Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of...

28
Study of h;H;A ! decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional de La Plata - Instituto de F sica La Plata - Argentina IV Postgraduate Meeting on Theoretical Physics, IFT UAM-CSIC - November 18, 2015 Roberto Morales 1/28

Transcript of Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of...

Page 1: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Study of h,H,A→ τµ decays in the

context of the MSSM within the Mass

Insertion Approximation

Roberto Morales

Universidad Nacional de La Plata - Instituto de Fısica La Plata - Argentina

IV Postgraduate Meeting on Theoretical Physics, IFT UAM-CSIC - November 18, 2015

Roberto Morales 1/28

Page 2: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Outline

• Motivation

• Experimental Bounds

• MSSM + general slepton mixing

• Mass Insertion Approximation (MIA)

• Lepton Flavor Violation Higgs Decays (LFVHD) processes

• Results

• Phenomenology

• Conclusions

Roberto Morales 2/28

Page 3: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

References

Work based on:

• E.Arganda, M. J. Herrero, R. Morales and A. Szynkman,“Analysis of the h,H,A→ τµ decays induced from SUSY loops within the Mass InsertionAproximation”, arXiv:1510.04685[hep-ph].

In continuation to:

• M. Arana-Catania, E.Arganda and M. J. Herrero,“Non-decoupling SUSY in LFV Higgs decays: a window to new physics at the LHC”,JHEP 1309 (2013) 160 [JHEP 1510 (2015) 192] [arXiv:1304.3371 [hep-ph]].

Roberto Morales 3/28

Page 4: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Motivation

• Why Lepton Flavor Violation? LFV occurs in Nature.Neutrino oscillations −→ LFV

• LFV is a window to BSM physics: No LFV within SM.

• SUSY not seen yet at LHC (scale mSUSY at TeV range?)

• Higgs mediated processes are sensitive to SUSY via loops.

Main here:the MIA allows us to derive simple analytical expressions for decay rates. Useful for Pheno!

Roberto Morales 4/28

Page 5: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Experimental BoundsSome searched processes:

LFV process Present Upper Bound (90%CL) Future Sensitivity (?)

BR(µ→ eγ) 5.7× 10−13 (MEG 2013) 5× 10−14 (MEGup)

BR(τ → eγ) 3.3× 10−8 (BaBar 2010) 3× 10−9 (SuperB)

BR(τ → µγ) 4.4× 10−8 (BaBar 2010) 2.4× 10−8 (SuperB)

BR(µ→ eee) 1× 10−12 (SINDRUM 1988) 1× 10−16 (Mu3E-PSI)

BR(τ → eee) 2.7× 10−8 (Belle 2010) 1× 10−9,−10 (Belle2, SuperB)

BR(τ → µµµ) 2.1× 10−8 (Belle 2010) 1× 10−9,−10 (Belle2, SuperB)

BR(τ → µη) 2.3× 10−8 (Belle 2010) 1× 10−9,−10 (Belle2, SuperB)

CR(µ− e, Au) 7× 10−13 (SINDRUM2 2006)

CR(µ− e, Al) 3.1× 10−15 (COMET-I, J-PARC)

2.6× 10−17 (COMET-II, J-PARC)

2.5× 10−17 (Mu2E-FermiLab)

CR(µ− e, Ti) 4.3× 10−12 (SINDRUM2 2004) 1× 10−18 (PRISM, J-PARC)

New input from LHC: LFV Higgs DecaysBR(H → τµ) < 1.51× 10−2 (95%C.L.) [CMS 2015] (2.4σ excess?)

BR(H → τµ) < 1.85× 10−2 (95%C.L.) [ATLAS 2015]

Roberto Morales 5/28

Page 6: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

The MSSM with general slepton mixingLow energy parametrization for general slepton mixing (model independent).

LLFVsoft = −L†m2

LL− R∗m2

RR +

(L†AlR∗H1 + h.c.

