Statistical Mechanics of Disordered Systems: Applications in ......Statistical Mechanics of...

36
Statistical Mechanics of Disordered Systems: Applications in Optics Candidate: Fabrizio Antenucci Supervisor: Dr. Luca Leuzzi In collaboration with: Claudio Conti, Andrea Crisanti and Miguel Iba˜ nez Berganza Sapienza University - Graduate School “Vito Volterra” 30 October 2014

Transcript of Statistical Mechanics of Disordered Systems: Applications in ......Statistical Mechanics of...

  • Statistical Mechanics of Disordered Systems:Applications in Optics

    Candidate: Fabrizio Antenucci

    Supervisor: Dr. Luca Leuzzi

    In collaboration with: Claudio Conti, Andrea Crisanti and Miguel Ibañez Berganza

    Sapienza University - Graduate School “Vito Volterra”

    30 October 2014

  • What? Multimode Systems

    • (Many) Well-defined Modes ak

    Space Ek (r) Frequency ωk (� ∆ω)

    • Space - Time Separation of the Electromagnetic Field

    E(r, t) = <[∑

    k

    ak (t) Ek (r)

    ]with ak (t) ∼ exp(−iωk t)

    • Dynamics for the Complex Mode Amplitudes• Near Lasing Regime�

    �dajdt =

    ∑k

    Gjk ak +∑klm

    Gjklm ak a∗l am + ηj

    What are the values for G s? Hardly known in Most CasesGeneral Properties of G s → Statistical Mechanics

  • What? Multimode Systems

    • (Many) Well-defined Modes ak

    Space Ek (r) Frequency ωk (� ∆ω)

    • Space - Time Separation of the Electromagnetic Field

    E(r, t) = <[∑

    k

    ak (t) Ek (r)

    ]with ak (t) ∼ exp(−iωk t)

    • Dynamics for the Complex Mode Amplitudes• Near Lasing Regime�

    �dajdt =

    ∑k

    Gjk ak +∑klm

    Gjklm ak a∗l am + ηj

    What are the values for G s? Hardly known in Most CasesGeneral Properties of G s → Statistical Mechanics

  • What? Multimode Systems

    • (Many) Well-defined Modes ak

    Space Ek (r) Frequency ωk (� ∆ω)

    • Space - Time Separation of the Electromagnetic Field

    E(r, t) = <[∑

    k

    ak (t) Ek (r)

    ]with ak (t) ∼ exp(−iωk t)

    • Dynamics for the Complex Mode Amplitudes• Near Lasing Regime�

    �dajdt =

    ∑k

    Gjk ak +∑klm

    Gjklm ak a∗l am + ηj

    What are the values for G s? Hardly known in Most CasesGeneral Properties of G s → Statistical Mechanics

  • What? Hamiltonian Multimode Systems

    Langevin Dynamics for Complex Amplitudes

    daj

    dt= −

    dHda∗j

    + ηj with H '∑jk

    Gjk a∗j ak +

    ∑jklm

    Gjklm a∗j ak a

    ∗l am

    Main Working Hypothesis on G s:

    H is real → Hamiltonian System

    • Stability of the Steady-State• Spherical Constraint:

    ∑j |aj |2 ≡ �N

    Machinery Well-Tested for Mean Field SML.Gordon, A. and Fisher, B. PRL 89, 103901 (2002)

    What’s Next?

  • What? Hamiltonian Multimode Systems

    Langevin Dynamics for Complex Amplitudes

    daj

    dt= −

    dHda∗j

    + ηj with H '∑jk

    Gjk a∗j ak +

    ∑jklm

    Gjklm a∗j ak a

    ∗l am

    Main Working Hypothesis on G s:

    H is real → Hamiltonian System

    • Stability of the Steady-State• Spherical Constraint:

    ∑j |aj |2 ≡ �N

    Machinery Well-Tested for Mean Field SML.Gordon, A. and Fisher, B. PRL 89, 103901 (2002)

    What’s Next?

  • What? Hamiltonian Multimode Systems

    Langevin Dynamics for Complex Amplitudes

    daj

    dt= −

    dHda∗j

    + ηj with H '∑jk

    Gjk a∗j ak +

    ∑jklm

    Gjklm a∗j ak a

    ∗l am

    Main Working Hypothesis on G s:

    H is real → Hamiltonian System

    • Stability of the Steady-State• Spherical Constraint:

    ∑j |aj |2 ≡ �N

    Machinery Well-Tested for Mean Field SML.Gordon, A. and Fisher, B. PRL 89, 103901 (2002)

    What’s Next?

