STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 –...

46
STK2130 – Chapter 6.4 (part 1) A. B. Huseby Department of Mathematics University of Oslo, Norway A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 1 / 46

Transcript of STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 –...

Page 1: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

STK2130 – Chapter 6.4 (part 1)

A. B. Huseby

Department of MathematicsUniversity of Oslo, Norway

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 1 / 46

Page 2: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (REPRISE)

We recall that if X ∼ exp(λ), then the moment generating function of X isgiven by:

MX (t) = E [etX ] =

∫ ∞0

λe−(λ−t)xdx =λ

λ− t.

Now, let X1, . . . ,Xn be independent and Xi ∼ exp(λi), i = 1, . . . ,n, andassume that all the λi ’s are distinct. That is λi 6= λj for all i 6= j .

The moment generating function of S = X1 + · · ·+ Xn is given by:

MS(t)= E [etS] = E [etX1+···tXn ]

= E [etX1 ] · · ·E [etXn ] (since X1, . . . ,Xn are independent)

=n∏

i=1

MXi (t) =n∏

i=1

λi

λi − t.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 2 / 46

Page 3: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (REPRISE)

We recall that if X ∼ exp(λ), then the moment generating function of X isgiven by:

MX (t) = E [etX ] =

∫ ∞0

λe−(λ−t)xdx =λ

λ− t.

Now, let X1, . . . ,Xn be independent and Xi ∼ exp(λi), i = 1, . . . ,n, andassume that all the λi ’s are distinct. That is λi 6= λj for all i 6= j .

The moment generating function of S = X1 + · · ·+ Xn is given by:

MS(t)= E [etS] = E [etX1+···tXn ]

= E [etX1 ] · · ·E [etXn ] (since X1, . . . ,Xn are independent)

=n∏

i=1

MXi (t) =n∏

i=1

λi

λi − t.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 3 / 46

Page 4: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (REPRISE)

We recall that if X ∼ exp(λ), then the moment generating function of X isgiven by:

MX (t) = E [etX ] =

∫ ∞0

λe−(λ−t)xdx =λ

λ− t.

Now, let X1, . . . ,Xn be independent and Xi ∼ exp(λi), i = 1, . . . ,n, andassume that all the λi ’s are distinct. That is λi 6= λj for all i 6= j .

The moment generating function of S = X1 + · · ·+ Xn is given by:

MS(t) = E [etS] = E [etX1+···tXn ]

= E [etX1 ] · · ·E [etXn ] (since X1, . . . ,Xn are independent)

=n∏

i=1

MXi (t) =n∏

i=1

λi

λi − t.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 4 / 46

Page 5: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (REPRISE)

We recall that if X ∼ exp(λ), then the moment generating function of X isgiven by:

MX (t) = E [etX ] =

∫ ∞0

λe−(λ−t)xdx =λ

λ− t.

Now, let X1, . . . ,Xn be independent and Xi ∼ exp(λi), i = 1, . . . ,n, andassume that all the λi ’s are distinct. That is λi 6= λj for all i 6= j .

The moment generating function of S = X1 + · · ·+ Xn is given by:

MS(t) = E [etS] = E [etX1+···tXn ]

= E [etX1 ] · · ·E [etXn ] (since X1, . . . ,Xn are independent)

=n∏

i=1

MXi (t) =n∏

i=1

λi

λi − t.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46

Page 6: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (REPRISE)

We recall that if X ∼ exp(λ), then the moment generating function of X isgiven by:

MX (t) = E [etX ] =

∫ ∞0

λe−(λ−t)xdx =λ

λ− t.

Now, let X1, . . . ,Xn be independent and Xi ∼ exp(λi), i = 1, . . . ,n, andassume that all the λi ’s are distinct. That is λi 6= λj for all i 6= j .

The moment generating function of S = X1 + · · ·+ Xn is given by:

MS(t) = E [etS] = E [etX1+···tXn ]

= E [etX1 ] · · ·E [etXn ] (since X1, . . . ,Xn are independent)

=n∏

i=1

MXi (t) =n∏

i=1

λi

λi − t.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 6 / 46

Page 7: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (cont.)Assume that λ1, . . . , λn be distinct positive numbers. A random variable Z issaid to have a hypoexponential distribution with rates λ1, . . . , λn if the densityof Z is given by:

fZ (z) =n∑

i=1

Ci · λie−λi z , z ≥ 0,

where:

Ci =∏j 6=i

λj

λj − λi, i = 1, . . . ,n.