)

m2L

=

m2L1

δLL12 mL1mL2

δLL13 mL1mL3

δLL21 mL2mL1

m2L2

δLL23 mL2mL3

δLL31 mL3mL1

δLL32 mL3mL2

m2L3

LLmk ≡ (m

2L

)mk = δLLmkmLmmLk

m2R

=

m2R1

δRR12 mR1mR2

δRR13 mR1mR3

δRR21 mR2mR1

m2R2

δRR23 mR2mR3

δRR31 mR3mR1

δRR32 mR3mR2

m2R3

RRmk ≡ (m

2R

)mk = δRRmkmRmmRk

v1Al =

meAe δLR12 mL1

mR2δLR13 mL1

mR3

δLR21 mL2mR1

mµAµ δLR23 mL2mR3

δLR31 mL3mR1

δLR32 mL3mR2

mτAτ

∆LRmk ≡ (v1Al)mk = δ

LRmkv1

√mLmmRk

=⇒ δLRmk = δ

LRmk

v1√mLmmRk

∆RLmk ≡ (v1Al)km = δ

RLmkv1

√mRmmLk

=⇒ δRLmk = δ

RLmk

v1√mRmmLk

v1(2) = 〈H1(2)〉 and tanβ = tβ = v2/v1

⇒ LFV is originated from the off-diagonal real δABmk ’s via SUSY loops.

Roberto Morales 6/28

Page 7: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Full and MIA approach

Full Calculation

• Work with the mass basis −→ full diagonalization of mass matrix.

• Physical states: 6 sleptons lα and 3 sneutrinos να.

• Dependence on δABmk hidden in physical masses and rotation matrices.

• Numerical results for decay rates.

MIA Calculation

• Work with the EW interaction basis. Gauge states: lLi , lRi and νi where i denotes flavore, µ, τ .

• Non-diagonal elements of the mass matrix are considered as two-field interactions. Forexample, explicit dependence on ∆AB

mk appears in the lepton flavor violation insertions:

lAm lBk

−i∆ABmk

νm νk−i∆LL

mk

• Analytical expressions for decay rates as perturbative expansion of δABmk and other massratios.

Roberto Morales 7/28

Page 8: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

LFVHD processes h,H,A→ lklm with m 6= k

In this context, LFV Higgs Decays occur at one-loop order:

Hx

lk

lm

px

pk

pm

∆mk

mSUSY

mEW

Our aim:to get the form factors F as an expansion valid for heavy SUSY

(mSUSY � mh,H,A,mlep,mW )

∆ABmkF (mHx ,mlep,mW ,mSUSY) ∼ ∆AB

mk

(F |mext=0 +O(M2

Hx/m2

SUSY) +O(M2W /m2

SUSY))

F |mext=0 ∼ O(M0Hx/m0

SUSY) −→ Non-Decoupling ND contributions (dominant terms).

O(M2Hx/m2

SUSY),O(M2W /m2

SUSY) −→ Decoupling D contributions (leading and subleading

corrections).

Roberto Morales 8/28

Page 9: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Results for LFVHD in the MIA

In the next slides,

• SUSY scenarios: all heavy masses are proportional to one scale mSUSY.

• All relevant one-loop diagrams for the full and MIA computation.

• Decay rate in terms of the form factors and ∆ABmk .

• Study of the cases ∆LLmk and ∆RR

mk : Non-Decoupling behavior.

• Study of the cases ∆LRmk and ∆RL

mk: Decoupling behavior.

• Perturbativity on δABmk ’s.

• Comparison between MIA/Full calculation and with Effective approach.

• Pheno implications: numerical study of maximum rates allowed by experimental boundsfrom τ → µγ and searches of neutral MSSM Higgs bosons.

Roberto Morales 9/28

Page 10: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

SUSY scenarios

• Equal masses scenario: all the relevant parameters involved set to be equal

M1 = M2 = µ = mL = mR = Aµ = Aτ = mSUSY

• GUT approximation scenario: set an approximate GUT relation for the gaugino masses

M2 = 2M1 (GUT relation)

We also relate the soft parameters and the µ parameter to a common scale by choosing:

mL = mR = M2 = Aµ = Aτ = µ/a = mSUSY with a =3

4,

4

3

• Generic scenario: we set different values for all the mass parameters involved

M1 = 2.2mSUSY ,M2 = 2.4mSUSY , µ = 2.1mSUSY

mL1= 2mSUSY ,mL2

= 1.8mSUSY ,mL3= 1.6mSUSY

mR1= 1.4mSUSY ,mR2

= 1.2mSUSY ,mR3= mSUSY

Aµ = 0.6mSUSY , Aτ = 0.8mSUSY

Roberto Morales 10/28

Page 11: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

One-loop diagrams for the Full results

Use mass basis for the internal SUSY particles: sleptons, sneutrinos, charginos andneutralinos.