  • How? RL Mean Field TheoryAntenucci, F., Conti, C., Crisanti, A. and Leuzzi, L., arXiv:1406.7826 (2014)

    • All modes are equal → MFT

    Space: Extended Modes Frequency: Narrow Bandwidth

    H = −1

    2N

    1,N∑sp

    Jjkasa∗p −

    1

    4!N3

    1,N∑spqr

    Jspqrasa∗paqa

    ∗r ,

    ∑k

    |ak |2 = �N .

    with i.i.d. Jsp and Jspqr

    Jsp =(1− α0)J0 Jspqr =α0J0

    J2sp − Jsp2

    =(1− α)2J2 J2spqr − Jspqr2

    =α2J2

    Control Parameters

    • Degree of disorder�

    �RJ = JJ0

    • Pumping rate�� ��P = �√βJ0• Degree of nonlinearity�� ��α = α0

  • How? RL Mean Field TheoryAntenucci, F., Conti, C., Crisanti, A. and Leuzzi, L., arXiv:1406.7826 (2014)

    • All modes are equal → MFT

    Space: Extended Modes Frequency: Narrow Bandwidth

    H = −1

    2N

    1,N∑sp

    Jjkasa∗p −

    1

    4!N3

    1,N∑spqr

    Jspqrasa∗paqa

    ∗r ,

    ∑k

    |ak |2 = �N .

    with i.i.d. Jsp and Jspqr

    Jsp =(1− α0)J0 Jspqr =α0J0

    J2sp − Jsp2

    =(1− α)2J2 J2spqr − Jspqr2

    =α2J2

    Control Parameters

    • Degree of disorder�

    �RJ = JJ0

    • Pumping rate�� ��P = �√βJ0• Degree of nonlinearity�� ��α = α0

  • How? RL Mean Field Theory

    “New Kind” Of Spin: a Complex Amplitude (XY + Spherical)

    Order Parameters (Qaa ≡ 1 ↔ SC)

    Qab =∑j

    (aaj

    )∗abj

    �NRab =

    ∑j

    <[aaj a

    bj

    ]�N

    Tab =∑j

    =[aaj a

    bj

    ]�N

    mσ =

    √2

    �N

    ∑j

  • How? RL Mean Field Theory

    “New Kind” Of Spin: a Complex Amplitude (XY + Spherical)

    Order Parameters (Qaa ≡ 1 ↔ SC)

    Qab =∑j

    (aaj

    )∗abj

    �NRab =

    ∑j

    <[aaj a

    bj

    ]�N

    Tab =∑j

    =[aaj a

    bj

    ]�N

    mσ =

    √2

    �N

    ∑j

  • How? RL Mean Field Theory

    “New Kind” Of Spin: a Complex Amplitude (XY + Spherical)

    Order Parameters (Qaa ≡ 1 ↔ SC)

    Qab =∑j

    (aaj

    )∗abj

    �NRab =

    ∑j

    <[aaj a

    bj

    ]�N

    Tab =∑j

    =[aaj a

    bj

    ]�N

    mσ =

    √2

    �N

    ∑j

  • MFT: Phase Diagram (I)

    10

    20

    30

    40

    50

    60

    70

    80

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

    P2

    RJ

    CW

    PLW

    RL

    SMLα = α0 = 1

  • MFT: Phase Diagram (I)

    10

    20

    30

    40

    50

    60

    70

    80

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

    P2

    RJ

    CW

    PLW

    RL

    SMLα = α0 = 1

  • MFT: Phase Diagram (II)

    2

    4

    6

    8

    10

    12

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    P2

    RJ

    SML

    CW

    PWL

    RL

    α = α0 = 0.4

  • MFT: Phase Diagram (III)

    0

    0.2

    0.4

    0.6

    0.8

    1 0.2

    0.4

    0.6

    0.8

    1

    10

    20

    30

    40

    50

    60

    70

    80

    P2

    RJ α=α0

    P2

  • MFT: Intensity Overlap

    Hard to detect the mode phase correlations in Experiments:What about the Overlap between Intensity Fluctuations?

    Iab ≡∑j

    〈|aaj |2|abj |

    2〉 − 〈|aaj |2〉〈|abj |

    2〉�2N

    In the MFT it holds (at m = 0)

    Iab ≡ 2(Q2ab + R

    2ab

    )2+ 2

    (Q2ab − R

    2ab

    )2Replica Symmetry is spontaneously Broken in the

    Intensity Fluctuations Overlap in RL regime

  • MFT: Intensity Overlap

    Hard to detect the mode phase correlations in Experiments:What about the Overlap between Intensity Fluctuations?

