Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf ·...

82
Straling Reynier Peletier Kapteyn Astronomical Institute Groningen

Transcript of Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf ·...

Page 1: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Straling

Reynier PeletierKapteyn Astronomical Institute

Groningen

Page 2: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Blackbody Radiation(thermal radiation):

Page 3: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Converting this to the intensity as a function of frequency:

For low frequencies ( ), we have:

Here h is the constant of Planckand k the constant of Boltzmann

h ν ≪ kT

(Rayleigh-Jeans law = the classical approximation)

Blackbody Radiation:

Page 4: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Hotter B.B. emitters “emit” more total radiation per unit area.However, a big cold object can emit the same or more energy (depending

on how big it is) than a small, hotter one

Cold Hot

Integrating the radiation of a blackbody gives: Stefan-Boltzmann Law: Emitted power per square meter = σ T4

σ = 5.7 x 10-8 W/(m2K4)

Total emitted power: E = 4 R2 σ T4

Page 5: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Two Laws of Black Body Radiation

2. The peak of the black body spectrum shifts towards shorter wavelengths when the temperature increases.

Wien’s displacement law:

max ≈ 3,000,000 nm / TK

(where TK is the temperature in Kelvin).

1. The hotter an object is, the more luminous it is.

Page 6: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Color Index (I)B band

V bandThe color of a star is measured by

comparing its brightness in two different wavelength bands:

The blue (B) band and the visual (V) band.

We define B-band and V-band magnitudes just as we did before for total magnitudes (remember: a larger number indicates a fainter

star).

Page 7: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Color Index (II)

We define the Color Index

B – V(i.e., B magnitude – V magnitude)

The bluer a star appears, the smaller the color index B – V.

The hotter a star is, the smaller its color index B – V.

Page 8: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Stars come in different colors

Page 9: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 10: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 11: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Color and Temperature

Orion

Betelgeuse

Rigel

Stars appear in different colors,

from blue (like Rigel)

via green / yellow (like our sun)

to red (like Betelgeuse).

If the spectra of stars are black bodies, then these colors tell us about the star’s temperature.

Page 12: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

M 51 – HST ACSDistance: 8 Mpc

A Galaxy: Messier 51

Page 13: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 14: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

In spiral arm

Page 15: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Between spiral arms

Page 16: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

M 330.9 Mpc

Page 17: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

M33 -Distance 700 kpc

Near a spiral arm

Page 18: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 19: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

NGC 2050.8 Mpc

Page 20: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

NGC 205

Page 21: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Andromeda Galaxy (M31) with its 2 satellites

M 32

NGC 205

Page 22: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

M 32

Page 23: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

NGC 89110 Mpc

Page 24: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

NGC 891

Page 25: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

NGC 891 – thick disk

Page 26: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

M51 - In spiral arm

Page 27: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Baade (1944)'s stellar population paradigm:

- Population I is a stellar population similar to the population of stars in the solar neighbourhood, with bright red and blue stars

- Population II is a stellar population similar to stars in globular clusters, where the brightest stars are red.

Page 28: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

POP II

POP I

Page 29: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

What do we know about colours of stars?

Page 30: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The HR (Hertzsprung-Russell) diagram

B - V

Lum.

Stars populate distinct regions of this plane, corresponding to a particular evolutionary phase.

Terminology:

HRD is “theory” plane: temp. vs. bolometricluminosity.CMD (colour-magnitudediagram) is its emipiricalanalogue.

Page 31: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Stellar Evolutionary Phases

Main Sequence (MS)

Core Hydrogen burning. Longest phase.

Red Giant Branch (RGB)

Hydrogen burning in shell around He core. He core is growing.

When He core is massive and hot enough, it will ignite, starting He-burning (He-flash).

Page 32: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Stellar Evolutionary Phases

Horizontal Branch (HB)

Core He burning. Position stronglymetallicity-dependent.

Asymptotic Giant Branch (AGB)

He-burning in shell around inert CNO core (+ H-burning). Evolution dependenton mass-loss. Pulsating phase.

White Dwarf Sequence (WD)

Remains of the star after envelopehas been ejected (low-mass stars)

Page 33: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Tracks & Isochrones

Tracks:

trajectories of individual stars in the HRD.

Depend on initial mass.

Examples:

BaSTIPadovaGenevaYonsei-Yale

Page 34: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Tracks & Isochrones

Isochrones:

Loci on the HRD populated by stars of the same age, butwith different masses.

(Padova example, Marigo)

Page 35: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Tracks & Isochrones

Isochrone comparison – Bertelli (Padova) vs. BaSTI

Page 36: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Globular Clusters

De-populated upper MS. Strong RGB and HB.

1,000s to 100,000s of stars.

Page 37: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Open Clusters

Open cluster: MS dominant, few RGB or other evolved stars. Only few 100s or 1000s of stars.

Globular cluster: de-populatedMain Sequence, Strong HB and RGB.1000s to 1.000.000s of stars.

Page 38: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 39: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Spectra

Encoded in an object’s spectrumis information about the emitter/absorber. This is how we learn what the Universeis made of!

Page 40: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Kirchhoff’s Laws of Radiation (I)

1. A solid, liquid, or dense gas excited to emit light will radiate at all wavelengths and thus produce a continuous spectrum.

Page 41: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Kirchhoff’s Laws of Radiation (II)2. If light comprising a continuous spectrum passes

through a cool, low-density gas, the result will be an absorption spectrum.

