) ............................................... S33

Figure S46. HMBC spectrum of 6 (DMSO-d6) .................................................................... S33

Figure S47. IR spectrum of 6 (recorded in acetone) ............................................................ S34

Figure S48. HRESIMS spectrum of 6 .................................................................................. S34

Page 4: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S4

1. Colony and Mycelia of Rhizopycnis vagum Nitaf22

Colony front view Colony back view Mycelia

Note: The fungus grown on PDA medium, and photos taken on day 7.

2. X-ray Crystallographic Data for Rhizopycnolide A (1)

Table S1. Crystal data and structure refinement for rhizopycnolide A (1)

Identification code Rhizopycnolide A

Empirical formula C19H20O9

Formula weight 392.35

Temperature / K 103.1

Crystal system hexagonal

Space group P65

a / Å, b / Å, c / Å 10.9360(4), 10.9360(4), 25.7965(6)

α/°, β/°, γ/° 90, 90, 120

Volume / Å3 2671.83(19)

Z 6

ρcalc / mg mm-3

1.463

μ / mm-1

1.001

F(000) 1236

Crystal size / mm3 0.550 × 0.550 × 0.500

2Θ range for data collection 9.338 to 142.284°

Index ranges -13 ≤ h ≤ 12, -12 ≤ k ≤ 13, -31 ≤ l ≤ 31

Reflections collected 12449

Independent reflections 3430[R(int) = 0.0225 (inf-0.9Å)]

Data/restraints/parameters 3430/1/260

Goodness-of-fit on F2 1.025

Final R indexes [I>2σ (I) i.e. Fo>4σ (Fo)] R1 = 0.0281, wR2 = 0.0731

Final R indexes [all data] R1 = 0.0283, wR2 = 0.0733

Largest diff. peak/hole / e Å-3

0.238/-0.177

Flack Parameters -0.04(6)

Completeness 1.000

20 μm

Page 5: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S5

Table S2. Fractional atomic coordinates (×104) and equivalent isotropic displacement

parameters (Å2×10

3) for rhizopycnolide A (1).

Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom X Y z U(eq)

O7 3476.8(16) 4633.2(16) 367.0(6) 14.9(3)

O6 5461.5(15) 4664.9(15) 202.7(6) 13.1(3)

O4 10028.4(16) 5491.9(17) -155.9(6) 18.2(3)

O5 6160.8(17) 793.1(16) 201.9(6) 17.7(3)

O1 8147.8(15) 6462.9(15) 179.4(6) 13.0(3)

O8 1952.1(17) -1542.9(16) 1076.5(6) 18.8(3)

O9 1309.0(17) 2384.4(18) 749.3(7) 20.2(4)

O3 8190.2(16) 7334.5(18) -1118.3(6) 19.1(3)

C15 1579(2) 438(2) 935.3(8) 16.7(4)

C11 3577(2) 2583(2) 595.8(8) 13.5(4)

C8 5879(2) 2760(2) 407.2(8) 12.4(4)

C12 4430(2) 1937(2) 608.6(8) 12.8(4)

C14 2424(2) -181(2) 937.7(8) 15.3(4)

C16 2157(2) 1821(2) 761.4(8) 15.0(4)

C10 4117(2) 3986(2) 393.5(8) 12.3(4)

C2 8648(2) 6774(2) -719.3(8) 14.3(4)

O2 9087.8(18) 8663.8(17) -102.9(7) 21.5(4)

C13 3842(2) 565(2) 785.7(8) 14.9(4)

C9 6295(2) 4048(2) 217.1(8) 12.2(4)

C7 6903(2) 2184(2) 417.5(8) 14.1(4)

C3 7607(2) 5216(2) -620.4(8) 13.5(4)

C19 482(3) -2392(2) 1198.2(9) 20.6(5)

C4 7701(2) 5048(2) -28.1(8) 12.9(4)

C17 7378(2) 2157(2) 976.1(9) 17.3(4)

C1 8683(2) 7446(2) -195.9(9) 14.1(4)

C6 8183(2) 3076(2) 66.1(9) 15.6(4)

C5 8797(2) 4654(2) 142.2(9) 14.5(4)

C18 11270(2) 5597(3) 70(1) 25.4(5)

Page 6: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S6

Table S3. Anisotropic displacement parameters (Å2×10

3) for rhizopycnolide A (1).