    Iab ≡∑j

    〈|aaj |2|abj |

    2〉 − 〈|aaj |2〉〈|abj |

    2〉�2N

    In the MFT it holds (at m = 0)

    Iab ≡ 2(Q2ab + R

    2ab

    )2+ 2

    (Q2ab − R

    2ab

    )2Replica Symmetry is spontaneously Broken in the

    Intensity Fluctuations Overlap in RL regime

  • MFT: Intensity Overlap - Experiments?

    N. Ghofraniha et al., arXiv:1407.5428 (2014)

    Replica Symmetry is spontaneously Broken in the

    Intensity Fluctuations Overlap in RL regime

  • What? SML Beyond Mean FieldAntenucci, F., Ibañez Berganza, M. and Leuzzi, L., arXiv:1409.6345 (2014)

    Consider the case of Standard Mode Locking Lasers

    Space: Extended Modes Frequency: Comb δω � ∆ω = 2πc/2L

    ak1 (t) · a∗k2

    (t) · ak3 (t) · a∗k4

    (t) ∼ exp[i(ωk1 − ωk2 + ωk3 − ωk4

    )t]

    The Hamiltonian is indeed (purely dissipative case)

    H =−∑k

    Gk |ak |2 −Γ

    2

    ∑FMC(k)

    ak1 · a∗k2· ak3 · a

    ∗k4,

    ∑k

    |ak |2 = �N

    with the Frequency Matching Condition

    FMC(k) : |ωk1 − ωk2 + ωk3 − ωk4 | . δω

    δω � ∆ω → k1 − k2 + k3 − k4 = 0

  • What? SML Beyond Mean FieldAntenucci, F., Ibañez Berganza, M. and Leuzzi, L., arXiv:1409.6345 (2014)

    Consider the case of Standard Mode Locking Lasers

    Space: Extended Modes Frequency: Comb δω � ∆ω = 2πc/2L

    ak1 (t) · a∗k2

    (t) · ak3 (t) · a∗k4

    (t) ∼ exp[i(ωk1 − ωk2 + ωk3 − ωk4

    )t]

    The Hamiltonian is indeed (purely dissipative case)

    H =−∑k

    Gk |ak |2 −Γ

    2

    ∑FMC(k)

    ak1 · a∗k2· ak3 · a

    ∗k4,

    ∑k

    |ak |2 = �N

    with the Frequency Matching Condition

    FMC(k) : |ωk1 − ωk2 + ωk3 − ωk4 | . δω

    δω � ∆ω → k1 − k2 + k3 − k4 = 0

  • What? SML Beyond Mean Field

    Homogeneous Dilution FMC Dilution

  • MC simulations: Results (I)

    Energy

    1.5 1.6 1.7 1.8 1.9-0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    P

    mean fie

    ld

    -0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    1.5 1.6 1.7 1.8 1.9

    Pm

    ean fie

    ld

    100200300400500-0.6

    -0.4

    -0.2

    0

    1.6 1.7

    Pc(1

    00)

    Psp(1

    00)

  • MC simulations: Results (II)

    r =1

    N

    ∑j

    |aj |

    0.76

    0.8

    0.84

    0.88

    0.92

    0.96

    1

    1.5 1.55 1.6 1.65 1.7 1.75 1.8

    P

    (∞)

    1.5 1.55 1.6 1.65 1.7 1.75 1.8 0.76

    0.8

    0.84

    0.88

    0.92

    0.96

    1

    P

    (∞)

    100200300400500

    √2/π

  • MC simulations: Results (III)

    mx =1

    N

    ∑j

  • MC simulations: Results (IV)

    What is the origin of the lacking of the O(2) Symmetry Breaking?

    Phase Waves

    -1-0.5

    0 0.5

    1-1

    -0.5

    0

    0.5

    1

    0

    100

    200

    300

    400

    500

    ω

    Re[a]/|a|

    Im[a]/|a|

    ω

    0

    100

    200

    300

    400

    500

    -π/2 -π/4 0 π/4 π/2

    ω

    atan(Im[a]/Re[a])

  • MC simulations: Results (IV)

    What is the origin of the lacking of the O(2) Symmetry Breaking?

