Stato dei Progetti Speciali SPARC e NTA-PLASMONX · • Strategy design • Approval ... •...

58
Milano, 19 giugno 2006 Stato dei Progetti Speciali SPARC e NTA-PLASMONX SPARC è entrato nella fase di commissioning: - Sistema laser funzionante - Cannone RF funzionante fino a 120 MV/m - Fascio di Elettroni misurato con emittanzometro a 5 MeV, 0.05-1.5 nC , 0.7-2.1 mm . mrad PLASMONX approvata gara acquisizione Laser per 2.6 M€ - Sistema Laser ultra-veloce (30 fs) ad alta potenza (180 TW) a LNF sincronizzato (100 fs) con SPARC Raggi X Coerenti con PLASMONX? Thomson-X/FEL Luca Serafini - INFN / Milano

Transcript of Stato dei Progetti Speciali SPARC e NTA-PLASMONX · • Strategy design • Approval ... •...

Milano, 19 giugno 2006

Stato dei Progetti SpecialiSPARC e NTA-PLASMONX

• SPARC è entrato nella fase di commissioning:- Sistema laser funzionante- Cannone RF funzionante fino a 120 MV/m- Fascio di Elettroni misurato con emittanzometro a

5 MeV, 0.05-1.5 nC , 0.7-2.1 mm.mrad

• PLASMONX approvata gara acquisizione Laser per 2.6 M€- Sistema Laser ultra-veloce (30 fs) ad alta potenza (180 TW) a LNF sincronizzato (100 fs) con SPARC

• Raggi X Coerenti con PLASMONX? Thomson-X/FEL

Luca Serafini - INFN / Milano

Milano, 19 giugno 2006

2002 - Stage I - FEASIBILITY

• Project formulation • Feasibility Study• Strategy design• Approval

2003-2004- Stage II - PLANNING & DESIGN

• Base design• Detailed Cost and schedule• Detailed planning• Major contracts for procurement

2004-2005 - Stage III - CONSTRUCTION

• Manufacturing • Delivery• Civil works• Installation

2006 - Stage IV - COMMISSIONING & OPERATION

• Final Testing• Commissioning• Operation

2002 2003 2004 2005 2006Project duration

Milano, 19 giugno 2006

Under INFN responsibility

SPARC 3D CAD model

Under ENEAresponsibility

Milano, 19 giugno 2006

Sparc Ti:Sa laser system

RegenRegen + 2 + 2 mpassmpassAmplifierAmplifier

MiraMira

oscillatoroscillator

VerdiVerdiPumpPump

EvolutionEvolutionPump 1Pump 1

100 fspulse, low

energy

>105 fs, 0.5 TW800 nm

5 W CW

ContinuumContinuumPump 2Pump 2

10 ns560 mJ532 nm

AO AO pulse pulse

shapershaper

100 ns7 mJ 532 nm

THGTHG

UV stretcherUV stretcher

5-12 ps, 1 mJ

266 nm

Milano, 19 giugno 2006

Faraday cupE-meterMagnetsSpectrometer

crossBCMBeam

dump

Sparc hall

Milano, 19 giugno 2006

Longitudinal diagnostic

0.02 nm resolution spectrometer

30 cm lens

4350 g/mmgrating

CCD

UV beam

200 fs resolution UV xcorrelator

With longitudinal pulseshaping, but not optimized

Milano, 19 giugno 2006

QE & transverse uniformity

•In order to have uniform density beam charge distribution a uniform QE and a uniform transv. profile are needed

•QE map done by scanning cathode surface with a small beam (100 um)and looking at the charge on the faraday cup.

•Red zone is the higher QE zone, and it’s also the actual working point, so cathode has been cleaned during operations.

•To run at higher charge we need bigger laser spot sizes• Lot of work has been done on transverse laser uniformity • Charge is variable (min=50pC , max=1.5nC)

LASER CLEANING

5107 −= xQE

0.3X0.26 mm rms

Milano, 19 giugno 2006

Two unwanted effects :• elliptical spot on the cathode• Time skew

2:1 telescope

3600 g/mm grating

Lens f=50 cm

M = mirror

M

M

M (movable)

laser port

Mcathode

Streakcamera

72 deg. tilt correction

ZEEMAX simulation

• 72 deg tilted wavefrontafter grating• Lens to image the beam @grating exit to cathode