The moment generating function of Z is then given by:

MZ (t)= E [etZ ] =

∫ ∞0

n∑i=1

Ci · λie−(λi−t)zdz

=n∑

i=1

Ci

∫ ∞0

λie−(λi−t)zdz =n∑

i=1

Ci ·λi

λi − t

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 7 / 46

Page 8: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (cont.)Assume that λ1, . . . , λn be distinct positive numbers. A random variable Z issaid to have a hypoexponential distribution with rates λ1, . . . , λn if the densityof Z is given by:

fZ (z) =n∑

i=1

Ci · λie−λi z , z ≥ 0,

where:

Ci =∏j 6=i

λj

λj − λi, i = 1, . . . ,n.

The moment generating function of Z is then given by:

MZ (t) = E [etZ ] =

∫ ∞0

n∑i=1

Ci · λie−(λi−t)zdz

=n∑

i=1

Ci

∫ ∞0

λie−(λi−t)zdz =n∑

i=1

Ci ·λi

λi − t

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 8 / 46

Page 9: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (cont.)

By inserting the expressions for C1, . . . ,Cn, we get:

MZ (t) =n∑

i=1

λi

λi − t· Ci =

n∑i=1

λi

λi − t

∏j 6=i

λj

λj − λi

=n∏

i=1

λi

λi − t·

n∑i=1

∏j 6=i

λj − tλj − λi

=n∏

i=1

λi

λi − t· φn(t),

where:

φn(t) =n∑

i=1

∏j 6=i

λj − tλj − λi

We observe that φn(t) is a polynomial in t of degree ν, where ν ≤ (n − 1).

If ν > 0, the equation φn(t) = 1 can have at most ν < n distinct real solutions.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 9 / 46

Page 10: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (cont.)

By inserting the expressions for C1, . . . ,Cn, we get:

MZ (t) =n∑

i=1

λi

λi − t· Ci =

n∑i=1

λi

λi − t

∏j 6=i

λj

λj − λi

=n∏

i=1

λi

λi − t·

n∑i=1

∏j 6=i

λj − tλj − λi

=n∏

i=1

λi

λi − t· φn(t),

where:

φn(t) =n∑

i=1

∏j 6=i

λj − tλj − λi

We observe that φn(t) is a polynomial in t of degree ν, where ν ≤ (n − 1).

If ν > 0, the equation φn(t) = 1 can have at most ν < n distinct real solutions.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 10 / 46

Page 11: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (cont.)

However, for k = 1, . . . ,n we must have:∏j 6=i

λj − λk

λj − λi= 0, if k 6= i ,

∏j 6=i

λj − λk

λj − λi= 1, if k = i .

Hence, we get that:

φn(λk ) =n∑

i=1

∏j 6=i

λj − λk

λj − λi= 1, k = 1, . . . ,n.

Since we have assumed that λ1, . . . , λn are distinct, the equation φn(t) = 1has n distinct real solutions, which implies that ν = 0, i.e., that φn(t) ≡ 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 11 / 46

Page 12: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (cont.)

However, for k = 1, . . . ,n we must have:∏j 6=i

λj − λk

λj − λi= 0, if k 6= i ,

∏j 6=i

λj − λk

λj − λi= 1, if k = i .

Hence, we get that:

φn(λk ) =n∑

i=1

∏j 6=i

λj − λk

λj − λi= 1, k = 1, . . . ,n.

Since we have assumed that λ1, . . . , λn are distinct, the equation φn(t) = 1has n distinct real solutions, which implies that ν = 0, i.e., that φn(t) ≡ 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 12 / 46

Page 13: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

The hypoexponential distribution (cont.)

Thus, we have shown that the moment generating function of Z is simply:

MZ (t) =n∏

i=1

λi

λi − t= MS(t).