[Arganda, Curiel, Herrero, Temes; 2005]

Hx

lk

lmχ−j

χ−i

να

(1)

Hx

lk

lm

χ−i

να

νβ(2)

Hx

lm

lk

χ−i

να

lm

(3)

Hx

lm

lk

χ−i

ναlk

(4)

Hx

lk

lmχ0j

χ0i

(5)

Hx

lk

lm

χ0i

lβ(6)

Hx

lm

lk

χ0i

lm

(7)

Hx

lm

lk

χ0i

lαlk

(8)

Roberto Morales 11/28

Page 12: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Relevant one-loop diagrams for ∆LLmk

Use gauge basis for the internal SUSY particles: flavor sleptons, flavor sneutrinos, Bino,Winos, Higgsinos.

Hx

lk

lmW−, H−

H−, W−

νm

νk

(1a,1b)

Hx

lm

lk

H−

W−

νkνm

lm

(3a)

Hx

lm

lk

W−

νkνm

lm

(3b)

Hx

lm

lk

W−, H−H−, W−

νkνmlk

(4a,4b)

Hx

lm

lk

W−

νkνmlk

(4c)

Hx

lk

lmB, W3

H1

H2:1

lLm

lLk

(5a,5b:5c,5d)

Hx

lk

lm

B, W3

H1

H2:1lLm

lLk

(5e,5f:5g,5h)

Hx

lk

lm

B

lRk

lLk

lLm(6a)

Hx

lk

lm

B

lRm

lLm

lLk

(6b)

Roberto Morales 12/28

Page 13: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Relevant one-loop diagrams for ∆LLmk

Hx

lm

lk

H1

H2:1B, W3

lLklLm

lm

(7a,7b:7c,7d)

Hx

lm

lk

B, W3

lLklLm

lm

(7e,7f)

Hx

lm

lk

B

lRklLk

lLmlm

(7g)

Hx

lm

lk

B, W3 H1

H2:1

lLklLmlk

(8a,8b:8c,8d)

Hx

lm

lk

B, W3

lLklLmlk

(8e,8f)

Hx

lm

lk

B

lLk

lLm

lRmlk

(8g)

Hx

lm

lk

B, W3

H1

H2:1

lLklLmlk

(8h,8i:8j,8k)

Hx

lm

lk

B

lRk

lLk

lLmlk

(8l)

Other diagrams suppressed by extra factors of (MEW /mSUSY)n and/or (mlep/mSUSY)m.

Roberto Morales 13/28

Page 14: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Relevant one-loop diagrams for ∆LRmk and ∆RL

mk

• Case ∆LRmk

Hx

lk

lm

B

lRk

lLm(6c)

Hx

lm

lk

B

lRklLmlk

(8m)

• Case ∆RLmk

Hx

lk

lm

B

lLk

lRm(6d)

Hx

lm

lk

B

lLklRmlk

(8n)

Roberto Morales 14/28

Page 15: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Relevant one-loop diagrams for ∆RRmk

Hx

lk

lmB

H1

H2:1

lRm

lRk

(5i:5j)

Hx

lk

lm

B

H1

H2:1lRm

lRk

(5k:5l)

Hx

lk

lm

B

lLk

lRk

lRm(6e)

Hx

lk

lm

B

lLm

lRm

lRk

(6f)

Hx

lm

lk

H1

H2:1B

lRklRm

lm

(7h:7i)

Hx

lm

lk

B

lRklRm

lm

(7j)

Hx

lm

lk

B

lLklRk

lRmlm

(7k)

Hx

lm

lk

B

H1

H2:1

lRklRmlk

(8o:8p)

Hx

lm

lk

BH1

H2:1

lRklRmlk

(8q:8r)

Hx

lm

lk

B

lRklRmlk

(8s)

Hx

lm

lk

B

lLk

lRk

lRmlk

(8t)

Hx

lm

lk

B

lRk

lRm

lLmlk

(8u)

Roberto Morales 15/28

Page 16: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Analytical results in the MIA

The amplitude of Hx(p1)→ lk(−p2)lm(p3) for Hx = h,H,A is

iM = −igulk (−p2)(F(x)L PL + F

(x)R PR)vlm (p3)