Milano, 19 giugno 2006

Synchronization

-20 0 20 40 60 80 100 120 140 16015 .0

15 .5

16 .0

16 .5

17 .0

17 .5

18 .0

18 .5

19 .0

Pha

se [d

eg]

T im e [s]

2856 MHz cavity

High energy UV @ 10 Hz

On time scale of few minutes (enough to see possible drifts ) the phase jitter is within σRMS 0.63 deg 0.61 0.61 psps

14 15 16 17 18 190

100

200

300

400

500

Y A

xis

Title

X Axis Titlephase [deg]

lase

r pul

ses

Milano, 19 giugno 2006

Present situation

• Energy ok• Gaussian transverse and longitudinal profile (dazzler in

autocompensation mode) • tilt compensation works but critical

Future plans

• laser cleaning• longitudinal pulse shaping• transverse homogenization• 0 deg incidence ?

Milano, 19 giugno 2006

Diagnostic overview• 60 cm: faraday cup to measure the charge at gun exit, and

Cromox screen to see and center the beam;• 85-200 cm: E-meter (slits cross, Yag and CCD cross);

Emittance, beam envelope, beam parametersas function of trnsv. coordinates;

• 220 cm : aerogel + streak camera; beam duration;• 250-280 cm :FODO; • 300 cm : dipole; • 330 cm : spectrometer cross (Yag+ CCD) ; E & ΔE meas.• 350 cm : BCM (beam charge)

} prepares the beam to E & ΔE meas.

Milano, 19 giugno 2006

Sol 125 AQ=200 pC

Emittance behavior along z

Milano, 19 giugno 2006

No direct emitt. Scaling with Q; increase charge just increasing electron density (laser energy);Linear fit just “for show”

“low charge” data

Milano, 19 giugno 2006

Simulations

Thanks to C.Ronsivalle

Milano, 19 giugno 2006

Conclusions & future plans

• Best achieved results– 2.1 mm-mrad @ 700 pC , 10 ps– 0.7 mm-mrad @ 160 pC, 10 ps

• More work on laser beam• Understanding dipole and quadrupole components in solenoid (mask,

different fields in each coil and different configurations,…)• high charge (up to 1.1 nC) emittance measurements• Comparison with simulation ongoing (next step real transverse and

longitudinal profile) • Main linac installation scheduled to start in the summer

Milano, 19 giugno 2006

Under INFN responsibility Under ENEAresponsibility

IS THE FIRST INGREDIENT

GOALS

Generation of 30-150 MeV e- beams

(Q, σt, εn, Δγ/γ)

Phase 1) 1 nC, 3 ps, 1 μm, 10-3

Phase 2) 1 nC, 300 fs, 2 μm, 2.10-3

PLASMONX) 20 pC, 60 fs, 0.3 μm, 2.10-3

Milano, 19 giugno 2006

Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME)

SECOND INGREDIENT

Milano, 19 giugno 2006

SPARC Building Complex

CONTROLROOM

ACCELERATORUNDERGROUND BUNKER

MODULATOR& KLYSTRON

HALL

15 m

36 m

PHOTOCATHODEDRIVE LASERCLEAN ROOM

Milano, 19 giugno 2006

SPARC bunker

HILL

SPARCControl room

SPARC bunker

HILL

FLAME

Lab. 100TW

Canvas TentStorage Area

Top viewSection view

New building

LWFA with self-injection + Thomson scatteringLWFA with external injection + Thomson scattering

Milano, 19 giugno 2006

>108

>106

Contrast

30fs5J0.8 micronPhase 2CPA Ti:Sa with

OPCPA

50fs5J0.8 micronPhase 1CPA Ti:Sa

DurationDeliveredenergy

WavelengthType

Milano, 19 giugno 2006

Schematic layout

14.5 m1.5m11º

10.0 m 5.4 m

quadrupolesdipoles

Diagnostic 1-6 Undulator modules

Photoinjector solenoidRF sections

RF deflectorcollimator

25º

25º

Milano, 19 giugno 2006

Experimental set-up for the generation of tunable X-ray radiation via Thomson scattering of optical photons by relativistic electron bunches

Milano, 19 giugno 2006

THOMSON BACK-SCATTERING

e- (1 GeV); λ0=1µm, E0=1.24 eV λT=6 x10-8µm, ET=20 MeV

e- (200 MeV); λ0=1µm, E0=1.24 eV λT=1.56 x10-6µm, ET=800 KeV

e- (29 MeV); λ0=0.8µm, E0=1.5 eV λT=0.5 x10-4µm, ET=20 KeV

νT = ν 01− β cosαL

1− β cosθ≈ ν 0

4γ 2

1+ θ 2γ 2 ≈ 4γ 2ν 0

for αL = π and θ <<1 or θ = 0

Milano, 19 giugno 2006

2005 best result (1nC Solenoid lens)