Since the moment generating function (when it exists) uniquely determinesthe distribution, this implies that Z has the distribution of a sum of nindependent, exponentially distributed variables with distinct rates.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 13 / 46

Page 14: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

6.4 The Transition Probability Function Pij(t)

The transition probabilities of a stationary continuous-time Markov chain{X (t) : t ≥ 0}, with state space X are defined as:

Pij(t) = P(X (t + s) = j |X (s) = i), t ≥ 0, i , j ∈ X

We now consider the case where {X (t) : t ≥ 0} is a pure birth process, andassume that X (0) = i . We then let:

Tk = The time spent in state k , k = i , (i + 1), . . . ,

and note that if j > i , then:

X (t) < j ⇔ Ti + Ti+1 + · · ·+ Tj−1 > t

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 14 / 46

Page 15: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

6.4 Transition Probabilities (cont.)

Hence, for i < j we have:

P(X (t) < j |X (0) = i) = P(Z > t)

where we have introduced Z =∑j−1

k=i Tk .

Assuming that λi 6= λj for all i 6= j , we know that Z is hypoexponentiallydistributed, and thus, the density of Z is:

fZ (z) =j−1∑k=i

Ck · λk e−λk z , z ≥ 0,

where:

Ck =

j−1∏r 6=k,r=i

λr

λr − λk, k = i , . . . , j − 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 15 / 46

Page 16: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

6.4 Transition Probabilities (cont.)

Hence, we get:

P(X (t) < j |X (0) = i) = P(Z > t) =∫ ∞

tfZ (z)dz

=

j−1∑k=i

Ck ·∫ ∞

tλk e−λk zdz

=

j−1∑k=i

Ck · e−λk t

=

j−1∑k=i

e−λk tj−1∏

r 6=k,r=i

λr

λr − λk

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 16 / 46

Page 17: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

6.4 Transition Probabilities (cont.)

By exactly the same argument we also get that:

P(X (t) < j + 1|X (0) = i) =j∑

k=i

e−λk tj∏

r 6=k,r=i

λr

λr − λk

From this we can find:

Pij(t) = P(X (t) = j |X (0) = i)

= P(X (t) < j + 1|X (0) = i)− P(X (t) < j |X (0) = i)

Pii(t) = P(Ti > t) = e−λi t

The next proposition summarizes these results.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 17 / 46

Page 18: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

6.4 Transition Probabilities (cont.)

Proposition (6.1)

For a pure birth process where λi 6= λj for all i 6= j , we have:

Pij(t) =

j∑k=i

e−λk tj∏

r 6=k,r=i

λr

λr − λk

− j−1∑

k=i

e−λk tj−1∏

r 6=k,r=i

λr

λr − λk

Pii(t) = e−λi t

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 18 / 46

Page 19: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process

We recall that a Yule process is a pure birth process {X (t) : t ≥ 0} with:

λn = λn, for all n ≥ 0

We then compute the transition probability P1j(t), where j > i usingProposition 6.1 with i = 1:

P1j(t) =

j∑k=i

e−λk tj∏

r 6=k,r=i

λr

λr − λk

− j−1∑

k=i

e−λk tj−1∏

r 6=k,r=i

λr

λr − λk

=

j∑k=1

e−kλtj∏

r 6=k,r=1

rr − k

− j−1∑

k=1

e−kλtj−1∏

r 6=k,r=1

rr − k

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 19 / 46

Page 20: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process

We recall that a Yule process is a pure birth process {X (t) : t ≥ 0} with:

λn = λn, for all n ≥ 0

We then compute the transition probability P1j(t), where j > i usingProposition 6.1 with i = 1:

P1j(t) =

j∑k=i

e−λk tj∏

r 6=k,r=i

λr

λr − λk

− j−1∑

k=i

e−λk tj−1∏

r 6=k,r=i

λr

λr − λk

=

j∑k=1

e−kλtj∏

r 6=k,r=1

rr − k

− j−1∑

k=1

e−kλtj−1∏

r 6=k,r=1

rr − k

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 20 / 46

Page 21: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) =

j∑k=1

e−kλtj∏

r 6=k,r=1

rr − k

− j−1∑

k=1

e−kλtj−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt

j∏r 6=k,r=1

rr − k

−j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

jj − k

− 1) j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 21 / 46

Page 22: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) =

j∑k=1

e−kλtj∏

r 6=k,r=1

rr − k

− j−1∑

k=1

e−kλtj−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt

j∏r 6=k,r=1

rr − k

−j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

jj − k

− 1) j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 22 / 46

Page 23: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) =

j∑k=1

e−kλtj∏

r 6=k,r=1

rr − k

− j−1∑

k=1

e−kλtj−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt

j∏r 6=k,r=1

rr − k

−j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

jj − k

− 1) j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 23 / 46

Page 24: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) =

j∑k=1

e−kλtj∏

r 6=k,r=1

rr − k

− j−1∑

k=1

e−kλtj−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt

j∏r 6=k,r=1

rr − k

−j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

jj − k

− 1) j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 24 / 46

Page 25: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) =

j∑k=1

e−kλtj∏

r 6=k,r=1

rr − k

− j−1∑

k=1

e−kλtj−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt

j∏r 6=k,r=1

rr − k

−j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

jj − k

− 1) j−1∏

r 6=k,r=1

rr − k

= e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 25 / 46

Page 26: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

We take a closer look at the two red products in the above expression:

j−1∏r=1

rr − j

= (−1)j−1 ·j−1∏r=1

rj − r

= (−1)j−1 · 1 · 2 · · · · (j − 1)(j − 1)(j − 2) · · · 2 · 1

= (−1)j−1

= (−1)j−1(

j − 1j − 1

)since

(j−1j−1

)= 1

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 26 / 46

Page 27: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

We take a closer look at the two red products in the above expression:

j−1∏r=1

rr − j

= (−1)j−1 ·j−1∏r=1

rj − r

= (−1)j−1 · 1 · 2 · · · · (j − 1)(j − 1)(j − 2) · · · 2 · 1

= (−1)j−1

= (−1)j−1(

j − 1j − 1

)since

(j−1j−1

)= 1

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 27 / 46

Page 28: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

We take a closer look at the two red products in the above expression:

j−1∏r=1

rr − j

= (−1)j−1 ·j−1∏r=1

rj − r

= (−1)j−1 · 1 · 2 · · · · (j − 1)(j − 1)(j − 2) · · · 2 · 1

= (−1)j−1

= (−1)j−1(

j − 1j − 1

)since

(j−1j−1

)= 1

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 28 / 46

Page 29: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

We take a closer look at the two red products in the above expression:

j−1∏r=1

rr − j

= (−1)j−1 ·j−1∏r=1

rj − r

= (−1)j−1 · 1 · 2 · · · · (j − 1)(j − 1)(j − 2) · · · 2 · 1

= (−1)j−1

= (−1)j−1(

j − 1j − 1

)since

(j−1j−1

)= 1

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 29 / 46

Page 30: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

We take a closer look at the two red products in the above expression:

j−1∏r=1

rr − j

= (−1)j−1 ·j−1∏r=1

rj − r

= (−1)j−1 · 1 · 2 · · · · (j − 1)(j − 1)(j − 2) · · · 2 · 1

= (−1)j−1

= (−1)j−1(

j − 1j − 1

)since

(j−1j−1

)= 1

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 30 / 46

Page 31: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

(k

j − k

) j−1∏r 6=k,r=1

rr − k

=k · [1 · 2 · · · · (k − 1) · (k + 1) · · · (j − 1)]

(j − k) · [(1− k) · · · ((k − 1)− k) · ((k + 1)− k) · · · ((j − 1)− k)]

=[1 · 2 · · · · (k − 1) · k · (k + 1) · · · (j − 1)]

[(1− k) · · · (−1)] · [1 · 2 · · · ((j − 1)− k) · (j − k)]

= (−1)k−1 (j − 1)!(k − 1)(k − 2) · · · 1 · (j − k)!

= (−1)k−1 (j − 1)!(k − 1)! · (j − k)!

= (−1)k−1(

j − 1k − 1

)k = 1, . . . , j − 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 31 / 46

Page 32: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

(k

j − k

) j−1∏r 6=k,r=1

rr − k

=k · [1 · 2 · · · · (k − 1) · (k + 1) · · · (j − 1)]

(j − k) · [(1− k) · · · ((k − 1)− k) · ((k + 1)− k) · · · ((j − 1)− k)]

=[1 · 2 · · · · (k − 1) · k · (k + 1) · · · (j − 1)]

[(1− k) · · · (−1)] · [1 · 2 · · · ((j − 1)− k) · (j − k)]

= (−1)k−1 (j − 1)!(k − 1)(k − 2) · · · 1 · (j − k)!

= (−1)k−1 (j − 1)!(k − 1)! · (j − k)!