Light excites electrons in atoms to higher energy states

Frequencies corresponding to the transition energies are absorbed from

the continuous spectrum.

Page 42: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Kirchhoff’s Laws of Radiation (III)3. A low-density gas excited to emit light will do so at

specific wavelengths and thus produce an emission spectrum.

Light excites electrons in atoms to higher energy states

Transition back to lower states emits light at specific frequencies

Page 43: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Spectra of StarsInner, dense layers of a star produce a continuous (black

body) spectrum.

Cooler surface layers absorb light at specific frequencies.

=> Spectra of stars are absorption spectra.

Page 44: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Most prominent lines in many astronomical

objects: Balmer lines of hydrogen

Lines of Hydrogen

Page 45: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Balmer Lines

n = 1

n = 2

n = 4

n = 5n = 3

H H H

The only hydrogen lines in the visible wavelength range.

Transitions from 2nd to higher levels of hydrogen

2nd to 3rd level = H (Balmer alpha line)2nd to 4th level = H (Balmer beta line)

Page 46: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Absorption spectrum dominated by Balmer lines

Modern spectra are usually recorded digitally and represented as plots of

intensity vs. wavelength

Page 47: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Emission nebula, dominated by the red H line.

Page 48: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Balmer Thermometer

Balmer line strength is sensitive to temperature:

Page 49: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Measuring the Temperatures of Stars

Comparing line strengths, we can measure a star’s surface temperature!

Page 50: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Spectral Classification of Stars (I)

Tem

pera

ture

Different types of stars show different characteristic sets of absorption lines.

Page 51: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Spectrum of a star (the Sun)

There are similar absorption lines in the other regions of the electromagnetic spectrum. Each line exactly corresponds to chemical elements in the stars.

Page 52: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The spectrum of a star is most determined by

1. The temperature of the star’s surface

2. The star’s distance from Earth

3. The density of the star’s core

4. The luminosity of the star

Page 53: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Spectral type• Sequence is: O B A F G K M• O type is hottest (~25,000K), M type is coolest (~2500K)• Star Colors: O blue to M red• Sequence subdivided by attaching one numerical digit,

for example: F0, F1, F2, F3 … F9 where F1 is hotter than F3 . Sequence is O … O9, B0, B1, …, B9, A0, A1, … A9, F0, …

• Useful mnemonics to remember OBAFGKM:– Our Best Astronomers Feel Good Knowing More– Oh Boy, An F Grade Kills Me– (Traditional) Oh, Be a Fine Girl (or Guy), Kiss Me

Page 54: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Spectral Classification of Stars (II)

Page 55: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Oh Oh Only

Be Boy, Bad

A An Astronomers

Fine F Forget

Girl/Guy Grade Generally

Kiss Kills Known

Me Me Mnemonics

Mnemonics to remember the spectral sequence:

Page 56: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Stellar spectra

OB

A

F

G

KM

Surface tem

pera ture

Page 57: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Composition of StarsFrom the relative strength of absorption lines (carefully

accounting for their temperature dependence), one can infer the composition of stars.

Page 58: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 59: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Examples of the use of colours in stars and galaxies

1. Multiple main sequences

2. Star formation histories of Local Group dwarf galaxies

3. Galaxies at various wavelengths

4. Redshifts of galaxies

Page 60: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

1. Multiple main sequences

Page 61: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Multiple main sequencesMilone et al. (2007)

Multiple main sequence in NGC 2808, Omega Cen, and a double SGB in NGC 1851 (Mackey & Broby Nielsen) impliesthat globular clusters don't have single age/metallicities!

NGC2808 Piotto et al. (2007)

Page 62: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

2. Star formation histories of Local Group dwarf galaxies

Page 63: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Determining Star Formation Histories of

Local Group dwarfs

Mateo et al. 1998

Page 64: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Determining Star Formation Histories of Local Group dwarfs

Page 65: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Tucana – Gallart (part of LCID project)

All work based on Hubble Space Telescope data

Page 66: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Draco (from Dolphin 2005)

Some examples:

Page 67: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

M32

NGC 147

Page 68: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

Charts from Dolphin 2005

Page 69: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Magellanic Clouds

LMC SMC

Page 70: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

SMC

Page 71: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

dIrr SFHs – Summary

All dIrrs have an old population. Continuous star formation over

the entire lifetime of the galaxy. Recent star formation often

dominates. No two histories look the same. Different regions can have

different star formation histories (Hodge et al 1991).

Page 72: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

3. Galaxies at various wavelengths

Page 73: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 74: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 75: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 76: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 77: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

4. Redshifts of galaxies

Page 78: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation
Page 79: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

The Doppler Effect: stars/galaxies that move away from us become redder.

Galaxies

Page 80: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

What happens to colors of redshifted galaxies?

Page 81: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

HUDF–JD2 (z=6.5) (Mobasher et al. 2005)

i > 30.88 z > 30.26

B > 30.61V > 31.02

HST/ACS

VLT/ISAAC

SST/IRAC

Example of a very redshifted object

0.45 0.55 0.70 0.90

2.101.601.20

Page 82: Straling - Kapteyn Astronomical Institutepfeldbrugge/nascholing/ReynierPeletier-Colours.pdf · Straling Reynier Peletier Kapteyn Astronomical Institute Groningen. Blackbody Radiation

JD2 (J-dropout) in HUDF (z=6.5)