0 1 2 3 4 5 6 7 8 9 10 11 120

5

10

15

20

25

30

35

Bea

m e

nerg

y [M

eV]

z [m]

0

200

400

600

800

1000

1200

1400

1600

1800

Long.emit.[K

eV-mm

] rms en.-spread [K

eV] 0 1 2 3 4 5 6 7 8 9 10 11 120,0

0,5

1,0

1,5

2,0

x-rm

s be

am s

pot [

mm

]

z [m]

0,0

0,5

1,0

1,5

2,0

rms norm

. transv. emitt. [m

m-m

rad]

12,280 12,285 12,290 12,2950,000

0,004

0,008

0,012

0,016

0,020

x-rm

s be

am s

pot [

mm

]

z [m]

In the 2005 simulation (autumn), playing especially with the injection phase of the II TW structure (involved in the linear correlation correction) have been possible obtain a bunch of about 3ps (~1mm) shorter, with a denser core

2005

2004

Milano, 19 giugno 2006

Angular and spectral distribution of the TS radiation in the case of an unguided 3 ps laser pulse (12.5 µm beam waist)

Incoherent spontaneous radiation

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Milano, 19 giugno 2006

High Flux operation mode

Current best working point PulsePulse•2.5nC•8ps long (full size)•13μm rms tr. Size•1.5 mm mrad norm emittance•0.1% energy spread

BunchBunch•TEM00•5J in 6ps•w0 = 15 μm

Milano, 19 giugno 2006

22%FWHM

5% FWHM

Milano, 19 giugno 2006

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Milano, 19 giugno 2006

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Milano, 19 giugno 2006

SASE-FELs will allow anunprecedented upgrade in

Source Brilliance

Covering from the VUV to the 1 Å X-ray spectral range:

new Research Frontiers

SPARX

TTF

12.4 1.24 0.124 λ (nm)

PLASMON-X

Compact Thomson Sourcesextend SR to hard X-ray range

allowingAdvanced Radiological

Imaging inside Hospitals

Brilliance of X-ray radiation sources

Milano, 19 giugno 2006

FEL resonance condition

λ = λw

1+ aw2( )

2γ 2(magnetostatic wiggler )

λ = λpump

1+ aw2( )

4γ 2(electromagnetic wiggler )

Example : for λ=1A, λw=1cm, E=3.5GeV

Example : for λ=1A, λpump=1μm, E=25MeV

Milano, 19 giugno 2006

Toward Coherent X-rays:exploring coherent emission mechanisms (FEL-like) in Thomson

Sources

FEL-Conf. 2005

Emission in violation of Pellegrini criterion !!

Milano, 19 giugno 2006

Conditions to operate a Thomson Source in FEL mode λR = λ1+ a0

2( )4γ 2

2σ 0

2R0β0

Z0

τ

τR

Milano, 19 giugno 2006

Conditions to operate a Thomson Source in FEL mode

Beam-laser overlap(laser uniform in x,y,z)