The anisotropic displacement factor exponent takes the form:

-2π2[h

2a*

2U11+...+2hka×b×U12]

Atom U11 U22 U33 U23 U13 U12

O7 14.8(7) 15.8(7) 17.2(7) -0.6(6) 0.0(6) 10.0(6)

O6 12.1(7) 12.9(7) 16.1(7) 2.4(6) 1.3(6) 7.5(6)

O4 11.2(7) 21.2(8) 22.2(8) 5.2(7) 1.6(6) 8.1(6)

O5 18.8(8) 13.4(7) 23.8(8) -0.7(6) 0.2(6) 10.2(6)

O1 14.1(7) 12.2(7) 13.1(7) 0.0(6) 1.3(6) 6.9(6)

O8 19.1(8) 15.2(7) 18.3(8) 4.0(6) 1.7(6) 5.8(6)

O9 14.0(8) 18.3(8) 28.8(9) 1.8(7) 3.4(6) 8.5(6)

O3 14.2(7) 24.1(8) 19.0(7) 10.4(6) 3.0(6) 9.5(7)

C15 13.1(9) 18.1(11) 14.6(10) 0.5(8) 1.5(8) 4.7(8)

C11 15.3(10) 14.5(10) 10.6(9) -2.1(8) -1.2(8) 7.3(9)

C8 13.1(10) 14.4(10) 10.9(9) -0.5(8) -1.7(8) 7.8(8)

C12 12.9(9) 16.4(10) 9.2(9) -1.0(8) -1.1(8) 7.5(8)

C14 18.7(10) 15.4(10) 8.8(9) 0.3(8) -1.4(8) 6.4(9)

C16 14.3(10) 18.1(11) 12.7(9) -3.2(8) -0.5(8) 8.3(9)

C10 10.5(9) 16.3(10) 10.8(9) -2.7(8) -1.9(7) 7.2(8)

C2 11.0(9) 18.2(10) 14.4(10) 3.1(8) 2.2(8) 7.9(8)

O2 23.6(8) 15.2(8) 23.9(8) 2.7(6) 8.9(7) 8.4(7)

C13 17.3(10) 17.1(10) 11.4(9) 0.5(8) -0.5(8) 9.5(9)

C9 12.4(10) 14.8(10) 11.5(9) -1.8(8) -0.9(8) 8.3(8)

C7 15.4(10) 14.2(10) 15.8(10) 0.6(8) -0.2(8) 9.7(9)

C3 13.1(9) 16.6(10) 12(1) 0.4(8) -0.4(8) 8.4(8)

C19 19.3(11) 17.7(11) 16.8(10) 2.1(9) -2.3(9) 3.2(9)

C4 14.3(10) 11.1(10) 14.1(10) -0.2(8) 0.3(8) 7.0(8)

C17 19.5(10) 19.1(10) 17.2(11) 2.7(8) -1.2(8) 12.6(9)

C1 8.4(9) 15.5(10) 17.8(10) 2.1(8) 2.6(8) 5.5(8)

C6 16.2(10) 18.6(11) 17.4(10) 1.6(8) 0.7(8) 12.7(9)

Page 7: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S7

C5 10.6(9) 17.2(10) 16.7(10) 1.6(8) -0.2(8) 7.6(8)

C18 13.9(11) 38.3(14) 24.9(12) 0.4(11) -1.3(9) 13.7(10)

Table S4. Bond lengths for rhizopycnolide A (1)

Atom Atom Length/Å Atom Atom Length/Å

O7 C10 1.221(3) C11 C10 1.438(3)

O6 C10 1.365(2) C8 C12 1.471(3)

O6 C9 1.379(2) C8 C9 1.338(3)

O4 C5 1.418(3) C8 C7 1.535(3)

O4 C18 1.429(3) C12 C13 1.381(3)

O5 C7 1.431(3) C14 C13 1.399(3)

O1 C4 1.471(2) C2 C3 1.524(3)

O1 C1 1.344(3) C2 C1 1.529(3)

O8 C14 1.358(3) O2 C1 1.199(3)

O8 C19 1.432(3) C9 C4 1.510(3)

O9 C16 1.347(3) C7 C17 1.537(3)

O3 C2 1.412(3) C7 C6 1.539(3)

C15 C14 1.393(3) C3 C4 1.548(3)