The decay rate reads as follows:

Γ(Hx → lk lm) =g2

16πmHx

√√√√(1−(mlk +mlm

mHx

)2)(

1−(mlk −mlm

mHx

)2)

×(

(m2Hx−m2

lk−m2

lm)(|F (x)

L |2 + |F (x)R |2)− 4mlkmlmRe(F

(x)L F

(x)∗R )

)where the form factors are linear in ∆AB

mk

F(x)L,R = ∆LL

mkF(x)LLL,R + ∆LR

mkF(x)LRL,R + ∆RL

mkF(x)RLL,R + ∆RR

mkF(x)RRL,R

• All of them are UV convergent: they are expressed in terms of the loop functions C0, C2,D0, D0 of three and four points because there are 2 scalar and 1 fermionic propagators atleast.

• We perform a systematic expansion in powers of pext and keep: the leading contributionsO(p0

ext) and the next-to-leading O(p2ext).

Roberto Morales 16/28

Page 17: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Non-decoupling contributions for ∆LLmk and ∆RR

mk(∆LL

23 F(x)LLL

)ND

=

(g2

16π2

2MW

)[σ

(x)2 + σ

(x)∗

1 tβ

](δLL23 mL2

mL3

)

×[

3

2µM2D0(0, 0, 0,m

L2,m

L3, µ,M2)

− t2W

2µM1D0(0, 0, 0,m

L2,m

L3, µ,M1)

−t2WµM1D0(0, 0, 0,mL2,m

L3,m

R3,M1)

]

O(M0

Hx/m0

SUSY)

(∆RR

23 F(x)RRR

)ND

=

(g2t2W16π2

2MW

)[σ

(x)∗

2 + σ(x)1 tβ

](δRR23 m

R2mR3

)

×[µM1D0(0, 0, 0,m

R2,m

R3, µ,M1)

−µM1D0(0, 0, 0,mR2,m

R3,m

L3,M1)

]

O(M0

Hx/m0

SUSY)

whereHx = (h,H,A) , σ

(x)1 = (sα,−cα, isβ) , σ

(x)2 = (cα, sα,−icβ)

⇒ Simple analytical expressions: we factorized the contributions of the loops and the rest ofMSSM parameters (tβ and mA).

Roberto Morales 17/28

Page 18: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Non-decoupling contributions for ∆LLmk and ∆RR

mk

10-9

10-8

10-7

10-6

10-5

10-4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

BR(φ

→ τ µ

)

mSUSY [TeV]

mA = 800 GeV, tan β = 40, δ23LL = 0.5

GUT approx. µ = 3/4 mSUSY h → τ µ FullA → τ µ Fullh → τ µ MIAA → τ µ MIA

10-12

10-11

10-10

10-9

10-8

10-7

10-6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

BR(φ

→ τ µ

)

mSUSY [TeV]

mA = 800 GeV, tan β = 40, δ23RR = 0.5

Generic scenario

h → τ µ FullA → τ µ Fullh → τ µ MIAA → τ µ MIA

• Non-Decoupling behavior of BR(Hx → τµ) ∼ m0SUSY in contrast with the decoupling

behavior of BR(τ → µγ) ∼ m−4SUSY.

• First order MIA approximates the full calculation very well.

• Largest rates for LL and large tβ : BR(Hx → τµ) ∼ t2β .

• Similar results in other scenarios.

Roberto Morales 18/28

Page 19: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Decoupling contributions for ∆LRmk and ∆RL

mk(∆LR23 F

(x)LRL

)D

=

(g2t2W16π2

M1

2MW

)[σ(x)∗1

](δLR23 v

√mL2

mR3)

×[−C0(p2, p1,M1,mR3

,mL2) + C0(p3, 0,M1,mL2

,mR3)]O(M

2Hx/m

2SUSY)

⇒ Simple analytical expressions: we factorized the contributions of the loops and the rest ofMSSM parameters (tβ and mA).

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

BR(φ

→ τ µ

)

mSUSY [TeV]

mA = 800 GeV, tan β = 40, δ~23LR = 0.5

GUT approx. µ = 4/3 mSUSY

h → τ µ FullA → τ µ Fullh → τ µ MIAA → τ µ MIA

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

BR(φ

→ τ µ

)mSUSY [TeV]

mA = 800 GeV, tan β = 40, δ~23LR = 0.5

Generic scenario

h → τ µ FullA → τ µ Fullh → τ µ MIAA → τ µ MIA

• Exact cancellations between Non-Decoupling terms.