    Phase Waves

    -1-0.5

    0 0.5

    1-1

    -0.5

    0

    0.5

    1

    0

    100

    200

    300

    400

    500

    ω

    Re[a]/|a|

    Im[a]/|a|

    ω

    0

    100

    200

    300

    400

    500

    -π/2 -π/4 0 π/4 π/2

    ω

    atan(Im[a]/Re[a])

  • MC simulations: Results (IV)

    What is the origin of the lacking of the O(2) Symmetry Breaking?

    Phase Waves

    -1-0.5

    0 0.5

    1-1

    -0.5

    0

    0.5

    1

    0

    100

    200

    300

    400

    500

    ω

    Re[a]/|a|

    Im[a]/|a|

    ω

    0

    100

    200

    300

    400

    500

    -π/2 -π/4 0 π/4 π/2

    ω

    atan(Im[a]/Re[a])

  • MC simulations: Results (IV)

    What is the origin of the lacking of the O(2) Symmetry Breaking?

    Phase Waves

    -1-0.5

    0 0.5

    1-1

    -0.5

    0

    0.5

    1

    0

    100

    200

    300

    400

    500

    ω

    Re[a]/|a|

    Im[a]/|a|

    ω

    0

    100

    200

    300

    400

    500

    -π/2 -π/4 0 π/4 π/2

    ω

    atan(Im[a]/Re[a])

  • MC simulations: Results (V)

    aj = |aj | exp(iΦj)

    : E(t|T ) =N∑j=1

    |aj (T )| exp[i(2πωj t + Φj (T )

    )], T � t

    Phase Delay: Φj ' Φ0 + Φ′ωj

    -π/2

    -π/4

    0

    π/4

    π/2

    0 100 200 300 400 500

    Φ

    ω

    -1

    -0.5

    0

    0.5

    1

    199 200 201

    E(t

    )

    t

  • MC simulations: Results (V)

    aj = |aj | exp(iΦj)

    : E(t|T ) =N∑j=1

    |aj (T )| exp[i(2πωj t + Φj (T )

    )], T � t

    Phase Delay: Φj ' Φ0 + Φ′ωj

    -π/2

    -π/4

    0

    π/4

    π/2

    0 100 200 300 400 500

    Φ

    ω

    -1

    -0.5

    0

    0.5

    1

    199 200 201

    E(t

    )

    t

  • MC simulations: Results (V)

    aj = |aj | exp(iΦj)

    : E(t|T ) =N∑j=1

    |aj (T )| exp[i(2πωj t + Φj (T )

    )], T � t

    Phase Delay: Φj ' Φ0 + Φ′ωj

    -π/2

    -π/4

    0

    π/4

    π/2

    0 100 200 300 400 500

    Φ

    ω

    -1

    -0.5

    0

    0.5

    1

    200 201 202

    E(t

    )

    t

  • MC simulations: Results (V)

    aj = |aj | exp(iΦj)

    : E(t|T ) =N∑j=1

    |aj (T )| exp[i(2πωj t + Φj (T )

    )], T � t

    Phase Delay: Φj ' Φ0 + Φ′ωj

    -π/2

    -π/4

    0

    π/4

    π/2

    0 100 200 300 400 500

    Φ

    ω

    -1

    -0.5

    0

    0.5

    1

    199 200 201

    E(t

    )

    t

  • MC simulations: Results (VI)

    Evidence in the Spectra

    0

    1

    2

    3

    4

    5

    6

    760 800 840

    I(λ

    ) (a

    .u.)

    λ (a.u.)

    Pc(N)=1.60(2); N=150σg = 3885

    4.472

    1.630

    1.593

    0

    1

    2

    3

    4

    5

    6

    760 800 840

    I(λ

    ) (a

    .u.)

    λ (a.u.)

    Pc(N)=1.60(2); N=150σg = 3885

    760 800 840

    λ (a.u.)

    σg = 243

    4.472

    1.630

    1.310

    760 800 840

    λ (a.u.)

    σg = 243

    g(λ)

  • Outline

    Further “Surprises” in SML Beyond MFT:

    • Metastability Vanishes in the Thermodynamic Limit

    • Vanishing Two Point Correlation Functions

    • Slow Dynamics of Phase Waves (different slopes as basins of the FEL)

    • Power Condensation (O(1) modes take O(N) intensity in hyper-diluted systems)

    • Synchronous MC Algorithm

    Outlook:

    • Random Laser Models Beyond MFT

  • Stvdivm Vrbis (photos by MIB)

    Thanks forthe attention