C15 C16 1.390(3) C4 C5 1.527(3)

C11 C12 1.425(3) C6 C5 1.519(3)

C11 C16 1.412(3)

Table S5. Bond angles for rhizopycnolide A (1)

Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚

C10 O6 C9 121.32(16) C3 C2 C1 102.41(16)

C5 O4 C18 112.82(17) C12 C13 C14 120.3(2)

C1 O1 C4 111.24(16) O6 C9 C4 108.50(17)

C14 O8 C19 117.19(18) C8 C9 O6 124.36(19)

C16 C15 C14 118.6(2) C8 C9 C4 127.11(19)

C12 C11 C10 121.07(19) O5 C7 C8 106.70(16)

C16 C11 C12 119.95(19) O5 C7 C17 111.15(17)

Page 8: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S8

C16 C11 C10 118.91(19) O5 C7 C6 107.27(17)

C12 C8 C7 121.71(18) C8 C7 C17 110.36(17)

C9 C8 C12 118.01(18) C8 C7 C6 110.44(17)

C9 C8 C7 120.28(19) C17 C7 C6 110.79(18)

C11 C12 C8 117.37(19) C2 C3 C4 103.93(16)

C13 C12 C11 118.76(19) O1 C4 C9 106.97(16)

C13 C12 C8 123.81(19) O1 C4 C3 103.97(16)

O8 C14 C15 123.6(2) O1 C4 C5 107.33(16)

O8 C14 C13 114.62(19) C9 C4 C3 113.27(17)

C15 C14 C13 121.8(2) C9 C4 C5 109.50(17)

O9 C16 C15 117.55(19) C5 C4 C3 115.16(17)

O9 C16 C11 121.89(19) O1 C1 C2 110.78(17)

C15 C16 C11 120.55(19) O2 C1 O1 121.1(2)

O7 C10 O6 115.99(19) O2 C1 C2 128.1(2)

O7 C10 C11 126.16(19) C5 C6 C7 112.88(17)

O6 C10 C11 117.83(18) O4 C5 C4 106.68(17)

O3 C2 C3 112.24(17) O4 C5 C6 113.69(18)

O3 C2 C1 111.31(17) C6 C5 C4 108.67(17)

Table S6. Torsion angles for rhizopycnolide A (1)

A B C D Angle/˚

O6 C9 C4 O1 44.7(2)

O6 C9 C4 C3 -69.2(2)

O6 C9 C4 C5 160.74(17)

O5 C7 C6 C5 161.83(16)

O1 C4 C5 O4 -72.4(2)

O1 C4 C5 C6 164.66(16)

O8 C14 C13 C12 176.49(19)

O3 C2 C3 C4 -145.30(18)

O3 C2 C1 O1 136.96(17)

O3 C2 C1 O2 -41.7(3)

C15 C14 C13 C12 -2.5(3)

C11 C12 C13 C14 1.5(3)

C8 C12 C13 C14 -175.52(19)

C8 C9 C4 O1 -136.9(2)

C8 C9 C4 C3 109.1(2)

C8 C9 C4 C5 -20.9(3)

C8 C7 C6 C5 45.9(2)

C12 C11 C16 O9 -179.10(18)

C12 C11 C16 C15 -0.3(3)

C12 C11 C10 O7 -179.75(19)

Page 9: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S9

C12 C11 C10 O6 1.5(3)

C12 C8 C9 O6 0.8(3)

C12 C8 C9 C4 -177.28(19)

C12 C8 C7 O5 49.5(3)

C12 C8 C7 C17 -71.4(2)

C12 C8 C7 C6 165.77(18)

C14 C15 C16 O9 178.23(19)

C14 C15 C16 C11 -0.6(3)

C16 C15 C14 O8 -176.86(19)

C16 C15 C14 C13 2.0(3)

C16 C11 C12 C8 177.06(18)

C16 C11 C12 C13 -0.1(3)

C16 C11 C10 O7 3.2(3)

C16 C11 C10 O6 -175.56(18)

C10 O6 C9 C8 0.8(3)

C10 O6 C9 C4 179.21(16)

C10 C11 C12 C8 0.0(3)

C10 C11 C12 C13 -177.20(19)

C10 C11 C16 O9 -2.0(3)

C10 C11 C16 C15 176.84(19)