= (−1)k−1(

j − 1k − 1

)k = 1, . . . , j − 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 32 / 46

Page 33: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

(k

j − k

) j−1∏r 6=k,r=1

rr − k

=k · [1 · 2 · · · · (k − 1) · (k + 1) · · · (j − 1)]

(j − k) · [(1− k) · · · ((k − 1)− k) · ((k + 1)− k) · · · ((j − 1)− k)]

=[1 · 2 · · · · (k − 1) · k · (k + 1) · · · (j − 1)]

[(1− k) · · · (−1)] · [1 · 2 · · · ((j − 1)− k) · (j − k)]

= (−1)k−1 (j − 1)!(k − 1)(k − 2) · · · 1 · (j − k)!

= (−1)k−1 (j − 1)!(k − 1)! · (j − k)!

= (−1)k−1(

j − 1k − 1

)k = 1, . . . , j − 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 33 / 46

Page 34: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

(k

j − k

) j−1∏r 6=k,r=1

rr − k

=k · [1 · 2 · · · · (k − 1) · (k + 1) · · · (j − 1)]

(j − k) · [(1− k) · · · ((k − 1)− k) · ((k + 1)− k) · · · ((j − 1)− k)]

=[1 · 2 · · · · (k − 1) · k · (k + 1) · · · (j − 1)]

[(1− k) · · · (−1)] · [1 · 2 · · · ((j − 1)− k) · (j − k)]

= (−1)k−1 (j − 1)!(k − 1)(k − 2) · · · 1 · (j − k)!

= (−1)k−1 (j − 1)!(k − 1)! · (j − k)!

= (−1)k−1(

j − 1k − 1

)k = 1, . . . , j − 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 34 / 46

Page 35: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

(k

j − k

) j−1∏r 6=k,r=1

rr − k

=k · [1 · 2 · · · · (k − 1) · (k + 1) · · · (j − 1)]

(j − k) · [(1− k) · · · ((k − 1)− k) · ((k + 1)− k) · · · ((j − 1)− k)]

=[1 · 2 · · · · (k − 1) · k · (k + 1) · · · (j − 1)]

[(1− k) · · · (−1)] · [1 · 2 · · · ((j − 1)− k) · (j − k)]

= (−1)k−1 (j − 1)!(k − 1)(k − 2) · · · 1 · (j − k)!

= (−1)k−1 (j − 1)!(k − 1)! · (j − k)!

= (−1)k−1(

j − 1k − 1

)k = 1, . . . , (j − 1).

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 35 / 46

Page 36: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

(k

j − k

) j−1∏r 6=k,r=1

rr − k

=k · [1 · 2 · · · · (k − 1) · (k + 1) · · · (j − 1)]

(j − k) · [(1− k) · · · ((k − 1)− k) · ((k + 1)− k) · · · ((j − 1)− k)]

=[1 · 2 · · · · (k − 1) · k · (k + 1) · · · (j − 1)]

[(1− k) · · · (−1)] · [1 · 2 · · · ((j − 1)− k) · (j − k)]

= (−1)k−1 (j − 1)!(k − 1)(k − 2) · · · 1 · (j − k)!

= (−1)k−1 (j − 1)!(k − 1)! · (j − k)!

= (−1)k−1(

j − 1k − 1

)k = 1, . . . , (j − 1).

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 36 / 46

Page 37: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) = e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

= e−jλt (−1)j−1(

j − 1j − 1

)+

j−1∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)

=

j∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)=

j−1∑i=0

e−(i+1)λt(−1)i(

j − 1i

)

= e−λtj−1∑i=0

(j − 1

i

)e−iλt(−1)i = e−λt

j−1∑i=0

(j − 1

i

)(−e−λt)i · 1(j−1)−i

= e−λt(1− e−λt)j−1 (by the binomial formula)

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 37 / 46

Page 38: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) = e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

= e−jλt (−1)j−1(

j − 1j − 1

)+

j−1∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)

=

j∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)=

j−1∑i=0

e−(i+1)λt(−1)i(

j − 1i

)

= e−λtj−1∑i=0

(j − 1

i

)e−iλt(−1)i = e−λt

j−1∑i=0

(j − 1

i

)(−e−λt)i · 1(j−1)−i

= e−λt(1− e−λt)j−1 (by the binomial formula)

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 38 / 46

Page 39: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) = e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

= e−jλt (−1)j−1(

j − 1j − 1

)+

j−1∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)

=

j∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)=

j−1∑i=0

e−(i+1)λt(−1)i(

j − 1i

)