cτ =10LgLaser length

λR = λ1+ a0

2( )4γ 2

a0 = 8.5 ⋅10−6 λ PR0

Laser

FEL ρ =10−2

γIλ4P σ 0

43

Z0 =4πR0

2

λe-beam σ 0 =

εnβ0

γ ; I ; Δγ γ

ΔλR

λR

= 2ρLg =λ

4πρ

Laser ripples

R0 = 2σ 0

Δ ≡Δa0

a0

ΔλR

λR

=2a0

2

1+ a02 Δ Δ ≤ ρ1+ a0

2

a02

cτ ≤ 2Z0

Laser bandwidthΔλR

λR

=Δλλ

=λcτ

cτ ≥λ

Milano, 19 giugno 2006

Generalized Pellegrini criterion

Conditions to operate a Thomson Source in FEL mode

FEL bandwidth broadening due to beam emittance

εn ≤ZR

LG

λRγ2π

ZR =4πσ 0

2

λR

λR = λ1+ a0

2 + γ 2θ 2( )4γ 2

ΔλR

λR

≈γ 2θ 2

1+ a02 ≈

εn2

σ 02

εn ≤ 2ρ σ 0ΔλR

λR

≤ 2ρ

ρ =ZR

LG

λR λ8π 2σ 0

2Lg =λ

4πρ

Milano, 19 giugno 2006

Generalized Pellegrini criterion εn ≤ZR

LG

λRγ2π

LCLS

γ = 3 ⋅104

λw = 2.5 cmLg ≅ ZR ≅10 m

εn <3 ⋅10410−10

4π≅ 0.25 μm

FEL-ThomsonλR ≅1 Angstrom

γ = 30λ =1 μm

Lg ≅100 μm ; ZR ≅10 m

εn < 105 30 ⋅10−10

2π≅ 0.15 μm

εnPELL <

30 ⋅10−10

2π≅ 0.5 nm

Milano, 19 giugno 2006

εn = 0.18λ

U =18.6λ Δ2

P = 0.0018 Δ

a0 =1.

At the critical threshold all the parameters can be given as functions of I , λ and Δ

γ = 0.05 IΔ2

3

λR = 200λ Δ4

I23

τ =1.1⋅10−8 λ Δ

ρ = 0.25Δ

LG = 0.32λ /Δ

ρ =1012 λ Δ5

I3

Z0 =1.6λ Δ

β0 = 0.009λ IΔ5

3σ 0 = 0.21λ / Δ

I > 576 Δ2with the additional condition β0 > Z0 implying

Milano, 19 giugno 2006

εn = 0.14 μm

U = 6.6 J

P =1.2 TW

a0 =1.

Setting Δ = 0.15 % and I = 1500 A

Classical SASE

γ = 44

λR = 2.1 Angstrom

τ = 5.6 ps

ρ = 4 ⋅10−4

LG = 159 μm

ρ =1.4

Z0 = 0.85 mm

β0 = 4.1 mm

σ 0 = 3.7 μm

Milano, 19 giugno 2006

up to 2.1010 photons per pulse @ 6 keV,emitted in a coherent diffraction limited radiation beam, Δθ=3 μrad(cmp. 109 ph/pulse in Δθ=3 mrad of incoherent Thomson radiation)

Milano, 19 giugno 2006

SPARX

TTF

12.4 1.24 0.124 λ (nm)

PLASMON-X

Compact Thomson Sourcesextend SR to hard X-ray range

allowingAdvanced Radiological

Imaging inside Hospitals

Brilliance of X-ray radiation sources

THOMSON-FELCoherent Thomson Sources

will push theachievable brillianceif laser pulses with

ΔI/I < Δω/ω = 2.10-3

will be made available

Schedule of the plannedPLASMONX activity

Activit y/Y ear 2004 2005 2006 2007 2008 2009

Set up c lu ste r f or par a llel compu ting

Tes t experim ent s @ CEA -Saclay

Developm ent o f m.w . PI C co des

Mod elling o f accel era tion sche m es

Mod elling o f T .S.

Desig n of Laser Sy stem

Set up LASE R LABORATORY a t LNF

Set up Phase 1 : 30fs, 0 .1 TW M

Set up I II am p lifica tion sta ge

Developm ent o f t he OPCP A am p lifier s

Insta lla tion of las er dia gnostics

Pha se 2 : 1TW com pr ess ion te st M

IV am p lifica tion sta ge

Pha se 3 : 100 TW c om pres sion test M

Se lf inje ction LW FA experim ent s

Ex te rn a l i n jec tion LWF A te st M

Set up ad d ition a l beam -lin e a t LNF

Set up la ser b eam tra nsp ort to LI NAC

Set up laser beam–electron bunch interaction

Sy nc hroniz a tion R&D and setup

Th om so n so ur ce test M

TS bea m us ers (MA MB O, etc )

2.5 Meuro bid was approvedfor the FLAME laser

QFEL experim. under studywith PLASMONX facility

Milano, 19 giugno 2006

2007

SPARC-MILANO PLASMONX-MILANO ex-MAMBO-V

F. Alessandria 10% A. Bacci 70% 30%R. Bonifacio 20%I. Boscolo 20%F. Broggi 30% 30%F. Castelli 20%S. Cialdi 20%M. Cola 20% 20%C. DeMartinis 20% D. Giove 30% C. Maroli 40% 40% 20%M. Mauri 20% V. Petrillo 30% 30% 30%N. Piovella 20% 10%R. Pozzoli 20%M. Romè 20%A. Rossi 50% 50%L. Serafini 40% 40% 10%L. Volpe 20% 20%