C2 C3 C4 O1 26.6(2)

C2 C3 C4 C9 142.33(18)

C2 C3 C4 C5 -90.5(2)

C9 O6 C10 O7 179.19(18)

C9 O6 C10 C11 -2.0(3)

C9 C8 C12 C11 -1.2(3)

C9 C8 C12 C13 175.9(2)

C9 C8 C7 O5 -131.2(2)

C9 C8 C7 C17 107.9(2)

C9 C8 C7 C6 -15.0(3)

C9 C4 C5 O4 171.84(16)

C9 C4 C5 C6 48.9(2)

C7 C8 C12 C11 178.11(19)

C7 C8 C12 C13 -4.8(3)

C7 C8 C9 O6 -178.47(19)

C7 C8 C9 C4 3.4(3)

C7 C6 C5 O4 176.46(18)

C7 C6 C5 C4 -64.9(2)

C3 C2 C1 O1 16.8(2)

C3 C2 C1 O2 -161.8(2)

Page 10: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S10

C3 C4 C5 O4 42.8(2)

C3 C4 C5 C6 -80.1(2)

C19 O8 C14 C15 3.5(3)

C19 O8 C14 C13 -175.40(18)

C4 O1 C1 C2 0.2(2)

C4 O1 C1 O2 179.03(19)

C17 C7 C6 C5 -76.7(2)

C1 O1 C4 C9 -137.17(17)

C1 O1 C4 C3 -17.1(2)

C1 O1 C4 C5 105.39(18)

C1 C2 C3 C4 -25.83(19)

C18 O4 C5 C4 160.43(18)

C18 O4 C5 C6 -79.8(2)

Table S7. Hydrogen atom coordinates (Å×104) and isotropic displacement parameters

(Å2×10

3) for rhizopycnolide A (1)

Atom X Y z U(eq)

H5 6591 359 275 27

H9 1749 3199 621 30

H3 8892 7936 -1287 29

H15 627 -74 1050 20

H2 9602 6912 -803 17

H13 4402 126 804 18

H3A 7881 4608 -814 16

H3B 6639 4971 -723 16

H19A -83 -2419 899 31

H19B 257 -1985 1496 31

H19C 268 -3353 1282 31

H17A 6548 1595 1194 26

H17B 7905 3123 1111 26

H17C 7986 1735 979 26

H6A 8924 2831 139 19

H6B 7894 2836 -300 19

Page 11: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S11

H5A 9019 4888 518 17

H18A 12099 6261 -131 38

H18B 11196 4666 69 38

H18C 11367 5935 428 38

3. Computation Data for 1-3

1a 1b

ΔG=0.00 kcal/mol, 81.2%

ΔG=0.87 kcal/mol, 18.8%

Figure S1. The stable conformers of rhizopycnolide A (1) with populations greater

than 1% calculated from their relative free energies (ΔG).

2a 2b

ΔG=0.00 kcal/mol, 56.9%

ΔG=0.18 kcal/mol, 42.0%

Figure S2. The stable conformers of rhizopycnolide B (2) with populations greater

than 1% calculated from their relative free energies (ΔG).

Page 12: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S12

(1R, 4R)-3:

(1R, 4R)-3a (1R, 4R)-3b

ΔG=0.00 kcal/mol, 96.6%

ΔG=1.98 kcal/mol, 3.4%

(1R, 4S)-3:

(1R, 4S)-3a (1R, 4S)-3b

ΔG=0.00 kcal/mol, 66.0%

ΔG=0.39 kcal/mol, 34.0%

Figure S3. The stable conformers of (1R, 4R)-3 and (1R, 4S)-3 with populations

greater than 1% calculated from their relative free energies (ΔG).

Figure S4. The experimental ECD spectrum of 3 and the calculated ECD spectra of

(1R, 4S)-3 and (1S, 4R)-3.