• Decoupling behavior of BR(Hx → τµ) ∼ m−4SUSY like BR(τ → µγ).

• First order MIA for H and A approximates the full calculation better than the h.

• Very small rates for LR and RL.

• Similar results in other scenarios.

Roberto Morales 19/28

Page 20: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Limitations of the MIA results

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

-1 -0.5 0 0.5 1

BR(φ

→ τ µ

)

δ23LL

mA = 800 GeV, tan β = 40, mSUSY = 5 TeVGUT approx. µ = 4/3 mSUSY

h → τ µ FullA → τ µ Fullh → τ µ MIAA → τ µ MIA

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

-1 -0.5 0 0.5 1

BR(φ

→ τ µ

)

δ23RR

mA = 800 GeV, tan β = 40, mSUSY = 5 TeVGUT approx. µ = 4/3 mSUSY

h → τ µ FullA → τ µ Fullh → τ µ MIAA → τ µ MIA

10-21

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

-1 -0.5 0 0.5 1

BR(φ

→ τ µ

)

δ23LR

mA = 800 GeV, tan β = 40, mSUSY = 5 TeVGUT approx. µ = 4/3 mSUSY

~

h → τ µ FullA → τ µ Fullh → τ µ MIAA → τ µ MIA

10-21

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

-1 -0.5 0 0.5 1

BR(φ

→ τ µ

)

δ23RL

mA = 800 GeV, tan β = 40, mSUSY = 5 TeVGUT approx. µ = 4/3 mSUSY

~

h → τ µ FullA → τ µ Fullh → τ µ MIAA → τ µ MIA

Perturbativity works reasonably well within |δAB23 | ≤ O(1).

Roberto Morales 20/28

Page 21: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Equal masses scenario: form factors

Dominant contributions for each δ:

F(x)L,R = δLL23 F

(x)LLL,R + δLR23 F

(x)LRL,R + δRL23 F

(x)RLL,R + δRR23 F

(x)RRL,R

As in the generic scenario, for δLL23 we get

F(x)LLL =

g2

16π2

2MW

(x)2 + σ

(x)∗

1 tβ

]1− t2W

4

}ND

For δLR23 , δRL23 , δRR23 , strong cancellations produce

F(x)LRL =

gt2W16π2

1

24√

2

(x)∗

1

] m2Hx

m2S

F(x)RLR =

gt2W16π2

1

24√

2

(x)1

] m2Hx

m2S

F(x)RRR =− g2t2W

16π2

2MW

[2σ

(x)∗

2 + σ(x)1

120cβ

]m2Hx

m2S

D

Roberto Morales 21/28

Page 22: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Equal masses scenario: simplest effective vertices

The most relevant mixing for phenomenology is δLL23 .

For this case, we can write the dominant effective vertex −igV effHxτµPL

V effHxτµ

=g2

16π2

2MW

(x)2 + σ

(x)∗

1 tβ

](1− t2W

4

)δLL23

In the large tβ limit:

V effhτµ|tβ�1 = − g2

16π2

MW

M2Z

m2A

(1− t2W

4

)δLL23

V effHτµ|tβ�1 = −iV eff

Aτµ|tβ�1 = − g2

16π2

2MWt2β

(1− t2W

4

)δLL23

We deduce:

• For light Higgs: effective vertex suppressed by M2Z/m

2A (mA →∞, h is SM-like).

• For heavy Higgs: effective vertex enhanced by t2β (in agreement with [Brignole, Rossi;

2003])

Roberto Morales 22/28

Page 23: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Phenomenology

1.¥10-9

5.¥10-9

1.¥10-8

2.¥10-8

3.¥10-8

5.¥10-8

7.¥10-8

1 2 3 4 5

10

20

30

40

50

60

mSUSY HTeVL

tanb

BRHhÆtmLê»d23LL 2

Equal masses 1.¥10-6

5.¥10-6

0.00001

0.00002

0.000030.00005

0.00007

0.0001

1 2 3 4 5

10

20

30

40

50

60

mSUSY HTeVLtanb

BRHAÆtmLê»d23LL 2

Equal masses

• Shaded pink area: excluded by BR(τ → µγ) < 4.4× 10−8.• Shaded blue area: excluded by negative searches by ATLAS and CMS of neutral MSSM

Higgs bosons decaying to tau pairs.