= e−λtj−1∑i=0

(j − 1

i

)e−iλt(−1)i = e−λt

j−1∑i=0

(j − 1

i

)(−e−λt)i · 1(j−1)−i

= e−λt(1− e−λt)j−1 (by the binomial formula)

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 39 / 46

Page 40: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) = e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

= e−jλt (−1)j−1(

j − 1j − 1

)+

j−1∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)

=

j∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)=

j−1∑i=0

e−(i+1)λt(−1)i(

j − 1i

)

= e−λtj−1∑i=0

(j − 1

i

)e−iλt(−1)i= e−λt

j−1∑i=0

(j − 1

i

)(−e−λt)i · 1(j−1)−i

= e−λt(1− e−λt)j−1 (by the binomial formula)

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 40 / 46

Page 41: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) = e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

= e−jλt (−1)j−1(

j − 1j − 1

)+

j−1∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)

=

j∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)=

j−1∑i=0

e−(i+1)λt(−1)i(

j − 1i

)

= e−λtj−1∑i=0

(j − 1

i

)e−iλt(−1)i = e−λt

j−1∑i=0

(j − 1

i

)(−e−λt)i · 1(j−1)−i

= e−λt(1− e−λt)j−1 (by the binomial formula)

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 41 / 46

Page 42: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

P1j(t) = e−jλtj−1∏r=1

rr − j

+

j−1∑k=1

e−kλt(

kj − k

) j−1∏r 6=k,r=1

rr − k

= e−jλt (−1)j−1(

j − 1j − 1

)+

j−1∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)

=

j∑k=1

e−kλt(−1)k−1(

j − 1k − 1

)=

j−1∑i=0

e−(i+1)λt(−1)i(

j − 1i

)

= e−λtj−1∑i=0

(j − 1

i

)e−iλt(−1)i = e−λt

j−1∑i=0

(j − 1

i

)(−e−λt)i · 1(j−1)−i

= e−λt(1− e−λt)j−1 (by the binomial formula)

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 42 / 46

Page 43: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

Thus, we have shown that:

P(X (t) = j |X (0) = 1) = P1j(t) = e−λt(1− e−λt)j−1, t > 0, j = 1,2, . . .

Hence, we have that:

(X (t)|X (0) = 1) ∼ Geom(e−λt)

E [X (t)|X (0) = 1] = (e−λt)−1 = eλt

In the general case where X (0) = i , each individual in the initial populationgenerates offsprings independently of the others.

Hence, in this case (X (t)|X (0) = i) has the distribution of a sum of iindependent and geometrically distributed variables, i.e., a negative binomialdistribution.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 43 / 46

Page 44: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

Thus, we have shown that:

P(X (t) = j |X (0) = 1) = P1j(t) = e−λt(1− e−λt)j−1, t > 0, j = 1,2, . . .

Hence, we have that:

(X (t)|X (0) = 1) ∼ Geom(e−λt)

E [X (t)|X (0) = 1] = (e−λt)−1 = eλt

In the general case where X (0) = i , each individual in the initial populationgenerates offsprings independently of the others.

Hence, in this case (X (t)|X (0) = i) has the distribution of a sum of iindependent and geometrically distributed variables, i.e., a negative binomialdistribution.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 44 / 46

Page 45: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

Thus, we have shown that:

P(X (t) = j |X (0) = 1) = P1j(t) = e−λt(1− e−λt)j−1, t > 0, j = 1,2, . . .

Hence, we have that:

(X (t)|X (0) = 1) ∼ Geom(e−λt)

E [X (t)|X (0) = 1] = (e−λt)−1 = eλt

In the general case where X (0) = i , each individual in the initial populationgenerates offsprings independently of the others.

Hence, in this case (X (t)|X (0) = i) has the distribution of a sum of iindependent and geometrically distributed variables, i.e., a negative binomialdistribution.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 45 / 46

Page 46: STK2130 Chapter 6.4 (part 1) - Universitetet i oslo · A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 5 / 46 The hypoexponential distribution (REPRISE) We recall that

Example 6.8 The Yule process (cont.)

The following result summarizes these results:

Proposition

Let {X (t) : t ≥ 0} be a Yule process with rate λ. Then we have:

Pij(t) =(

j − 1i − 1

)e−iλt(1− e−λt)j−i , t > 0, 1 ≤ i ≤ j

E [X (t)|X (0) = i] = i · eλt , t > 0, i = 1,2, . . .

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.4 (part 1) 46 / 46