Totale FTE 4.00 3.40 1.10

Richieste Funzionamento gruppo (8.5 FTE) (MI,ME,cons,inv) k€

35 25 8 20

Milano, 19 giugno 2006

MAMBOMAMBO

+ ChannellingChannelling

SASE-FEL +

QFELQFEL

Milano, 19 giugno 2006

Collaborations and UE programs

SPARC

DESYBNL

UCLA

SLAC

UE

MOU

MOU

UEEUROFELEUROFEL

PITZ

MOU

Milano, 19 giugno 2006

Milano, 19 giugno 2006

U >18.6 λΔ2

Satisfying all conditions above implies a threshold condition on laser pulse energy U=Pτ and beam emittance εn :

λ5.62

< εn <Δ4

Uλ36.7

a0 =1

which in turns means:

εn >λ

5.62and

The laser parameter a0 comes out to be set at the value

Milano, 19 giugno 2006

εn = 0.14 μm

U = 0.15 Δ2 [J]

P = 0.18 Δ [TW]

a0 =1.

For the case of a Ti:Sa laser we derive*:

γ =1.08 IΔ2

3

λR = 3436ΔΔI2

3 [Angstrom]

τ = 0.85 Δ [ps]

ρ = 2.5 ⋅10−3Δ

LG = 26 /Δ [μm]

ρ = 386ΔΔ2

I3

Z0 = 0.13 Δ [mm]

β0 =0.015

ΔI

Δ23 [mm]

* Δ in [%] ; I in [A]σ 0 =1.4 / Δ [μm]

Milano, 19 giugno 2006

εn = 0.14 μm

U = 60 J

P = 3.5 TW

a0 =1.

Setting Δ = 0.05 % and I = 2500 A

Quantum FEL

γ =108

λR = 0.35 Angstrom

τ =17 ps

ρ =1.2 ⋅10−4

LG = 531 μm

ρ = 0.2

Z0 = 2.5 mm

β0 = 30. mm

σ 0 = 6.4 μm

Milano, 19 giugno 2006

Milano, 19 giugno 2006

Dazzler tests at BNL, September 2004

Milano, 19 giugno 2006

e-beam temporal distribution Q=70 pC

Milano, 19 giugno 2006

compressin aria

High Intensity Laser Laboratory HILL@LNFHILL@LNF

sala 1 TW sala 100TWsala laser

compressin vuoto

camera di

accelerazioneFLAME

condizionam condizionam

condizst 1 st 2 st 3 st 4 st 5

camerapulita

lab magazzino

sala

controllo e

presa dati

50 mJ 5 J

L’impulso va trasportato nella sala 100 TW e nel bunker prima della compressione.

L’impulso deve scendere nel bunker tra due pilastri, per evitare il carro ponte;il foro va fatto prima che nel bunker si faccia pulizia.

Una parte della sala 100TW va schermata. Se ci sono problemi di peso, va rinforzatala struttura in quell’area.

synchro

al bunker

cameravuoto

NN SSschermo

al bunker

Milano, 19 giugno 2006

Experimental setup for LWFA acceleration of externally injectedelectrons in a gas-jet plasma

Milano, 19 giugno 2006

Milano, 19 giugno 2006

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

sigma_z_[mm]sigma_x_[mm]

sigm

a_z_

[mm

]

Z_[m]

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

enx_[um]dg/g_[%]

enx_

[um

]

Z_[m]

0

50

100

150

200

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

I_[A]T_[MeV]

I_[A

]

Z_[m]

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

elz_[KeVmm]

elz_

[KeV

mm

]

Z_[m]

slight focusingafter compression

M. Ferrario, ICFA LBI-LPA 2005 Workshop, Taipei

Q = 20 pC σz = 25 μm, Δγ/γ = 0.2% , εnx < 0.3 μm

Milano, 19 giugno 2006 C. Vaccarezza et al., EPAC-04

Bunch slicingBunch slicing

Q = 1nC ==> 25pCQ = 1nC ==> 25pC

LLbb=10 =10 ps ps ==> 100 ==> 100 fsfs

σσxx = 0.5 mm ==> 5 = 0.5 mm ==> 5 μμmm

Δγ/γ Δγ/γ < 0.2%< 0.2%

Milano, 19 giugno 2006

beam energy distribution at start/endof the beam line

start end

60 fs bunch (initially uncompressed)-> 10 fs with RF compression, i.e. by

combining velocity bunching and bunch-slicing