Page 13: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S13

4. (1D, 2D) NMR, IR, and HRESIMS Spectra of 1-6

Figure S5. 1H NMR spectrum of 1 (DMSO-d6, 400 MHz)

Figure S6. 13

C NMR spectrum of 1 (DMSO-d6, 100 MHz)

Page 14: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S14

Figure S7. HMQC spectrum of 1 (DMSO-d6)

Figure S8. HMBC spectrum of 1 (DMSO-d6)

Page 15: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S15

Figure S9. NOESY spectrum of 1 (DMSO-d6)

Figure S10. IR spectrum of 1

Page 16: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S16

Figure S11. HRESIMS spectrum of 1

Figure S12. 1H NMR spectrum of 2 (DMSO-d6, 400 MHz)

CH3OH

×

CH3OH

×

Page 17: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S17

Figure S13. 13

C NMR spectrum of 2 (DMSO-d6, 100 MHz)

Figure S14. HMBC spectrum of 2 (DMSO-d6)

CH3OH

×

Page 18: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S18

Figure S15. NOESY spectrum of 2 (DMSO-d6)

Figure S16. 1H NMR spectrum of 2 (CDCl3, 400MHz)

Page 19: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S19

Figure S17. 13

C NMR spectrum of 2 (CDCl3, 100 MHz)

Figure S18. HMBC spectrum of 2 (CDCl3)

Page 20: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S20

Figure S19. NOESY spectrum of 2 (CDCl3)

Figure S20. IR spectrum of 2

Page 21: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S21

m/z Calc m/z Diff(ppm) z Abund Formula Ion

391.1048 391.1035 3.34 -1 258124 C19H19O9 (M-H)-

427.0817 427.0801 3.74 -1 126325.6 C19H20ClO9 (M+Cl)-

429.0799 429.0781 4.08 -1 37636.5 C19H20ClO9 (M+Cl)-

437.1108 437.1089 4.26 -1 61824.3 C20H21O11 (M+HCOO)-

783.2169 783.2142 3.49 -1 30933.7 C38H39O18 (2M-H)-

Figure S21. HRESIMS spectrum of 2

Figure S22. 1H NMR spectrum of 3 (DMSO-d6, 400 MHz)

Page 22: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S22

Figure S23.

13C NMR spectrum of 3 (DMSO-d6, 100 MHz)

Figure S24. HMQC spectrum of 3 (DMSO-d6)

Page 23: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S23

Figure S25. HMBC spectrum of 3 (DMSO-d6)

Figure S26. NOESY spectrum of 3 (DMSO-d6)

Page 24: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S24

Figure S27. IR spectrum of 3

Figure S28. HRESIMS spectrum of 3

Page 25: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S25

Figure S29. 1H NMR spectrum of 4 (DMSO-d6, 400 MHz)

Figure S30. 13

C NMR spectrum of 4 (DMSO-d6, 100 MHz)

Page 26: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S26

Figure S31. HMBC spectrum of 4 (DMSO-d6)

Figure S32. NOESY spectrum of 4 (DMSO-d6)

Page 27: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S27

Figure S33. 1H NMR spectrum of 4 (CD3OD, 400MHz)

Figure S34. 13

C NMR spectrum of 4 (CD3OD, 100 MHz)

Page 28: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S28

Figure S35. HMBC spectrum of 4 (CD3OD)

Figure S36. IR spectrum of 4

Page 29: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S29

m/z Calc m/z Diff(ppm) z Abund Formula Ion

332.0779 332.0776 0.83 -1 250942.4 C16H14NO7 (M-H)-

368.0546 368.0543 1.05 -1 69850.4 C16H15ClNO7 (M+Cl)-

665.1626 665.1624 0.27 -1 8108.4 C32H29N2O14 (2M-H)-

Figure S37. HRESIMS spectrum of 4

Figure S38. 1H NMR spectrum of 5 (DMSO-d6, 400 MHz)

Page 30: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S30

Figure S39. 13

C NMR spectrum of 5 (DMSO-d6, 100 MHz)

Figure S40. HMBC spectrum of 5 (DMSO-d6)

Page 31: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S31

Figure S41. NOESY spectrum of 5 (DMSO-d6)

Figure S42. IR spectrum of 5

Page 32: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S32

Figure S43. HRESIMS spectrum of 5

Figure S44. 1H NMR spectrum of 6 (DMSO-d6, 400 MHz)

Page 33: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S33

Figure S45. 13

C NMR spectrum of 6 (DMSO-d6, 100 MHz)

Figure S46. HMBC spectrum of 6 (DMSO-d6)

Page 34: Supporting Information - Amazon S3 · Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Bioactive Substance and Function of Natural

S34

Figure S47. IR spectrum of 6 (recorded in acetone)

Figure S48. HRESIMS spectrum of 6