⇒ Maximum allowed rates are ∼ 5× 10−5 for H and A (below LHC sensitivity).

Roberto Morales 23/28

Page 24: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Phenomenology

1.¥10-9

1.¥10-8

3.¥10-8

1.¥10-73.¥10-71.¥10-60.00001

200 400 600 800 1000

10

20

30

40

50

60

mA HGeVL

tanb

BRHhÆtmLê»d23LL 2

Equal masses 1.¥10-6

0.00001

0.00005

0.0001

0.00015

0.00020.00025

0.00030.00035

200 400 600 800 1000

10

20

30

40

50

60

mA HGeVLtanb

BRHAÆtmLê»d23LL 2

Equal masses

• We can set mSUSY = 4 TeV (ND terms) −→ no constraints by τ → µγ.• Shaded blue area: excluded by negative searches by ATLAS and CMS of neutral MSSM

Higgs bosons decaying to tau pairs.

⇒ Maximum allowed rates are ∼ 3.5× 10−4 for H and A.Taking in account both channels τµ and τµ, BR∼ 10−3 closer to LHC sensitivity!

Roberto Morales 24/28

Page 25: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

h,H,A→ τµ at LHC

• Shaded gray area: excluded by τ → µγ.

• Shaded blue area: excluded by negative searches by ATLAS and CMS.

⇒ Most promising for H and A: in the region tβ ∼ 40− 60, mA ∼ 900− 1000 GeV and

mSUSY > 4 TeV, for√s = 14 TeV and L ∼100 fb−1 we predict O(1-10) events.

Roberto Morales 25/28

Page 26: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Conclusions

• We performed a diagramatic computation of LFVHD within the MIA. We found simpleanalytical expressions for the form factors. They are very useful for phenomenology andcomparison with data.

• We compared MIA vs Full results: good agreement in most cases, in particular for theNon-Decopling terms (phenomenological important ones).

• Also, we compared with the effective vertices approach: in accordance with previousresults in the literature.

• We understood the BR behavior with the MSSM parameters tβ and mA.

• We concluded that H,A→ τµ are promising channels at the LHC.

Roberto Morales 26/28

Page 27: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Back-up

Roberto Morales 27/28

Page 28: Study of h,H,A decays in the context of the MSSM … · Study of h;H;A! ˝ decays in the context of the MSSM within the Mass Insertion Approximation Roberto Morales Universidad Nacional

Subleading corrections: O(M2W/m

2SUSY)

10-20

10-18

10-16

10-14

10-12

10-10

10-8

5 10 15 20 25 30 35 40

BR(h

→ τµ

)

tan β

Equal massesmA = 800 GeV, mSUSY = 5 TeV, δ23

XY = 0.5M1 = M2 = µ = mL = mR = Aµ,τ = mSUSY

LL FullLL MIA

RR FullRR MIA

LR FullLR MIA

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

5 10 15 20 25 30 35 40

BR(A

→ τµ

)

tan β

Equal massesmA = 800 GeV, mSUSY = 5 TeV, δ23

XY = 0.5M1 = M2 = µ = mL = mR = Aµ,τ = mSUSY

LL FullLL MIA

RR FullRR MIA

LR FullLR MIA

F(x)RRR =

g2t2W16π2

2MW cβ

M2W

m2S

t2β

1 + t2β

[(σ(x)1

60

(3t

2W + 13− 4t

2W tβ − 12tβ

)

−σ(x)∗1

5−

4σ(x)2

15−

2σ(x)∗2

15+σ(x)3

√1 + t2β

12tβ

(1 + t

2W

)

+

1 + t2W60tβ

(−8σ

(x)1 + 4σ

(x)∗1 + σ

(x)2 + σ

(x)∗2

)+σ(x)3

√1 + t2β

12t2β

(−1 + 5t

2W

)+

(1 + t2W30t2β

(−σ(x)

1 + σ(x)∗1 + σ

(x)2 − σ(x)∗

2

))]Roberto Morales 28/28